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3. Scattering Theory 1

a. Reminder of basic quantum mechanical scattering

The dominant source of information about the two-body force between nucleons (protons and

neutrons) is nucleon-nucleon scattering. You are probably familiar from quantum mechanics classes

of some aspects of non-relativistic scattering. We will review and build on that knowledge in this

section.

Nucleon-nucleon scattering means n–n, n–p, and p–p. While all involve electromagnetic inter-

actions as well as the strong interaction, p–p has to be treated specially because of the Coulomb

interaction (what other electromagnetic interactions contribute to the other scattering processes?).

We’ll start here with neglecting the electromagnetic potential Vem and the difference between the

proton and neutron masses (this is a good approximation, because (mn − mp)/m ≈ 10−3 with

m ≡ (mn + mp)/2). So we consider a generic case of scattering two particles of mass m in a

short-ranged potential V . While we often have in mind that V = VNN, we won’t consider those

details until the next sections.
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Figure 1: Kinematics for scattering in lab and relative coordinates. If these are external (and

therefore “on-shell”) lines for elastic scattering, then when P = 0 we have k2 = k′2 = mEk = 2µEk
(assuming equal masses m).

Let’s set our notation with a quick review of scattering (without derivation; see the linked

references to fill in the details). The Hamiltonian (in operator form) is

H =
p2
1

2m
+

p2
2

2m
+ V , (1)

where we label the momentum operators for particles 1 and 2. We switch to relative (“rel”) and

center-of-mass (“cm”) coordinates:

r = r1 − r2 , R =
r1 + r2

2
(2)

k =
p1 − p2

2
, P = p1 + p2 , (3)

so that the Hamiltonian becomes (still operators, but the P, k, and k′ in Fig. 1 are numbers)

H = Tcm +Hrel =
P2

2M
+

k2

2µ
+ V , (4)
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with total mass M = m1 + m2 = 2m and reduced mass µ = m1m2/M = m/2. (Note: Hrel is

sometimes called the intrinsic Hamiltonian.) Now we note that V depends only on the cm variables

(more on this in the next section!), which means that we can separate the total wave function into

a plane wave for the center-of-mass motion (only kinetic energy) and the wave function for relative

motion:

|Ψ〉 = |P〉 |ψrel〉 . (5)

As a result, the two-body problem has become an effective one-body problem. From now on, we

are only concerned with |ψrel〉, so we will drop the “rel” most of the time.
42 Scattering theory
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Outgoing spherical waves exp(ikR)/R

Fig. 3.1. A plane wave in the +z direction incident on a spherical target, giving
rise to spherically-outgoing scattering waves

3.1.1 Partial wave scattering from a finite spherical potential

We start our development of scattering theory by finding the elastic scat-

tering from a potential V (R) that is spherically symmetric and so can be

written as V (R). Finite potentials will be dealt with first: those for which

V (R) = 0 for R ≥ Rn, where Rn is the finite range of the potential. This

excludes Coulomb potentials, which will be dealt with later.

We will examine the solutions at positive energy of the time-independent

Schrödinger equation with this potential, and show how to find the scattering

amplitude f(θ, φ) and hence the differential cross section σ(θ, φ) = |f(θ, φ)|2
for elastic scattering. We will use a decomposition in partial waves L=0, 1,

· · · , and the spherical nature of the potential will mean that each partial

wave function can be found separately.

The time-independent Schrödinger equation for the relative motion with

c.m. energy E, from Eq. (2.3.18), is

[T̂ + V − E]ψ(R, θ, φ) = 0 , (3.1.1)

using polar coordinates (θ, φ) such that z = R cos θ, x = R sin θ cos φ and

y = R sin θ sinφ. In Eq. (3.1.1), the kinetic energy operator T̂ uses the

reduced mass µ, and is

T̂ = − !2

2µ
∇2

R

=
1

2µ

[
− !2

R2

∂

∂R

(
R2 ∂

∂R

)
+

L̂2

R2

]
, (3.1.2)

Figure 2: Scattering problem for an incident plane wave in the +z direction on a spherical target

(in the text r is used instead of R). [From F. Nunes notes.]

Thus we can consider relative motion with total P = 0 (see Fig. 1) and describe elastic scattering

from a potential from incoming k to outgoing k′ with |k| = |k′| and E = k2/(2µ) (with ~ = 1). We

describe this quantum mechanically in terms of an incoming plane wave and an outgoing scattered

(“sc”) wave:

ψ
(+)
E (r) = ψin(r) + ψsc(r) =

eik·r

(2π)3/2
+ ψsc(r) , (6)

which (assuming V falls off with r faster than 1/r), means that far way from the potential the wave

function has the asymptotic form

ψ
(+)
E (r) −→

r→∞
(2π)−3/2

(
eik·r + f(k, θ, φ)

eikr

r

)
, (7)

where the scattering angle θ is given by cos θ = k̂ · k̂′. A schematic picture is shown in Fig. 2 with

k = kẑ. The scattering amplitude f modulates the outgoing spherical wave according to direction

and carries all the physics information.

The differential cross section is calculated from

dσ

dΩ
(k, θ, φ) =

number of particles scattering into dΩ per unit time

number of incident particles per unit area and time
=
Ssc,rr

2

Sin
, (8)

where Ssc,r and Sin are the scattered and incoming probability current densities, respectively.
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Taking k ∝ ẑ without loss of generality (and with ~ = 1 and suppressing common (2π)3 factors),

Sin = Re

(
ψ∗in

1

iµ

d

dz
ψin

)
= Re

(
e−ikz

1

iµ
ikeikz

)
∝ k

µ
, (9)

Ssc,r = Re

(
ψ∗sc

1

iµ

d

dr
ψsc

)
= Re

(
f∗
e−ikr

r

1

iµ
ikf

eikr

r

)
+O

(
1

r3

)
∝ k

µr2
|f |2 +O

(
1

r3

)
, (10)

so the differential cross section is

dσ

dΩ
(k, θ, φ) = |f(k, θ, φ)|2 . (11)

If we do not consider spin observables (where the spin orientation of at least one of the particles

is known—polarized), then f(k, θ, φ) is independent of φ; we consider only this case for now and

drop the φ dependence.

We expand the wave function in spherical coordinates as

ψ(r, θ) =

∞∑

l=0

cl
ul(r)

r
Yl0(θ, φ) =

∞∑

l=0

c̃l
ul(r)

r
Pl(cos θ) , (12)

where because there is no φ dependence, only the ml = 0 spherical harmonic Yl0(θ, φ) = 〈θ, φ|l,ml =

0〉 appears and we can use Yl0 =
√

2l+1
4π Pl(cos θ). The radial function ul(r) satisfies the radial

Schrödinger equation (if there is no mixing of different l values),

d2ul
dr2
−
(
l(l + 1)

r2
+ 2µV − k2

)
ul(r) = 0 . (13)

We have freedom in choosing the normalization of ul, which we will exploit below.

For a central potential V (we’ll come back to non-central potentials in the section on nuclear

forces!), we resolve the scattering amplitude f into decoupled partial waves (the definition of fl
sometimes has a extra k factor):

f(k, θ) =
∞∑

l=0

(2l + 1)fl(k)Pl(cos θ) . (14)

[We can do a partial wave expansion even if the potential is not central, which means the potential

does not commute with the orbital angular momentum (as in the nuclear case!); it merely means

that different l’s will mix to some degree (in the nuclear case, this includes triplet S and D waves).

The more important question is how many total l’s do we need to include to ensure convergence of

observables of interest.] Using the plane wave expansion of the incoming wave,

eik·r = eikr cos θ =

∞∑

l=0

(2l + 1)iljl(kr)Pl(cos θ) −→
r→∞

∞∑

l=0

(2l + 1)Pl(cos θ)
(−1)l+1e−ikr + eikr

2ikr
, (15)

where we have used the asymptotic form of the spherical Bessel function jl:

jl(kr) −→
r→∞

sin(kr − lπ2 )

kr
=

1

kr

(−i)leikr − ile−ikr
2i

, (16)
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we can resolve the asymptotic wave function into incoming (e−ikr) and outgoing (eikr) spherical

waves (so now effectively a one-dimensional interference problem):

ψ
(+)
E (r) −→

r→∞
(2π)−3/2

∞∑

l=0

(2l + 1)Pl(cos θ)
(−1)l+1e−ikr + Sl(k)eikr

2ikr
, (17)

which identifies the partial wave S-matrix

Sl(k) = 1 + 2ik fl(k) . (18)

[Note: in scattering theory you will encounter many closely related functions with different nor-

malizations, often defined just for convenience and/or historical reasons. Be careful that you use

consistent conventions!] So part of eikr is the initial wave and part is the scattered wave; the latter

defines the scattering amplitude, which is proportional to the on-shell T-matrix (see below). The

conservation of probability for elastic scattering implies that |Sl(k)|2 = 1 (the S-matrix is unitary).

The real phase shift δl(k) is introduced to parametrize the S-matrix:

Sl(k) = e2iδl(k) =
eiδl(k)

e−iδl(k)
, (19)

(the second equality is a trivial consequence but nevertheless is useful in manipulating scattering

equations) which leads us to write the partial-wave scattering amplitude fl as

fl(k) =
Sl(k)− 1

2ik
=
eiδl(k) sin δl(k)

k
=

1

k cot δl(k)− ik . (20)

We will see the combination k cot δl many times. Putting things together, the asymptotic wave

function can be written (suppressing the k dependence of δl):

ψ
(+)
E (r) −→

r→∞
(2π)−3/2

∞∑

l=0

(2l + 1)Pl(cos θ)ileiδl
sin(kr − lπ2 + δl)

kr
, (21)

where the “shift in phase” is made manifest. Two pictures that go with this phase shift are shown

in Fig. 3. From above, the total cross section is

σ(k) = 4π
∞∑

l=0

(2l + 1)|fl(k)|2 =
4π

k2

∞∑

l=0

(2l + 1) sin2 δl(k) . (22)

Note that there is an ambiguity in δl because we can change it by adding multiples of π without

changing the physics. If we specify that the phase shift is to be continuous in k and that it goes to

zero as k → ∞ (that is, that δl(∞) = 0), then we remove the ambiguity and Levinson’s theorem

holds:

δl(k = 0) = nlπ , (23)

where nl is the number of bound states in the lth partial wave. [This is sometimes given alternatively

as δl(0)− δl(∞) = nlπ.]
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Figure 3: Repulsive and attractive phase shifts. On the left is an extreme example: a repulsive

“hard sphere”. The figure on the right is from a textbook on quantum mechanics, but note how

crude the figure is: the phase shift doesn’t stay the same for r > R!

An easy (but somewhat pathological) case to consider is hard-sphere scattering, for which there

is an infinitely repulsive wall at r = R. (You can think of this as a caricature of a strongly repulsive

short-range potential — a “hard core”.) Since the potential is zero outside of R and the wave

function must vanish in the interior of the potential (so that the energy is finite), we can trivially

write down the S-wave scattering solution for momentum k: it is just proportional to a sine function

shifted by kR from the origin, sin(kr − kR). Thus the phase shift is

δ0(k) = −kR [for a hard sphere] . (24)

It will be convenient to use this as a test case in talking about the effective range expansion and

pionless EFT in free space and at finite density. (Note that the hard sphere is not really a potential

but a boundary condition on the wave function; e.g., we can’t use the VPA (see below) for r < R.

We can’t choose the phase shift to vanish at high energy, either, unless we make the repulsion very

large but not infinite — then the VPA says it will vanish because of the 1/k factor on the right

side. Does Levinson’s theorem hold anyway?)

More details on scattering at this level can be found in (practically) any first-year graduate

quantum mechanics text. For a more specialized (but very readable) account of nonrelativistic

scattering, check out “Scattering Theory” by Taylor. For all the mathematical details and thorough

coverage, see the book by Newton.

b. Computational methods for phase shifts: Variable Phase Approach

b.1 “Conventional” way to solve for phase shifts in coordinate representation

In coordinate space, one can use the basic definition of phase shifts to carry out a numerical

calculation. In particular, for a given (positive) energy, the Schrödinger equation can be integrated

out from the origin using a differential equation solver (such as those built into Mathematica and

MATLAB or readily available for other languages) until the asymptotic region (r � R, where R is

the “range” of the potential — how do you know how far?). At that point one uses the asymptotic

form (for partial wave l with ̂l(z) ≡ z ∗ jl(z) and n̂l(z) ≡ z ∗ nl(z))
ul(r) −→

r→∞
cos δl(k) ̂l(kr)− sin δl(k) n̂l(kr) , (25)
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to identify δl(k). To check: the S-wave (l = 0) phase shift is

u0(r) −→
r→∞

sin[kr + δ0(k)] = cos δ0 sin kr + sin δ0 cos kr . (26)

(Recall that ̂0(z) = sin z and n̂0(z) = − cos z.) At a given point r1, Eq. (25) has two unknowns,

cos δl and sin δl, so we need two equations to work with. Two ways to get them and extract δl are:

1. calculate at two different points u(r1) and u(r2), form u(r1)/u(r2) and then solve for tan δ(k);

2. calculate u(r1) and u′(r1), take the ratio and then solve for tan δ.

Either way works fine numerically if you have a good differential equation solver (for which you

can specify error tolerances).

b.2 Basics of the VPA

As just described, we can solve for the phase shifts by integrating the Schrödinger equation numer-

ically in r from the origin, using any normalization we want. As we proceed, the end effect on the

phase shift of a local potential up to any given radius is completely determined once the integration

reaches that point (it is a local effect for a local potential). In response to the potential the wave

function is either pulled in with each step in r (when attractive) or pushed out (when repulsive)

and this information must be accumulated during the integration. So we should be able to devise

an alternative method that simply builds up the phase shift directly as an integration from r = 0

to outside of the range of the potential.

This alternative method is the Variable Phase Approach (VPA). Here is the basic idea for the

l = 0 partial wave for a local potential V (r). Generalizations exist for higher partial waves (a

problem for you!) and for non-local potentials (more complicated but interesting; [add refs!]). We

introduce the potential Vρ(r), which agrees with V (r) out to r = ρ and then is zero:

Vρ(r) =

{
V (r) r ≤ ρ

0 r > ρ
(27)

Now we’ll consider the “regular solution” φ(r), which is different from the conventional scatter-

ing solution only by its normalization, which is chosen so that φ(r) −→
r→0

sin(kr), with no other

multiplicative factors: φ(0) = 0, φ′(0) = 1.

[Aside on regular solutions versus ordinary normalization. Typically one uses the following

normalization for angular momentum l and scattering momentum p (so E = p2/2µ):

∫ ∞

0
dr u∗l,p′(r)ul,p(r) =

π

2
δ(p′ − p) (28)

(see AJP article equations 91a,b and 69a,b) with the two boundary conditions that

ul,p(r = 0) = 0 and ul,p(r) −→
r→∞

̂l + pflĥ
+
l . (29)
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In contrast, the regular solution is defined by the initial condition φl,p(r) −→
r→0

̂l(pr) with no extra

factors.]

Let φ(r) and φρ(r) be the regular solutions for V (r) and Vρ(r) with phase shifts at energy

E = k2/2µ given by δ(k) and δ(k, ρ), respectively. When there is no potential there is no phase

shift (by definition), so δ(k, 0) = 0. At large ρ, the potentials are the same, so

δ(k, ρ) −→
ρ→∞

δ(k) , (30)

which is the desired phase shift. This is called the “accumulation of the phase shift”. The claim is

that, for fixed k, the r-dependent phase shift δ(k, r) [using r instead of ρ as the variable] satisfies

a first-order (nonlinear) differential equation:

d

dr
δ(k, r) = −1

k
U(r) sin2[kr + δ(k, r)] , (31)

where U(r) ≡ 2µV (r). Comments:

• The equation is easily integrated in practice using a differential equation solver from r = 0

with the initial condition δ(k, 0) = 0 until the asymptotic region. It is evident when you get

to this region because δ(k, r) becomes independent of r (to the needed accuracy).

• There is no multiple-of-π ambiguity in the result because we build in the conditions that the

phase shift be a continuous function of k and that it vanish at high energy is built in. (Can

you see how that holds?). So Levinson’s theorem works (i.e., the value of the phase shift at

zero energy will be nlπ, where nl is the number of bound states). [One of the exercises is

to demonstrate with numerical examples.] The case of a s-wave zero-energy bound state (or

resonance) is a special case, for which we get π(n0 + 1/2) rather than n0π at k = 0.

• In any partial wave, it seems sufficient to know one number at a particular radius as long as

we know the potential. How can we use this?

• It is manifest that an attractive potential (V < 0) makes the phase shift increase positively

while a repulsive potential (V > 0) makes the phase shift more negative. The net winner

when both signs of V are present is energy dependent. E.g., for NN S-waves the phase shift

changes sign with energy.

• If V (r) diverges as r → 0 (e.g., like Coulomb), then use δ′(r) ∼ −(1/k)U(r) sin2 kr as r → 0

to start the integration.

• For non-zero l, the equation to solve is

d

dr
δl(k, r) = −1

k
U(r) [cos δl(k, r)̂(kr)− sin δl(k, r)n̂l(kr)]

2 . (32)

It is clear from the definitions of the Riccati-Bessel functions that this reduces to our previous

result for l = 0. The derivation of Eq. (32) is a simple generalization of the l = 0 derivation

in the next section.
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• In the exercises you get to play with (and extend) a Mathematica (and iPython) notebook

that implements the VPA for S-wave scattering from a square-well potential in a single short

definition (after Vsw defines V (r) for a square well with radius one and depth V0):

deltaVPA[k_, V0_] := (

Rmax = 10; (* integrate out to Rmax; just need Rmax > R for square well *)

ans = NDSolve[

{deltarho’[r] == -(1/k) 2 mu Vsw[r, V0] Sin[k r + deltarho[r]]^2,

deltarho[0] == 0}, deltarho, {r, 0, Rmax}, AccuracyGoal->6,

PrecisionGoal->6]; (* Solve equation for six digit accuracy. *)

(deltarho[r] /. ans)[[1]] /. r -> Rmax (* evaluate result at r=Rmax *)

)

Try it!

• Generalizations exist for coupled-channel potentials (as in the nuclear case where S and D

waves can mix; more on this later) and for non-local potentials.

b.3 Derivation for l = 0

Return to the regular solutions: it is evident that φ(r) and φρ(r) are exactly the same for 0 ≤ r ≤ ρ
(which is why we normalized them that way!). For r > ρ, φρ(r) is in the asymptotic region, so

φρ(r) = α(ρ) sin[kr + δ(k, ρ)] . (33)

Note that at this stage the r and ρ dependence is distinct. Continuity of the wave function at r = ρ

means

φρ(ρ
−) = φ(ρ−) = φ(ρ+) = α(ρ) sin[kρ+ δ(k, ρ)] (34)

and for the derivative it means

φ′(ρ) = kα(ρ) cos[kρ+ δ(k, ρ)] . (35)

But now in Eqs. (34) and (35) we have just one radial variable and the equations must hold for

all ρ, so we can replace ρ by r. Next we want to get an equation that only involves δ(k, ρ) and its

derivative. The natural move is to consider φ′(r)/φ(r) to get rid of α(r):

φ′(r)

φ(r)
=
k cos[kr + δ(k, r)]

sin[kr + δ(k, r)]
, (36)

and then note that
d

dr

[
φ′

φ

]
=
φ′′

φ
−
(
φ′

φ

)2

, (37)

so we can use the Schrödinger equation for the first term on the right side and then use Eq. (36)

to remove all the other φ dependence. After some cancellations, the result is Eq. (31). Try filling

in the details and generalizing to l 6= 0.



Scattering Theory 1 (last revised: September 5, 2014) 3–9

c. Beyond local coordinate-space potentials

c.1 Non-uniqueness of potentials

The idea of inverse scattering is to start with the scattering data (e.g., from experimental mea-

surements) and reconstruct a potential that generates that data. This problem has been studied

in great detail (see Newton’s scattering text). Much of the development was based on the idea of

finding a local potential, which is the type we have considered so far. The conditions for which a

unique local potential can be found are well established; for example, if the phase shifts in a given

partial wave are known up to infinite energy and there are no bound states and the interaction is

central (no spin dependence, tensor forces, etc.), then there is a constructive way to find a unique

local potential. In the literature there are discussions on finding more general classes of potentials,

but usually with the disclaimer that this spoils the problem because the result is no longer unique,

and besides these potentials are unphysical. As we’ll see, from the modern perspective of effective

field theory and the renormalization group, the focus on finding a unique potential is misguided

(beyond the fact that the NN interaction has spin dependence!). We will take advantage of the fact

that there are an infinite number of potentials (defined in the broader sense summarized below)

that are phase equivalent in the energy region of interest; that is, they predict the same phase shifts

at low energies.

This modern spirit actually goes back a long way, with the classic reference being Ekstein [Phys.

Rev. 117, 1590 (1960)]. Here is a relevant quote:

However, there are no good reasons, either from prime principles or from phenomeno-

logical analysis to exclude “nonlocal” interactions which may be, for instance, integral

operators in coordinate representation.

Ekstein derives conditions for unitary transformations that produce phase equivalent potentials

and notes that “this class is so wide that one is tempted to say that ‘any reasonable’ unitary trans-

formation leaves a given Hamiltonian within its equivalence class”. However, much of mainstream

low-energy nuclear physics in subsequent years carried the implicit (and sometimes explicit) idea

that one should seek the NN potential. We will have much to say about these ideas throughout

the course (and we’ll find more than one occasion when a local potential is desirable, which brings

back some of the inverse scattering discussion). For now let’s review some features of unitary

transformations and discuss non-local potentials.

c.2 Unitary transformations

We will encounter unitary transformations in several different contexts:

• the evolution operator |ψ(t)〉 = e−iHt/~|ψ(0)〉 and its (non-unitary) counterpart in imaginary

time t→ −iτ ;

• symmetry transformations such as U = e−iα·G with Hermitian G (when we discuss constraints

on NN potentials);
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• unitary transformations of Hamiltonians via renormalization group methods (or by other

direct transformation methods).

Recall that a unitary transformation can be realized as unitary matrices with U †αUα = I (where α

is just a label for the transformation). They are often used to transform Hamiltonians with the

goal of simplifying nuclear many-body problems, e.g., by making them more perturbative. If I have

a Hamiltonian H with eigenstates |ψn〉 and an operator O, then the new Hamiltonian, operator,

and eigenstates are

H̃ = UHU † Õ = UOU † |ψ̃n〉 = U |ψn〉 . (38)

The energy is unchanged (all eigenvalues are unchanged):

〈ψ̃n|H̃|ψ̃n〉 = 〈ψn|H|ψn〉 = En . (39)

Furthermore, if we transform everything, matrix elements of O are unchanged:

Omn ≡ 〈ψm|Ô|ψn〉 =
(
〈ψm|U †

)
UÔU †

(
U |ψn〉

)
= 〈ψ̃m|Õ|ψ̃n〉 ≡ Õmn (40)

So for consistency, we must use O with H and |ψn〉’s but Õ with H̃ and |ψ̃n〉’s. Claim to consider: If

the asymptotic (long distance) properties are unchanged, H and H̃ are equally acceptable physically.

(We will have to return to the issue of what “long distance” means!) Of course, one form of the

Hamiltonian may be better for intuition or another for numerical calculations.

We need to ask: What quantities are changed and what are unchanged by such a transformation?

We have noted that energies are not, but what about the radius or quadrupole moment of a nucleus?

If they can change, how do we know what answer to compare with experiment?

c.3 Local vs. non-local potentials

When we perform a unitary transformation on a potential, it is often the case that the transformed

potential is non-local, even if initially it is local. Let’s review what non-local means in this context

(in this section we are talking about two-body systems only). Consider the operator Hamiltonian

(here k is the intrinsic or relative momentum):

Ĥ =
k̂2

2µ
+ V̂ (41)

and matrix elements of Ĥ between the wave function |ψ〉 in coordinate space:

〈ψ|Ĥ|ψ〉 =

∫
d3r

∫
d3r′ 〈ψ|r′〉〈r′|Ĥ|r〉〈r|ψ〉 with 〈r|ψ〉 ≡ ψ(r) , (42)

where 〈r′|r〉 = δ3(r′− r). The coordinate space matrix elements of the kinetic energy and potential

are

〈r′| k̂
2

2µ
|r〉 = δ3(r′ − r)

−~2∇2

2µ
, 〈r′|V̂ |r〉 =

{
V (r)δ3(r′ − r) if local

V (r′, r) if nonlocal
, (43)
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where we have implicitly defined local and non-local potentials. Remember that r and r′ are relative

distances (e.g., r = r1 − r2). We can then contrast the familiar local Schrödinger equation

−~2∇2

2µ
ψ(r) + V (r)ψ(r) = Eψ(r) (44)

with the less familiar non-local Schrödinger equation (which is an integro-differential equation):

−~2∇2

2µ
ψ(r) +

∫
d3r′ V (r, r′)ψ(r′) = Eψ(r) . (45)

From Eq. (43) we see that a local potential is rather a special case in which the interaction is

diagonal in the coordinate basis. [If we considered the one-D version of this equation with the x

coordinate discretized, then V becomes a matrix with off-diagonal matrix elements. Local means

explicitly diagonal in this case.] An interaction that at large distances comes from particle exchange

is naturally local (see the next section) and this could be considered physical. However, at short

distances, the interaction between composite objects like nucleons is certainly not required to be

local. But we will encounter situations in what follows where locality is an advantage.

Note that the meaning of “local” here is different than in field theory, where even local potentials

would be considered non-local unless V (r) ∝ δ3(r) as well!

d. Momentum representation

d.1 Potentials in momentum space

Consider the same abstract Hamiltonian:

Ĥ =
k̂2

2µ
+ V̂ (46)

but now take matrix elements of the wave function |ψ〉 in momentum space:

〈ψ|Ĥ|ψ〉 =

∫
d3k

∫
d3k′ 〈ψ|k′〉〈k′|Ĥ|k〉〈k|ψ〉 , (47)

with 〈k|ψ〉 ≡ ψ̃(k) and 〈k′|k〉 = δ3(k′−k). The momentum-space kinetic energy and potential are

〈k′| k̂
2

2µ
|k〉 = δ3(k′ − k)

~2k2

2µ
, 〈k′|V̂ |k〉 =

{
V (k′ − k) if local

V (k′,k) if nonlocal
, (48)

which characterizes the difference between local and non-local potentials. Remember that k and k′

are relative momenta. A key example to keep in mind of what happens to a local potential when

(Fourier) transformed to momentum is the Yukawa potential:

e−m|r|

4π|r| ←→F.T.
1

(k′ − k)2 +m2
, (49)
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which as advertised depends on k′ − k only. (We’ve suppressed all of the multiplicative factors;

you’ll recover them in an exercise.) So if we know from physics that the longest ranged part of

the NN interaction is from pion exchange, we expect that part of the potential to be local. Note

that you can show directly from the Fourier transform expression that any local potential will only

depend on the momentum transfer k′ − k [this is an exercise].

The momentum-space partial wave expansion of the potential is

〈k′|V̂ |k〉 =
2

π

∑

l,m

Vl(k
′, k)Y ∗lm(Ωk′)Ylm(Ωk) =

1

2π2

∑

l

(2l + 1)Vl(k
′, k)PL(k̂ · k̂′) , (50)

where we are using (see the Landau appendix)

|k〉 =

√
2

π

∑

l,m

Y ∗(Ωk)|klm〉 , (51)

which implies the completeness relation

1 =
2

π

∑

l,m

∫
dk k2|klm〉〈klm| . (52)

Note that rotational invariance implies

〈k′l′m′|V |klm〉 = δll′δmm′Vl(k
′, k) . (53)

If we start with a local potential V (r), then

Vl(k
′, k) =

1

k′k

∫ ∞

0
dr̂(k′r)V (r)̂(kr) =

∫ ∞

0
r2 dr jl(kr)V (r)jl(k

′r) . (54)

We describe momentum space scattering in terms of the T-matrix, which satisfies the Lippmann-

Schwinger (LS) integral equation:

T (+)(k′,k;E) = V (k′,k) +

∫
d3q

V (k′,q)T (q,k;E)

E − p2

m + iε
, (55)

with the partial-wave version [Tl(k, k
′) has the same partial-wave expansion as Vl(k, k

′) in Eq. (50)]:

Tl(k
′, k;E) = Vl(k

′, k) +
2

π

∫ ∞

0
dq q2

Vl(k
′, q)Tl(q, k;E)

E − Eq + iε
, (56)

with Eq ≡ q2/m. Note that this equation can be solved for any values of k′, k, and E. But if we

want to relate Tl to the scattering amplitude fl(k), we have to evaluate it on shell :

Tl(k, k;E = Ek) = −2π

µ
fl(k) , (57)

meaning that k′ = k and the energy is k2/2µ. However, to solve the LS equation (56) for on-shell

conditions on the left side, we need Tl(q, k;Ek) in the integral. So q 6= k and we call this “half-

on-shell”. We will talk more about “on-shell” and “off-shell”; for now we just remark that it is
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impossible to make an absolute determination of off-shell behavior (despite past attempts to design

nuclear experiments to do exactly that!).

If we keep only the first term, then T = V and this is the Born approximation. If we approximate

T on the right side by V , this is the second Born approximation. We can keep feeding the approx-

imations back (i.e., we iterate the equation) to generate the Born series. It is analogous to the

familiar perturbation theory from quantum mechanics. In operator form, the Lippman-Schwinger

equation and the Born series expansion is

T̂ (z) = V̂ + V̂
1

z − Ĥ0

T̂ (z) = V̂ + V̂
1

z − Ĥ0

V̂ + V̂
1

z − Ĥ0

V̂
1

z − Ĥ0

V̂ + · · · . (58)

Check that taking matrix elements between momentum states and evaluating at z = E + iε repro-

duces our previous expressions Eqs. (55) and (56). [Exercise! ]

Note that the difference between a local and a non-local potential is not noticable at the level

of the partial wave LS equation. But still, given the freedom, why not choose local? You’ll find

an argument in favor of non-local potentials when we consider the NN interaction and what a

local form implies about short-range repulsion. A special type of non-local potential is a separable

potential:

V̂ = g|η〉〈η| , (59)

where g is a constant. Then Vl(k
′, k) = gη(k′)η(k) where η(k) = 〈k|η〉, and similarly in (partial-

wave) coordinate space. It is straightforward to show (don’t you hate it when people say that?

:) that T̂ (z) in Eq. (58) is also separable and the Lippman-Schwinger equation can be solved

algebraically.

d.2 Computational methods for phase shifts: Matrix solution of Lippmann-Schwinger

equation

To solve the LS equation numerically, we generally turn to a different function that satisfies the

same equation but with a principal value rather than +iε. Landau in his QMII book calls this the

R-matrix but it is also called the K-matrix elsewhere. In the exercises we work out the numerical

evaluation of the R-matrix to calculate phase shifts.

The plan whenever possible for computational effectiveness is to use matrix operations (e.g.,

multiply two matrices or a matrix times a vector), which are efficiently implemented. The partial

wave Lippmann-Schwinger equation is an integral equation in momentum space that, with a finite

discretization of the continuous range of momentum in a given partial wave, naturally takes the

form of matrix multiplication.

VL=0(k, k
′) ∝ 〈k|VL=0|k′〉 ∝

∫
d3r j0(kr)V (r) j0(k

′r) =⇒ Vkk′ matrix . (60)

Two-minute question: What would the kinetic energy look like on the right figure of Fig. 4? To

set the scale on the right in Fig. 4, recall our momentum units (~ = c = 1). The typical relative

momentum in a large nucleus is ≈ 1 fm−1 ≈ 200 MeV.
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Figure 4: On the right is a matrix version of the 1S0 AV18 potential on the left.

e. Effective range expansion

As first shown by Schwinger, k2l+1 cot δl(k) has a power series expansion in k2 (see Newton for

more details on proving this). The radius of convergence is dictated by how the potential falls off

for large r; for a Yukawa potential of mass m, this radius is m/2. For l = 0 the expansion is

k cot δ0(k) = − 1

a0
+

1

2
r0k

2 − Pr30k4 + · · · , (61)

which defines the S-wave scattering length a0, the S-wave effective range r0 and the S-wave shape

parameter P (often these are written as and rs or a and re). Note the sign conventions. For l = 1

the convention is to write

k3 cot δ1(k) = − 3

a3p
, (62)

which defines the P -wave scattering length ap (with dimensions of a length).

The effective range expansion for hard-sphere scattering (radius R) is (just do the Taylor ex-

pansion with δ0(k) = −kR):

k cot(−kR) = − 1

R
+

1

3
Rk2 + · · · =⇒ a0 = R r0 = 2R/3 (63)

(note the sign of a0) so the magnitudes of the effective range parameters are all the order the range

of the interaction R. The radius of convergence here is infinite because the potential is identically

zero beyond some radius.

For more general cases, we find that while r0 ∼ R, the range of the potential, a0 can be anything:

• if a0 ∼ R, it is called “natural”;
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• |a0| � R (unnatural) is particularly interesting, e.g., for neutrons or cold atoms.

We can associate the sign and size of a0 with the behavior of the scattering wave function as the

energy (or k) goes to zero, since

sin(kr + δ0(k))

k
−→
k→0

r − a0 , (64)

so in the asymptotic region the wave function is a straight line with intercept a0 (see Fig. 5). We

see that a0 ranges from −∞ to +∞ (are there excluded regions?).

Figure 5: Identifying the S-wave scattering length a0 by looking at k → 0 wave functions. [credit

to ???]

Let us consider the case of low-energy scattering for l = 0. Then the S-wave scattering amplitude

is (recall Eq. (20))

f0(k) =
1

−1/a0 − ik
=⇒ σ(k) =

4π

1/a20 + k2
. (65)

In the natural case, |ka0| � 1 and f0(k)→ −a0 at low k and

dσ

dΩ
= a20 =⇒ σ = 4πa20 . (66)

Also, δ0(k) ≈ −ka0 implies that the sign of a corresponds to the sign of V (if strictly attractive or

repulsive). Figure 5 tells us that to get large a0 (unnatural), we need to have close to a zero-energy

bound state (so the wave function is close to horizontal in the asymptotic region). If a0 > 0, we

have a shallow bound state (i.e., close to zero binding energy) while if a0 < 0 we have a nearly

bound (virtual) state. The limit of |a0| → ∞ is called the unitary limit; the cross section becomes

dσ

dΩ
−→ 1

k2
=⇒ σ =

4π

k2
, (67)

which is the largest it can be consistent with the constraint of unitarity.

We can associate the observations about bound or near-bound states for large a0 with the

analytic structure of f0(k) continued to the complex k plane. Poles on the positive real axis
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correspond to bound states while those on the negative real axis to virtual bound states. From

Eq. (65), for a0 > 0 the pole is at k = i/a0, so we have a bound-state as advertised, with a pole

in energy at the bound state value: E ≈ −~2|k|2/2µ = −~2/(2µa20). [Check! ] (You’ll see how this

analytic structure plays out for a square well in the exercises.) We get a better estimate of the

bound-state energy by keeping the effective range term as well in f0(k).
62 Scattering theory
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Fig. 3.4. The correspondences between the energy (left) and momentum (right)
complex planes. The arrows show the trajectory of a bound state caused by a
progressively weaker potential: it becomes a resonance for L > 0 or when there is
a Coulomb barrier, otherwise it becomes a virtual state. Because E ∝ k2, bound
states on the positive imaginary k axis and virtual states on the negative imaginary
axis both map onto the negative energy axis.

is extremely sensitive to the height of these barriers. Very wide resonances,

or poles a long way from the real axis, will not have a pronounced effect on

scattering at real energies, especially if there are several of them. They may

thus be considered less important physically.

The case of neutral scattering in L = 0 partial waves deserves special at-

tention, since here there is no repulsive barrier to trap e.g. a s-wave neutron.

There is no Breit-Wigner form now, and mathematically the S matrix pole

Sp is found to be on the negative imaginary k axis: the diamonds in Fig. 3.4.

This corresponds to a negative real pole energy, but this is not a bound state,

for which the poles are always on the positive imaginary k axis. The neutral

unbound poles are called virtual states, to be distinguished from both bound

states and resonances. The dependence on the sign of kp = ±
√

2µEp/!2

means we should write the S matrix as a function of k not E. A pure virtual

state has pole at kp = i/a on the negative imaginary axis, described by a

negative value of a called the scattering length. This corresponds to the

analytic form

S(k) = −k + i/a

k − i/a
, (3.1.94)

giving δ(k) = − arctan ak, or k cot δ(k) = −1/a. These formulae describe

the phase shift behaviour close to the pole, in this case for low momenta

where k not too much larger than 1/|a|. For more discussion see for example

Taylor [5, §13-b].

Figure 6: From Filomena Nunes notes: “The correspondences between the energy (left) and mo-

mentum (right) complex planes. The arrows show the trajectory of a bound state caused by a

progressively weaker potential: it becomes a resonance for L > 0 or when there is a Coulomb bar-

rier, otherwise it becomes a virtual state. Because E ∝ k2, bound states on the positive imaginary

k axis and virtual states on the negative imaginary axis both map onto the negative energy axis.”

[See K.W. McVoy, Nucl. Phys. A, 115, 481 (1968) for a discussion of the difference between virtual

and resonance states.]

Schwinger first derived the effective range expansion (ERE) back in the 1940’s and then Bethe

showed an easy way to derive (and understand) it. This is apparently a common pattern with

Schwinger’s work! The implicit assumption here is that the potential is short-ranged; that is, it

falls off sufficiently rapidly with distance. This is certainly satisfied by any potential that actually

vanishes beyond a certain distance. Long-range potentials like the Coulomb potential must be

treated differently (but a Yukawa potential, which has a finite range although non-vanishing out

to r →∞, is ok).

When first identified, the ERE was a disappointment because it meant that scattering experi-

ments at low energy could not reveal the structure of the potential. For example, it is impossible to

invert the expansion at any finite order to find a potential that correctly gives scattering at higher

energies. All you determined were a couple of numbers (scattering length and effective range) and

any potential whose ERE was fit to these would reproduce experimental cross sections. In the

modern view we are delighted with this: the low-energy theory is determined by a small number of

constants that encapsulate the limited high-energy features that affect the low-energy physics (in

many ways like a multipole expansion; see exercises for later lectures). We can devise an effective

theory (called the “pionless effective theory”) to reproduce the ERE and consistently extend it to

include the coupling to external probes (and other physics).
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