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A number of vibrational–tunneling–rotational (VTR) transitions in the range of 195–298 GHz belonging to the �00 → �10

hindered rotation band in Rg · ND3 (Rg = Ne, Kr) complexes are observed in absorption in a free supersonic jet, using the
pulsed fast scan submillimeter-wave spectroscopic technique (FASSST). The data obtained in this experiment, combined with
previously obtained data on the Ar · ND3 complex, were used to construct a qualitative model describing the inversion–tunneling
motion in the lowest states of the Rg · ND3 complexes. C© 2002 Elsevier Science (USA)
I. INTRODUCTION

Van der Waals complexes are attractive physical systems for
study to provide information about weak intermolecular inter-
actions that are relevant to the study of chemical kinetics, so-
lution dynamics, and other fields. Complexes that contain rare
gas (Rg) atoms are of particular interest because Rg atoms may
be regarded as structureless probes of the “shape” of the inter-
molecular potential surface.

The energy level diagram of the lowest states of the Rg · ND3

complex correlating to the j = 0, 1 and k = 0 of the ammonia
monomer (1) is shown in Fig. 1. In perdeuterated ammonia the
k = 0 levels are split into two inversion components correspond-
ing to symmetric and antisymmetric inversion states, denoted in
Fig. 1 by + and − respectively. These states also correspond to
different nuclear spin functions that transform as A′

1 and A′
2 rep-

resentations of the PI group isomorphous to D3h (1). Following
the notation of Schmuttenmaer et al. (2, 3), the energy levels
of the complex are correlated with those of the free ammonia
molecule and designated as �jk , �jk , etc., where � corresponds
to � = 0 and � to � = 1. � denotes the projection of the com-
plex total angular momentum J on the van der Waals bond
RvdW , defined as the line connecting the centers of mass of the
two moieties, with the j and k quantum numbers correlating
with the corresponding states of free ND3. The Coriolis inter-
action between the �10 and �10 states lifts the �-degeneracy
of the �10 state and gives rise to the splitting into two states
denoted as �+ and �− in Fig. 1c.

Of all the van der Waals complexes previously studied,
Ar · NH3 (4–11, 3, 12, 2) and Ar · ND3 (13, 1) are the sim-
plest molecules exhibiting inversion–tunneling motion. The first
studies of the Ar · NH3 complex were done in the microwave
202
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region (4, 5). The experimental results led to the conclusion that
the ammonia monomer undergoes both nearly free rotation and
only slightly perturbed inversion. Later, submillimeter and far
infrared studies of the bending modes correlating to the k = 0
(9) and |k| = 1 (8) were done. The latter studies showed that due
to the asymmetry of the inversion potential in the states with
both nonzero |k| and � quantum numbers, the inversion split-
ting is significantly quenched, while for �10 state (� = 0) the
inversion remains only slightly perturbed.

A number of ab initio calculations (6, 7, 11, 10) of the potential
energy surface (PES) have been done for Ar · NH3. The results
suggest that the PES minimum is about De = 115 to 134 cm−1

(11, 7, 6), and the corresponding dissociation energy D0 is about
82 cm−1 (11). Van Bladel et al. (11, 10) have predicted the
rovibronic level pattern and generated a theoretical spectrum of
the Ar · NH3 complex. Schmuttenmaer et al. (3) experimentally
studied the van der Waals � and � bends and �–� stretch
bands in the manifold correlating to k = 0 stacks and derived
the potential surface from the spectroscopic data. They have
also derived from the quadrupole analysis the structure of the
molecule, averaged over large-amplitude motions, and showed
that within experimental error, the quadrupole coupling constant
of ammonia is unaffected by complexation. Grushow et al. (14)
and Schmuttenmaer et al. (12) extended the experimental and
theoretical studies to higher lying (correlating to up to j = 2)
states.

However, the inversion motion in the states with k = 0 in
Ar · NH3 could not be directly observed experimentally since one
of the inversion states in the k = 0 stacks of NH3 is Pauli forbid-
den. This makes Ar · ND3 a logical choice of a test system, since
both states are allowed in ND3. In addition, the inversion splitting
in the ground vibrational state of ND3 is about 11 times smaller
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FIG. 1. Energy level and transition diagram for ND3 and Rg · ND3. (a) Ene-
rgy levels in monomer, (b) correlation between the energy levels in ND3 and
Rg · ND3, (c) �-bend transition in Rg · ND3. Energy levels include overall ro-
tation of the complex. The full rovibrational–inversional symmetry (A′

1, etc.)
is indicated, with the indicating numbers preceding the nuclear spin statistical
weight. The + and − signs label inversion levels. In case of Rg · ND3 these signs
are not rigorous quantum numbers but indicate correlation with the correspond-
ing symmetry components in monomer. L and U label transitions corresponding
to the lower and the upper frequency components of the band, respectively.

than that in NH3 putting the van der Waals motions and inver-
sion in different parts of the frequency scale allowing for sim-
pler modeling. Based on the predictions of Schmuttenmaer et al.
(2) we have previously studied �-bend excitation (�00 → �10

band) in Ar · ND3 (1). We found that the inversion splitting is
slightly perturbed, as in the case of �10 of Ar · NH3 (8).

Recently, a series of experiments on Rg · ND3 complexes were
done by Wijngaarden and Jager (13, 15, 16) who reported the ro-
tational spectra within the ground �00 states of the neon, argon,
and krypton complexes, which were obtained in microwave FT
experiments. This and the present data set are highly comple-
mentary.

The limited set of the experimental data from the narrow ac-
cessible spectral range did not allow us to develop a model de-
scribing inversion–tunneling motion in any detail. In the present
work we have extended our studies to the corresponding tran-
sitions in Ne · ND3 and Kr · ND3 with the aim of learning more
about bonding in the lowest states of Rg · ND3 complexes and
to develop a qualitative model of the interaction.

II. EXPERIMENTAL

The experimental data were acquired using the pulsed jet
FASSST spectrometer described elsewhere (1) and only a brief
description is given here. The rapidly (100–120 GHz/s) scanned
radiation from a backward wave oscillator (BWO) was focused
on a free supersonic jet generated by a 25-µm-wide 18-mm-long
C© 2002 Elsevier
pulsed slit nozzle. The spectroscopic information was collected
by a hot electron InSb bolometer whose output was amplified,
filtered, accumulated, and stored in the controlling computer.
The typical output power fed into chamber ranged between 1
and 10 mW. The traces of the spectra were typically averaged
over 500 to 4000 scans.

In the Ne · ND3 experiment, a premixed sample of 1–2%
of ammonia in neon was expanded through the 25-µm-wide,
18-mm-long slit nozzle at backing pressure of 150–155 psi. The
perdeuterated ammonia was purchased from Aldrich Chemical
Company (99 atom % D grade), and neon from Praxair (research
grade).

In the Kr · ND3 experiment, a mixture of 0.6–1.0% of ND3

and 2% of krypton (AGA, 99.97% grade) in neon was expanded
through the same slit nozzle at backing pressures of 80–100 psi.
The experimental conditions were optimized to give the maxi-
mum signal amplitude. A rather low concentration of krypton
was maintained to prevent formation of complexes with more
than one krypton atom. In both cases, the beam was probed at
distances 20–25 mm downstream from the nozzle.

III. THEORY

For the expressions for the energies of the VTR levels shown
in Fig. 1c we used a Hamiltonian similar to that used by
Schmuttenmaer et al. (2, 3):

� states,

EVTR(J, ξ ) = B[J (J + 1) − �2] − D[J (J + 1) − �2]2

+ H [J (J + 1) − �2]3 − 1

2
(−1)ξ	�(J ) [3.1a]

�− states,

EVTR(J, ξ ) = B[J (J + 1) − �2] − D−[J (J + 1) − �2]2

+ H [J (J + 1) − �2]3 −
[

q� + 1

2
(−1)ξ δq�

]

×J (J + 1) + V0 − 1

2
(−1)ξ	�(J ) [3.1b]

�+ states,

EVTR(J, ξ ) = B[J (J + 1) − �2] − D+[J (J + 1) − �2]2

+ H [J (J + 1) − �2]3 + V0 − 1

2
(−1)ξ	�(J )

[3.1c]

all states,

	�,�(J ) = 	0
�(�) − 	1

�(�) J (J + 1). [3.1d]

Here, B and D are the conventional rotational constants,
common for both symmetric and antisymmetric spin states, V0
Science (USA)
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is the energy of rotationless level of the � state in the nonin-
verting limit (the energy of the corresponding level in the �00

state is equal to zero), and q� is an �-doubling constant simi-
lar to a l-type doubling constant, which takes into account the
rotational interaction of the �1−

0 and �10 states. The 	�(J )
and 	�(J ) denote the full inversion splitting intervals in the re-
spective � states, with ξ being 0 for symmetric inversion states
and 1 for antisymmetric inversion states, denoted by + and − on
the left hand side of Fig. 1c, respectively. The J -dependence in
Eq. [3.1d] is introduced to account for the centrifugal distortion
effects on the inversion splitting (17). The appearance of the q�

term uniquely in the energy expression of the �− state reflects
the fact that this state is the one that is being pushed down by the
rotational interaction while the �+ state remains uncoupled. The
inclusion of the term δq� allows for different values of the Corio-
lis coupling term in the different nuclear spin states. Hence, both
δq� and q� are the effective parameters describing the net effect
of the interaction of the �−10 state with the higher excited states.

The inspection of the set of equations [3.1] shows that, apart
from the inversion splitting, the energy level structure is sim-
ilar to that of the diatomic molecule. The internal motion of
the ammonia moiety occurs on a time scale much shorter that
the overall rotation of the complex, and therefore the details
of the structure of the ammonia subunit are highly averaged and
allow it to be treated as a structureless pseudo atom. The inver-
sion motion results in the splitting of the energy level structure
into two separate, but similar patterns. Hence, the spectrum of
the analyzed VTR band is expected to have a pattern similar
to that of the spectrum of the diatomic molecule; thus, we will
describe the spectral pattern as pseudodiatomic.

The quadrupole interaction of the nitrogen nucleus with the
electric field gradient of the monomer results in the splitting of
the VTR levels of the complex into sublevels with different total
angular momentum F (F = I + J). The energies EHFS of the
quadrupole components, relative to the ones given in Eqs. [3.1a]–
[3.1c], are provided by the following expressions (18):

� states,

EHFS = −eQqaa f (I, J, F) [3.2a]

� states,

EHFS =
(

eQqaa
3 − J (J + 1)

J (J + 1)
± 1

2
eQ(qbb −qcc)

)
f (I, J, F).

[3.2b]

Here f (I, J, F) is the Casimir function (17), Q is a nu-
clear quadrupole moment of nitrogen atom, and the qii are the
quadrupole coupling constants along the i inertial axis of the
complex. It should be noted that Eqs. [3.2] result from the cou-
pling of the total angular momentum J and the nuclear spin
of the nitrogen, I, to form a resulting F (19), whereupon the
components of the electric field gradient tensor in the reference
frame of the complex are expressed through those in the original,
monomer-fixed reference frame, by rotating the latter through
C© 2002 Elsevier
the Euler angles (φ, θ, 0). For � = 0, the only nonvanishing
component of the field gradient tensor q (2) in the new, complex-
fixed coordinates, is q2

0 which results in the only nonzero cou-
pling constant qaa . For the �±-states (� = 1), there are also non-
vanishing ±(q (2)

2 + q (2)
−2), where the ± sign correlates with the

sign of the �± state, which results in the last term in Eq. [3.2b].
These coupling constants are related to that of the isolated ND3,
eQqND3 , as (3)

eQqaa = eQqND3〈P2(cos θ )〉 [3.2c]

eQqbb − eQqcc = eQqND3 [1 − 〈P2(cos θ )〉], [3.2d]

where θ is the angle between the C3 axis of the ammonia
monomer and RvdW . The brackets in [3.2c] indicate the expec-
tation value of the Legendre polynomial in the molecular state
in question.

As we showed previously (1), the symmetric and antisym-
metric inversion states correspond to different nuclear spin
species transforming as A′

1 and A′
2, with statistical weights

of 30 and 3, respectively (see Fig. 1c). The selection rules
permit transitions between the states of the same nuclear
spin symmetry, thus giving rise to two diatomic-like spectral
patterns with components that are denoted U (upper) and L
(lower) in Fig. 1, and separated by the sum of the inversion
splittings in the �00 and �10 states. To avoid confusion, we
will describe components of the spectra as “upper” and “lower”
implying their relative position on the frequency scale, and
label corresponding states according to nuclear spin symmetry
properties. The summary of the selection rules is

� ′′(�N S(A′
1)) → � ′(�N S(A′

1))

(“upper” component, statistical weight 30)

� ′′(�N S(A′
2)) → � ′(�N S(A′

2))
[3.3]

(“lower” component, statistical weight 3)

|J ′′ − J ′| = 0, 1

|F ′′ − F ′| = 0, 1.

Hence, the transitions in the states of the different nuclear
spin symmetry form two separate subbands. The inspection of
the level diagram in Fig. 1c and Eqs. [3.1] show that the observed
spectra only allow one to determine the sum of the 	0 terms in
the � and � states, but not the terms themselves. Assuming the
inversion splittings in the two states are approximately equal,
we can usefully define the average inversion splitting, 	I , as

2	I ≡ 	0
� + 	0

�. [3.4]

However, the observation of the P and R branches in the two
inversion components allows for independent determination of
the 	1 term in the upper and lower states.
Science (USA)
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IV. RESULTS

IV.1. Rotational Structure

The microwave (4, 5, 8) and submillimeter-wave (8, 3) results
indicate that the NH3 monomer undergoes almost free internal
rotation in the k = 0 states of the argon complex. Based on that
result we expect that the position of the �00 → �10 origin fre-
quency does not depend strongly upon rare gas substitution and,
in the first approximation, one should search for these transi-
tions in the Rg · ND3 complexes in the same region as where the
Ar · ND3 spectrum was found.

IV.1.1. Ne · ND3

The search of the region 200–300 GHz resulted in detection
of two series of transitions assigned to the �00 → �10 band
of 20Ne · ND3. The spectral pattern resembles that previously
reported (1) for Ar · ND3 with two distinct sets of P, Q, and
R branches, separated by roughly 3 GHz and with a relative
intensity ratio of about 10, with the weaker set lying lower
in frequency. These two sets of spectral lines were assigned
as transitions between the nuclear spin states corresponding to
the different inversion components of the complex. Addition-
ally, another set of weak transitions has been observed in the
same region, which has been assigned to the upper component
of the �00 → �10 band of 22Ne · ND3. Due to the low natural
abundance of the 22Ne species (9.25%), only a few transitions
belonging to lower component in 22Ne · ND3 were observed.
Typical traces of the spectrum taken are shown on Fig. 2, and
the frequencies of the measured lines are given in Tables 1, 2.
In total, 64 transitions were observed in the region between 200
and 300 GHz.

Frequency (MHz)

253900 253920 253940 253960 253980

FIG. 2. An experimental trace of the Q(3) transition of 20Ne · ND3

(stronger line) at 253 921.3 MHz and Q(4) transition of 22Ne · ND3 (weaker
line) at 253 970.8 MHz. The transitions occur between A′

1 nuclear spin states
(“upper” component). The trace is averaged over 1000 scans with an effective
integration time of 500 µs.
C© 2002 Elsevier S
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TABLE 1
Experimentally Observed Transition Frequencies (MHz)

in 20Ne · ND3 Complex

Upper component Lower component

Assignment Frequency 	Q Frequency 	Q 2	I

P(2) 238148.5 1.13/1.56 235041.8 1.04/1.53 3106.7
P(3) 230023.3 0.90 226916.2 0.90 3106.9
P(4) 221559.3 0.98 218453.1 0.91 3106.2
P(5) 212775.9 0.91 209669.6 n/r 3106.3
P(6) 203695.3 0.92 — — —

Q(1) 253420.8 1.06/0.73 250314.1 1.0/0.70 3106.8
Q(2) 253620.4 1.17 250513.2 1.0 3107.2
Q(3) 253921.3 1.07 250812.8 1.14 3108.5
Q(4) 254322.9 1.12 — — —
Q(5) 254829.6 1.19 251721.1 1.21 3108.5
Q(6) 255441.2 1.12 252332.0 1.09 3109.2
Q(7) 256162.0 1.07 253052.7 1.07 3109.3
Q(8) 256995.9 1.14 253885.5 1.03 3110.4
Q(9) 257946.7 — — — —

R(0) 260346.0 0.97/1.35 257239.2 1.58/1.03 3106.8
R(1) 266986.1 0.87 263879.1 0.90 3107.1
R(2) 273234.2 0.85 263879.1 0.96 3106.5
R(3) 279090.1 0.83 275983.9 0.85 3106.2
R(4) 284552.4 1.04 281446.1 0.89 3106.3
R(5) 289621.2 0.84 286515.7 n/r 3105.7
R(6) 294299.7 0.88 291195.4 0.58 3104.3
R(7) 298592.9 0.84 — — —

Note. 	Q is the measured quadrupole splitting (see text for details) and 2	I

is the observed inversion separation between transitions in the upper and lower
components (see Eq. [3.4]). For the lowest J in each branch the three quadrupole
components are resolved and two splittings are reported. For higher J , only a
single splitting is reported. The uncertainty in line positions is 0.5 MHz, and
the uncertainty in measurement of the quadrupole splitting is 0.09 MHz. n/r
indicates that due to low signal-to-noise ratio the splitting is unresolved.

The data obtained in this experiment, along with the mi-
crowave data previously reported by Wijngaarden and Jager
(16) from the study of rotational spectra of the Ne · ND3 in the
ground �00 state, were globally fit to the Hamiltonian Eq. [3.1].
The resulting molecular constants of Ne · ND3 are given in the
Table 3. The standard deviation of the fit is 0.45 MHz for
the submillimeter-wave data, which is approximately equal
to the uncertainty of experimental line measurement, and about
6 kHz for microwave data. The uncertainties of molecular pa-
rameters are one standard deviation (16). It should be mentioned
that, unlike Ar · ND3, the values of the centrifugal distortion con-
stants are distinctly different for all states, particularly in �1+

0
and �1−

0 . The �1−
0 state is perturbed by a Coriolis interaction

with the nearby �10 state (3) while �1+
0 and �00 are not cou-

pled with this state. The small difference in D in �1+
0 and �00

may be qualitatively attributed to the coupling of �00 (n = 0)
with the higher lying �00 (n = 1) state, n being the van der
Waals stretch quantum number (3).

In the case of Ne and Ar containing complexes, the amount
of data derived from purely rotational transitions is insufficient
to derive the sextic term H in the ground state of the complex.
In the present experiment, we have obtained sufficient data for
cience (USA)
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TABLE 2
Experimentally Observed Transition Frequencies (MHz)

in 22Ne · ND3 (Natural Abundance 9.25%)

Upper component Lower component

Assignment Frequency 	Q Frequency 	Q 2	I

P(2) 238525.2 1.09/1.7 — — —
P(3) 230794.7 0.93 — — —
P(4) 222758.0 0.91 — — —
P(5) 214433.9 n/r — — —

Q(1) 253112.8 1.10/0.77 250006.3 n/r 3106.4
Q(2) 253302.9 1.03 250196.1 0.94 3106.8
Q(3) 253587.5 1.14 250480.4 n/r 3107.1
Q(4) 253970.8 1.13 — — —
Q(5) 254451.5 1.07 — — —
Q(7) 255716.7 1.14 — — —

R(0) 259758.3 0.96/(n/r ) — — —
R(1) 266153.7 0.97 — — —
R(2) 272196.3 0.92 269090.0 0.89 3106.3
R(3) 277882.5 0.89 274776.7 0.91 3105.8
R(4) 283211.9 0.85 — — —
R(5) 288183.2 0.78 — — —
R(6) 292796.0 n/r — — —
R(7) 297053.9 n/r — — —

Note. The uncertainties in measurements of line positions and quadrupole
splittings are 0.5 and 0.09 MHz, respectively. n/r indicates that the quadrupole
structure is not resolved.

determining this parameter in both � and � states and thus
improving the set of parameters for the ground state.

IV.1.2. Ar · ND3

The experimental results on the Ar · ND3 complex were re-
ported previously (1). A total of 46 transitions were observed

TABLE 3
Molecular Constants (MHz) Derived for Ne · ND3

Constant Ne isotope �00 �+10 �−10

B 20 3702.211(5) 3751.134(34)
22 3541.340(6) 3587.847(52)

D 20 0.4243(4) 0.4084(11) 0.3178(13)
22 0.3833(8) 0.3673(18) 0.2957(27)

H 20 −0.00021(1) −0.00019(2)
22 −0.00023(4) −0.00024(4)

q� 20 — 238.61(3)
22 — 217.19(4)

δq� 20 — 0.095(12)
22 — 0.120(60)

V0 20 255519.13(22)
22 255053.17(32)

2	I 20 3107.09(29)
22 3105.74(66)

	1 20 −0.028(2) 0.020(10)
22 −0.028(2) 0.106(83)
C© 2002 Elsevier
AND DE LUCIA

TABLE 4
Molecular Constants (MHz) Derived for Ar · ND3

Constant �00 �+10 �−10

B 2600.962(1) 2618.448(8)

D 0.0688(1) 0.0661(2) 0.0739(4)

H −1.43(29) · 10−5 −1.37(30) · 10−5

q� — 58.138(12)

δq� — 0.175(8)

V0 234895.73(12)

2	I 2872.71(19)

	1 0.0321(5) 0.0481(65)

in the region of 195–268 GHz. These spectral lines were as-
signed as transitions originating from two different inversion
components corresponding to different nuclear spin states trans-
forming as A′

1 (upper component) and A′
2 (lower component).

In this work we have refit the data obtained in our previous
work (1), along with microwave data obtained from measure-
ment of the rotational transitions of the complex in the ground
state, by Wijngaarden and Jager (13). The standard deviation
of the fit is about 2 kHz for microwave, and 0.4 MHz for
submillimeter-wave data. The results of the fit are summarized in
Table 4. Subsequently, the structural parameters of the com-
plex were derived from the rotational and quadrupole interaction
analysis.

IV.1.3. Kr · ND3

A series of spectral lines attributable to the �-bend band in
Kr · ND3 was observed in the 195–285 GHz region which were
assigned to P-, Q-, and R-branch transitions of the upper in-
version component in the complex formed from four isotopes
of krypton: 82Kr (natural abundance 11%), 83Kr (11%), 84Kr
(57%), 86Kr (17%). Typical traces of the observed transitions
are shown on Fig. 3. A total of 98 transitions were observed.
The frequencies of the measured lines of the upper and lower
inversion components for the various isotopomers are given in
Tables 5 and 6, respectively. The transitions, along with the mi-
crowave spectrum of the rotational transitions of the complex in
the ground state, reported by Wijngaarden and Jager (15), were
globally fit to the energy level expression Eq. [3.1] with a result-
ing standard deviation of 0.4 MHz for the submillimeter-wave
spectrum, and about 5 kHz for the microwave spectrum. The
results of the fit are summarized in Table 7.

Unlike the neon complex, the centrifugal distortion constants
in the different states are nearly identical, but still distinguish-
able within the quality of the fit. Since the krypton atom is much
heavier than the ammonia subunit, the reduced mass asymptoti-
cally approaches the mass of the ammonia, and hence the isotope
dependence of the centrifugal distortion observed is rather weak.
The uncertainty of the calculation of the sextic term H in the
Science (USA)
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Frequency (MHz)

245700 245730 245760 245790 245820 245850 245880

Q(J)

86Kr-ND3

84Kr-ND3

83Kr-ND3

82Kr-ND3

J

1

1

1

1

2

2

2

2

3

FIG. 3. An experimental trace of the beginning of a Q branch of the
Kr · ND3. Shown are Q(1) and Q(2) transitions of all four isotopomers of the
Kr · ND3, and Q(3) of 86Kr · ND3 and 84Kr · ND3. All transitions occur between
A′

1 nuclear spin states. The trace is averaged over 1000 scans with an effective
integration time of 500 µs.
TABLE 5
Experimentally Observed Transitions in the Upper (A′

1) component of Kr · ND3

82Kr · ND3
83Kr · ND3

84Kr · ND3
86Kr · ND3

Assn. Frequency 	Q Frequency 	Q Frequency 	Q Frequency 	Q

P(2) 237484.9 1.14/(n/r ) 237494.8 1.08/(n/r ) 237504.6 1.03/1.51 237522.5 1.07/(n/r )
P(3) 233293.5 0.90 233313.1 0.82 233332.7 0.82 233369.7 1.01
P(4) 229062.2 0.85 229092.4 0.91 229120.7 0.80 229178.3 0.96
P(5) 224790.9 0.84 224831.7 0.84 224870.8 0.89 224948.1 0.90
P(6) — — 220532.2 0.90 220582.2 0.84 220680.4 0.89
P(7) — — — — 216256.6 0.84 216374.7 n/r
P(8) — — — — 211892.8 0.86
P(9) — — — — 207491.8 0.86
P(10) — — — — 203055.1 0.79
P(11) — — — — 198581.7 0.85

Q(1) 245771.7 n/r 245762.2 (n/r )/0.83 245752.4 1.08/0.83 245734.5 (n/r )/0.83
Q(2) 245821.9 0.96 245812.0 0.97 245802.6 0.99 245784.2 0.97
Q(3) 245897.7 1.0 245887.6 1.17 245877.5 1.11 245858.8 1.17
Q(4) 295998.1 1.13 245987.9 1.09 245977.9 1.13 245958.6 1.09
Q(5) 246124.4 1.16 246113.9 1.10 246103.2 1.14 246083.4 1.10
Q(6) 246275.8 1.16 246265.0 1.11 246254.5 1.16 246233.9 1.11
Q(7) 246452.9 1.23 246441.8 1.08 246430.7 1.08 246409.5 1.08
Q(8) 246654.7 1.09 246643.0 1.14 246631.5 1.13 246609.7 1.14

R(0) 249815.0 (n/r )/0.95 249796.2 (n/r )/0.98 249776.7 1.34/0.96 249742.6 (n/r )/1.07
R(1) 253837.3 0.76 253811.6 0.81 253783.5 0.82 253732.0 0.87
R(2) 257818.9 0.95 257782.4 0.87 257746.5 0.92 257677.7 0.86
R(3) 261754.8 0.86 261709.7 0.88 261665.8 0.90 261580.8 0.85
R(4) 265645.2 — 265592.1 — 265540.2 — 265439.8 —
R(5) 269486.0 — 269424.7 — 269365.3 — 269250.9 —
R(6) 273281.1 — 273212.3 — 273144.6 — 273014.9 —
R(7) 277024.1 — 276948.1 — 276874.1 — 276730.4 —
R(8) — — — — 280552.5 — 280395.8 —
R(9) — — — — 284178.2 — 284009.9 —

Note. For each transition the center frequency of the line and the observed quadrupole splitting 	Q are given in MHz. n/r
indicates that the splitting is not resolved.
C© 2002 Elsevier S
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TABLE 6
Experimentally Observed Transitions in the Lower (A′

2)
Component of the Most Abundant Isotopomer, 84Kr · ND3

Assignment Frequency 	Q 2	I

P(3) 230677.7 n/r 2654.7
P(4) 226467.9 n/r 2653.7
P(5) 222218.3 n/r 2652.7

R(1) 251128.1 1.0 2655.4
R(2) — — —
R(3) 259012.6 0.94 2653.2

Note. For each transition the center of the line frequency Fe and the observed
quadrupole splitting 	Q are given. The last column gives the individual inver-
sion separation between the two inversion components observed for a particular
transition (n/r indicates that the splitting is unresolved).

Hamiltonian Eq. [3.1] in both states in all isotopic species is
of the order of the H value itself, which implies that no sextic
J -dependence of the rotational energies can be observed within
the experimental accuracy. Hence, this term was fixed to zero in
the final fit, which left the quality of the fit essentially unchanged.
cience (USA)
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TABLE 7
Molecular Constants (MHz) Derived for Kr · ND3

Constant Kr Isotope �00 �+10 �−10

B 82 2055.036(45) 2067.543(45)
83 2050.249(55) 2062.727(54)
84 2045.5731(6) 2058.108(22)
86 2036.5820(12) 2048.980(19)

D 82 0.0342(8) 0.0337(8) 0.0370(5)
83 0.0341(11) 0.0335(11) 0.0369(6)
84 0.03394(1) 0.0334(3) 0.0368(1)
86 0.03362(3) 0.0327(3) 0.0366(1)

q� 82 — 33.670(22)
83 — 33.505(26)
84 — 33.348(16)
86 — 33.012(17)

V0 82 246486.5a

83 246472.1a

84 246457.48(24)
86 246430.9a

2	I 82 —
83 —
84 2655.80(48)
86 —

	1 82 — —
83 — —
84 0.0431(4) −0.101(30)
86 0.0428(9) —

Note. The sextic term H is fixed at zero value for all isotopic species. The term
δq� for both upper and lower states is fixed at zero value (see text for details).

a Since the transitions in the A′
2 spin states for these isotopomers have not been

observed, the origin frequency has been predicted using the transition frequency
in A′

1 states and the assumption that the inversion splitting does not change
significantly upon isotopic substitution.

No transitions belonging to the Q branch in the less abundant
nuclear spin species (A′

2) are observed. At these circumstances,
the Coriolis coupling constant q� in the �+10 state cannot be
determined, since it describes the splitting of the rotational levels
of the �10 state into �−10 and �+10, and the latter state is not
experimentally observed in antisymmetric nuclear spin species,
A′

2 (see transitions diagram in Fig. 1c). Hence, to make the fit pro-
cedure to converge, the δq� was fixed at zero, implying that the
Coriolis coupling is the same in both spin states. For less abun-
dant isotopomers, 82Kr · ND3, 83Kr · ND3, and 86Kr · ND3, no
transitions in the (A′

2) states were observed, hence all inversion-
related terms were explicitly excluded from the fitting model
by fixing them at zero values, except for 86Kr · ND3 where the
microwave data (15) allow for determination of the centrifugal
distortion effect in the inversion splitting in the ground state.

In order to avoid the competing process of formation of heav-
ier clusters we had to keep the concentration of krypton gas
as low as 2% in the mixture and restrict reservoir pressure to
maximum of 100 psi. Due to these limitations, and also to the
fact that krypton has several isotopes with comparable abun-
dances, the signal-to-noise ratio was lower than in experiments
C© 2002 Elsevier
with Ne · ND3, and therefore only a few transitions in the weaker
A′

2 nuclear spin states were observed. The frequencies of these
transitions and corresponding individual inversion splittings are
given in Table 6.

IV.2. Quadrupole Structure

As in the case of Ar · ND3, partially resolved quadrupole struc-
ture has been observed for Ne · ND3 and Kr · ND3 which has
been fit to the hyperfine Hamiltonian, Eq. [3.2], separately from
the rotation analysis. The observed rotational transitions with
J ′′ > 2 are split into two components with the approximate in-
tensity ratio 2 : 1.

The selection rules allow 6 quadrupole components for each
transition in the R and P branches, and 5 components in the
Q branch. With increasing J ′′ however, the transitions with
F ′ − F ′′ = J ′ − J ′′ contain essentially all the transition strength
and the intensities of other transitions dramatically decrease
(17). Of the three strong transitions originating from the states
with F ′′ = J ′′, J ′′ ± 1, the latter two with F ′′ = J ′′ ± 1 are not
separated sufficiently enough to be resolved in the present ex-
periment for J ′′ > 2, while the transition from the state with
F ′′ = J ′′ is clearly resolved. Hence, the quadrupole structure
appears as a doublet with an intensity ratio of about 2 : 1 for
the two components. This experimentally measured splitting,
	Q , is used for the quadrupole analysis. The frequency of the
weaker peak is simulated by an appropriate function of I , J , and
F quantum numbers according to sets of equations [3.1], [3.2].
The frequency of the stronger peak is simulated as the center
of the mass of the two transitions originating from F ′′ = J ′′ ± 1
states, which are also a function of I , J , and F . Both functions
contain values of eQqaa and (eQqbb − eQqcc) in the upper and
lower states as parameters, of which only the value of eQqaa

in each state is independently determined by virtue of the rela-
tionship eQq = eQqaa + eQqbb − eQqcc (Eqs. [3.2c], [3.2d]),
where eQq is fixed at the value of the quadrupole coupling con-
stant in free ammonia of −4.023 MHz (20). Schmuttenmaer
et al. (3) showed that the value of eQq in the free and van
der Waals bonded ammonia is essentially the same which indi-
cates that the electric field gradient at the site of the nitrogen
nucleus is unchanged upon complexation. Hence, the separa-
tion between the two peaks is described as a function of the
three quantum numbers and two parameters, eQqaa(�00) and
eQqaa(�10), whose values can be derived from the fit of the
observed quadrupole splitting 	Q to the described model. The
value of eQqaa can be related via Eqs. [3.2c], [3.2d], to the struc-
tural parameter 〈θ〉 of the complex if one allows the substitution
〈P2(cos θ )〉 by P2(cos(〈θ〉)).

It is worthwhile considering the limitations in the accuracy
of the measured values of 	Q . Due to the signal processing and
filtering, the lineshape becomes distorted and at best appears as a
second derivative of the actual time-domain signal. The response
function of the data acquisition hardware is fairly complex and
depends on local scan rate, hence no attempts to perform signal
deconvolution and to restore the original lineshape were made.
Science (USA)
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TABLE 8
Quadrupole Coupling and Structural Constants of Rg · ND3 (Rg = Ne, Ar, Kr)

�00 �10
van der Waals

Species radius, A eQqaa , MHz 〈θ〉d , deg RvdW eQqaa , MHz 〈θ〉d , deg RvdW

20Ne · ND3 1.54 0.521a 60.20 3.692948(2) 1.002(74) 65.85(90) 3.668787(20)
22Ne · ND3 3.688978(4) 3.664991(25)
40Ar · ND3 1.88 0.682b 62.00 3.815158(1) 1.073(80) 66.78(97) 3.802398(15)
82Kr · ND3 3.907748(40) 3.895912(60)
83Kr · ND3 2.02 0.520c 60.18 3.907664(50) 1.031(74) 66.23(90) 3.895826(60)
84Kr · ND3 3.907599(2) 3.895677(30)
86Kr · ND3 3.907419(40) 3.895579(60)

Note. The quadrupole constants of Ar · ND3 were refit to a one-parameter (eQqaa in the � state) model using the value
of eQq(ND3) = −4.023 (20). The values of quadrupole coupling constants in the ground state were taken from the works of
Wijngaarden and Jager as indicated. The values of RvdW were calculated from the observed rotational constants.

a Taken from a work of Wijngaarden and Jager (16).
b Taken from a work of Wijngaarden and Jager (13).
c Taken from a work of Wijngaarden and Jager (15).
d The 〈θ〉 values are given for convenience. In the actual experiment, 〈P2(cos θ )〉 is measured. See text for details.
An upper limit of the precision of the experimental measurement
of the splitting has been estimated as one-half of the separa-
tion between the two transitions from states with F ′′ = J ′′ ± 1,
which is about 100 kHz. It is important to note that this value
defines the extent of the validity of the interpretational model
rather than the accuracy of the measurement of the separation
of the apparent peaks, which is about 50 kHz. Hence, all fit pro-
cedures which give standard deviations smaller than 100 kHz
produce results of the equal validity within the scope of this par-
ticular model. Recently, Wijngaarden and Jager have obtained
fully resolved quadrupole structure of the rotational transitions
of the complexes in the ground state from the microwave FT
experiments (13, 15, 16) on all three complexes involved in the
present study. The quadrupole splittings in the ground state are
determined much more precisely than those from our partially
resolved submillimeter-wave spectra. Hence, we have used the
values of eQqaa in the ground state from their work and have
fit our data to the model with only one parameter, e.g., eQqaa

in the excited �10 state. The data presented by Wijngaarden
and Jager show that the quadrupole coupling constants in the
ground states of different nuclear spin and isotope species of
a complex involving a particular rare gas are indistinguishable
within experimental error, except the symmetric nuclear spin
state of 22Ne · ND3, in which eQqaa is slightly lower than for
the other neon isotope. In the fitting procedure, we have used
the averaged values of the quadrupole coupling constants in the
ground state equal to 0.521, 0.682, and 0.520 for neon, argon,
and krypton complexes, respectively. In the case of Kr · ND3

the data obtained from the P , Q, and only part of the R branch
were sufficient to produce a fit with standard deviation below the
model limitations, so the splittings from the rest of the R branch
of Kr · ND3 were not included in the fit and are not reported.

The data from Ar · ND3 obtained in the previous work (1)
were refit to the present one parameter model discussed above,
C© 2002 Elsevier
producing the corrected value of the quadrupole coupling con-
stant in the excited state. The results of the quadrupole analysis
are summarized in Table 8.

V. DISCUSSION

The experimentally obtained spectroscopic data and derived
values can be analyzed from two separate perspectives. First, the
rare gas substitution provides an “adjustable” molecular probe,
thereby varying the strength, and possibly, the shape of the in-
termolecular potential surface. Second, two out of the three rare
gases involved in the present study have multiple isotopes with
natural abundances high enough to allow for the detection of
the corresponding complexes. This gives one the opportunity to
scale the kinetic part of the Hamiltonian and qualitatively study
the properties of the complex with respect to mass variation
while the potential surface remains essentially unchanged. In
this work we will focus out attention on the rare gas dependent
effects only. In the analysis of the properties of the complex
depending upon rare gas substitution, we will only consider the
complexes containing the most abundant isotope of the appro-
priate gas, namely 20Ne · ND3, 40Ar · ND3, and 84Kr · ND3.

V.1. Structural Analysis

Although the complex in question is a nonlinear polyatomic
molecule, the ND3 subunit undergoes only mildly hindered in-
ternal rotation on a time scale much shorter than the overall
rotation of the complex. Hence, geometries corresponding to
different orientations of the ammonia moiety are averaged over
the large amplitude motion and the only structural parameter
that is not thereby convoluted is the van der Waals bond dis-
tance, RvdW , measured between the centers of mass of the moi-
eties. Hence, the rotational structure is described by the simple
Science (USA)
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pseudodiatomic energy level formulae (21) Eq. [3.1]. The inter-
nal motion of the ammonia, however, is not completely free, and
some orientations of the monomer, with respect to the complex-
fixed reference frame, are more probable than others. Therefore,
other structural parameters, such as the Euler angles, θ and φ,
of the ammonia orientation in the complex-fixed frame, corre-
sponding to the highest probability configuration, are required
for a complete description of the complex. Some of this infor-
mation, such as the angle θ between the C3 axis of the ammonia
and RvdW , which cannot be extracted from the rotational analy-
sis, is available from the analysis of the quadrupole structure as
discussed in the previous section.

For the Ne · ND3, Ar · ND3, and Kr · ND3 the fit, pseudodi-
atomic rotational constant B, yields the van der Waals bond
distances in the ground �00 state which are found to be 3.6929,
3.8152, and 3.9078 Å, respectively (see Table 8). The increase of
the RvdW from neon to krypton complex may be qualitatively ac-
counted for by the increase of the effective van der Waals radius
of the rare gas from 1.54 Å in neon to 2.02 Å in krypton (22).

Two of the rare gases involved in the study, neon and krypton,
have several isotopes with natural abundances high enough to
allow the detection of the corresponding complex species. The
values of the RvdW (Table 8) show slight dependence on the mass
of the isotope, tending to increase in value from heavier to lighter
isotope, which can be ascribed to the change in zero-level en-
ergy in the same potential with the variation of the reduced mass
and the resulting shift of the expectation value of the radial co-
ordinate towards smaller value with the increase of the reduced
mass. The fit of the rotational structure of the �00 → �10 band
in Ar · ND3 gives the value (1) of RvdW = 3.8152 Å in the ground
state, which is smaller than corresponding value for the proto-
nated complex (5) RvdW (Ar · NH3) = 3.8358 Å a change which
can similarly be accounted for by the anharmonicity of the po-
tential.

The analysis of the quadrupole structure of the transitions
observed gives additional information about the orientation of
the ND3 moiety with respect to the complex-fixed axis sys-
tem. It should be noted that the result for the angle θ be-
tween RvdW and the C3 axis of ammonia, derived from this
analysis, is a value averaged over all possible large amplitude
motions and represents only the expectation value of θ . The
more correct representation of the results of quadrupole analy-
sis is done through the expectation values of 〈P2(cos θ )〉 rather
than 〈θ〉. However, the latter representation gives a more vi-
sual picture of the complex structure. The results of the struc-
tural analysis indicate (1, 13) that the structure of Ar · ND3

complex is similar to that of the protonated complex (5)
(RvdW = 3.8358 Å θ = 58.3◦) with the value of 〈θ〉 being slightly
larger at 62◦. Recent microwave studies indicate a similar
trend in the structure of the ground state in the neon contain-
ing complex (16) (RvdW = 3.7227 Å θ = 57.4◦ for 20Ne · NH3;
RvdW = 3.693 Å θ = 60.2◦ for 20Ne · ND3) and krypton contain-
ing complex (15) (RvdW = 3.922 Å θ = 57.2◦ for 84Kr · NH3;
RvdW (Kr · ND3) = 3.907 Å θ = 60.18◦ for 84Kr · ND3).
C© 2002 Elsevier
The excited �10 state has been experimentally studied pre-
viously only in Ar · NH3 (3). It has been shown that with the
�00 → �10 excitation the van der Waals bond in the protonated
complex contracts from 3.8352 to 3.8261 Å and the value of
〈θ〉 increases from 58.3 to 64.6 degrees. The experimental stud-
ies of this transition in the deuterated argon containing complex
(1), as well as in the present work, show similar behavior for
all Rg · ND3 complexes in the excited �10 state. The length of
the van der Waals bond is decreased by about 0.3% in kryp-
ton and about 1% in neon containing complexes. In the excited
�10 state, the values of 〈θ〉 in all complexes increase by about
5–6 degrees compared to the �00 state. The results are summa-
rized in Table 8.

V.2. Inversion Splitting

An important aspect of the present work is the experimental
observation of the inversion tunneling motion in the different
complexes, which results in the two subbands arising from dif-
ferent nuclear spin species. The inversion separation defined
in Eq. [3.4] results from the inversion splittings. In this work,
the values of the observed separations were determined directly
from the global fit of the observed frequencies of both inversion
components to the Hamiltonian Eq. [3.1]. The experimental val-
ues of the derived inversion separations are given in Tables 3,
4, and 7. Van Bladel (10, 11) proposed a model describing the
inversion splitting in the Rg · ND3 complexes. The Hamiltonian
of the system is given by (10)

H = Hinv(ρ) + HvdW(R, θ, φ, γ, β, α, ρ), [5.1a]

where Hinv(ρ) is the one-dimensional inversion Hamiltonian of
NH3, ρ is the inversion coordinate, and HvdW (R, θ,φ,γ,β, α, ρ)
describes the overall rotation of the complex and the internal mo-
tions of the two moieties with respect to each other. It is assumed
that since the motion along the ρ coordinate is associated with
the umbrella vibration of the monomer (ν2 = 750 cm−1) and
occurs on a time scale much shorter than any intermolecular
motion in the complex, all ρ-dependent values in HvdW can be
substituted with their averages in this coordinate (10),

HvdW (R, θ, φ, γ, β, α, ρ) = HvdW (R, θ, φ, γ, β, α, ρ0)

≡ HvdW (R, θ, φ, γ, β, α),

where ρ0 is the local equilibrium value of the inversion coor-
dinate in one of the local minima of the symmetric ammonia
potential well. This means that the ρ dependence is explicitly
removed from HvdW and the inversion coordinate is separated
from other coordinates and the Hamiltonian Eq. [5.1] takes on
the form

H = Hinv(ρ) + HvdW (R, θ, φ, γ, β, α). [5.1b]
Science (USA)
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TABLE 9
The Effect of the Operations of PI D3h Group on Rovibrational

| jkΩJ M〉 and Inversion |ρ〉 Basis Functions

Effect on basis

Operation rovibrational inversion

E | jk�J M〉 |ρ〉
(123) exp(2π ik/3) | jk�J M〉 |ρ〉
(23)∗ (−1)J+k | j − k − �J M〉 |ρ〉

E∗ (−1)J+ j+k | jk − �J M〉 |−ρ〉
(123)∗ (−1)J+ j+k exp(2π ik/3) | jk − �J M〉 |−ρ〉
(23) (−1) j | j − k�J M〉 |−ρ〉

The basis function set therefore, can be written as

ψ = |ρ〉| jk�J M〉,

where |ρ〉 is a ground state vibrational function of a particle
in free ammonia potentialsurface localized in one of the two
minima (10), j is the rotational moment of ammonia monomer,
k is its projection on the C3 axis of ammonia, � is its projection
on the van der Waals axis of the complex, and J and M are
the total angular momentum of the complex and its projection
on the space fixed axis. Using the projection operators to con-
struct the symmetry adopted wavefunctions, and noting from
Table 9 that only k, �, and ρ change their signs under the trans-
formations of the D3h group, we obtain (normalization factors
are omitted)

�0(A′
1) = |ρ〉[| jk�〉 + (−1)J+k | j − k − �〉] + (−1) j |−ρ〉

× [| j − k�〉 + (−1)J+k | jk − �〉] [5.2a]

�0(A′′
2) = |ρ〉[| jk�〉 + (−1)J+k | j − k − �〉] − (−1) j |−ρ〉

× [| j − k�〉 + (−1)J+k | jk − �〉] [5.2b]

�0(A′′
1) = |ρ〉[| jk�〉 − (−1)J+k | j − k − �〉] + (−1) j |−ρ〉

× [| j − k�〉 − (−1)J+k | jk − �〉] [5.2c]

�0(A′
2) = |ρ〉[| jk�〉 − (−1)J+k | j − k − �〉] − (−1) j |−ρ〉

× [| j − k�〉 − (−1)J+k | jk − �〉]. [5.2d]

Here we have dropped from the notation quantum numbers that
do not change under the transformations.

The solution to the Schrödinger equation [5.1b] has the gene-
ral form

�(�i ) =
∑

Ci�
0(�i ), [5.3]

where the summation is performed over all states of the same
symmetry, and �i is one of the symmetry representations ap-
pearing on the left hand sides of Eqs. [5.2a]–[5.2d].
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The van der Waals part of the Hamiltonian [5.1b] can be
expanded (11) as

HvdW = Hm
rot + Hc

rot + Hcor + VvdW , [5.4]

where Hm
rot and Hc

rot describe internal motion of the ammonia
monomer and overall rotation of the complex, respectively, Hcor

includes Coriolis and torsion-radial coupling terms, and VvdW

describes the internal molecular interaction potential which can
be expanded in the spherical coordinates as (11)

VvdW (R, θ, φ) =
∑
l,m

(−1)mvlm(R)Slm(θ, φ), [5.5]

where the Slm are normalized tesseral (real spherical) harmonics.
The examination of the full Hamiltonian (11) shows that only
terms off-diagonal in � result from Hcor. Schmuttenmaer et al.
(2) showed that to a very good degree of approximation, � is
a good quantum number, and for the purpose of estimation, the
Coriolis, as well as the torsional-radial terms may be ignored.
Hence the summation in [5.3] is performed over the states with
the same J, M , and � and it can be rewritten as

�(�i ) =
∑

jk

C J M�
jk �0(�i ). [5.6]

Since the inversion coordinate transforms according to the A′′
2

representation, each J level is split into two inversion compo-
nents transforming either as A′

1/A′′
2 or A′′

1/A′
2. These wavefunc-

tions are given by [5.2a]/[5.2b], and [5.2c]/[5.2d], respectively.
We now consider for example, a pair of functions transforming
according to A′

1/A′′
2 representations. Combining [5.2a], [5.2b],

and [5.6], we obtain a general form for an eigenfunctions con-
stituting this inversion pair

�± =
∑

j,k

C J M�
jk |ρ〉[| jk�〉 + (−1)J+k | j − k − �〉]

± (−1) j |−ρ〉[| j − k�〉 + (−1)J+k | jk − �〉], [5.7]

where the + sign indicates A′
1 state and − sign indicates A′′

2 state.
The summation over k includes only ortho states, k = 0, 3, 6 . . . .
Combining Eqs. [5.4]–[5.7] and following the argument of
van Bladel et al. (10), we obtain

〈�±|H |�±〉

= E0 + EvdW ± 1

2
	0

[ ∑
j ′k ′

(−1) j+kC J M�
j ′k ′ C J M�

j ′′k ′′ δ j ′ j ′′δk ′k ′′

]

±
∑

j ′′ j ′k ′′k ′lm

(−1) j ′
C J M�

j ′k ′ C J M�
j ′′k ′′ ×〈ρ|vlm glm( j ′′ j ′k ′′k ′�)|−ρ〉,

[5.8a]
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where k ′ and k ′′ run through all possible, including negative,
values. The

E0 = 〈�±|Hinv|�±〉 = 〈±ρ|Hinv|±ρ〉

is the vibrational energy of the monomer. The second term,

EvdW =
∑
j j ′kk ′

C J M�
jk C J M�

j ′k ′ 〈 j ′k ′�J M |HvdW | jk�J M〉 [5.8b]

is the energy of the van der Waals levels in the noninverting
limit, and the last two sums describe the inversion tunneling
interaction. The 	0 is the inversion splitting in the free monomer,
and glm( j ′′ j ′k ′′k ′k ′�) is the Gaunt coupling coefficient (11). The
van der Waals potential is independent of the ρ coordinate, thus
Eq. [5.8a] can be rewritten as

〈�±|H |�±〉 = E0 + EvdW ± 1

2
	0

[ ∑
j ′k ′

(−1) j+k
(
C J M�

j ′k ′
)2

]

± 〈ρ|−ρ〉
∑

j ′′ j ′k ′′k ′lm

(−1) j ′

× C J M�
j ′k ′ C J M�

j ′′k ′′ vlm glm( j ′′ j ′k ′′k ′�). [5.8c]

Here, 〈ρ|−ρ〉 is the overlap integral of the basis functions of
the inversion coordinate localized in each of the two minima
of the ammonia potential function, and vlm is an expectation
value of the appropriate term in [5.5] in the ground vibra-
tional state. If the Coriolis interaction term in [5.4] is ignored,
the van der Waals energy in the rotationless state (J = 0) is
(10)

EvdW = b0 j( j + 1) +
∑
j j ′kk ′

C J M�
jk C J M�

j ′k ′ 〈 j ′k ′�|VvdW | jk�〉,

[5.9]

where b0 is the rotational constant of the monomer, and VvdW is
the van der Waals potential. Schmuttenmaer et al. has shown (2)
that the lowest states of Ar · ND3 are relatively weakly mixed
with the other, higher lying VTR states of the complex; therefore
we can estimate contributions to both sums in [5.8c] using a
perturbation theory approach.

In the absence of the van der Waals interaction described by
VvdW , the energies of the molecular states depend only on j and
k and are equal to the energies of the states of free ammonia
they correlate to. Using the first order perturbation theory we
calculate the energies of the complex states, treating VvdW as
perturbation and calculating its diagonal elements in the basis
set of symmetrized functions Eq. [5.2]. Using the expression for
Gaunt coefficients glm (11), one obtains the expressions for the
energies of the lowest van der Waals states of the complex in the
C© 2002 Elsevier
noninverting limit,

EvdW (�00) ≈ 1√
2π

v00

EvdW (�10) ≈ 2b0 + 1√
2π

[
v00 − 1√

5
v20

]
[5.10]

EvdW (�10) ≈ 2b0 + 1√
2π

[
v00 + 2√

5
v20

]
,

where b0 is the rotational constant of free ammonia. Hence, the
expectation value of (1/

√
2π )v00 is the binding energy D0 of

the complex in the ground state, and (1/
√

2π )v20 is approxi-
mately equal to the splitting between �10 and �10 states. The
magnitude of the latter can be estimated by taking the dif-
ference between the j = 0 → j = 1 transition in the free am-
monia (309.9 GHz) and the origin frequency of �00 → �10

band of Ar · ND3 (236.3 GHz), thus giving the estimate of
(1/

√
2π )v20 = 160 GHz ≈ 5.3 cm−1, whereas the binding

energy, (1/
√

2π )v00 of Ar · ND3 was found (5, 6) to be of the
order of 100 cm−1.

From Eqs. [5.8] and the discussion following Eq. [5.4]
it follows that as the interaction strength approaches zero, the
second sum in [5.8b] vanishes and the first summation reduces to
one term, that is, wavefunctions [5.2] become the true eigenfunc-
tions of the Hamiltonian and the van der Waals states become
split by 	0, as in the free monomer. With the addition of the
interaction potential, additional terms appear and the inversion
is quenched. Using the previously obtained results Eqs. [5.8]–
[5.10], we find that the inversion in the complex is equal to

	I = |〈�+|H |�+〉 − 〈�−|H |�−〉|

= 	0

[ ∑
jk

(−1) j+k
(
C J M�

jk

)2
]

+ 2〈ρ|−ρ〉
∑
j j ′kk ′

C J M�
jk C J M�

j ′k ′ 〈 j ′k ′�|VvdW | jk�〉

≈ 	0

[ ∑
jk

(−1) j+k
(
C J M�

jk

)2
]

+ 2〈ρ|−ρ〉D0. [5.11]

Examination of the first term in Eq. [5.11] reveals that the
quenching of the inversion splitting in both states results
from the mixing with the states of different j + k parity.
Schmuttenmaer et al. (2) showed that the only significant term
of this nature comes from mixing of the �10 with the ground
state, and mixing of the �20 with the �10 state. We denote the
appropriate coefficient in the expansion Eq. [5.6] as C J M�

j+1,k and
evaluate it using the first order perturbation theory as we did
in Eq. [5.10], treating van der Waals potential VvdW as a per-
turbation. For both the �00 and �10 states, the leading term in
the expansion Eq. [5.5] which has a nonvanishing matrix ele-
ment between the interacting states is v10, which leads to the
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expression for C J M�
j+1,k ,

C J�M
j+1,k ≈ 1√

2π
v10(	E)−1, [5.12]

where 	E = E�00 − E�10 ≈ −2b0 for the �00 state, and 	E =
E�10 − E�20 ≈ −4b0 for the �10 state. For the inversion split-
ting quenching, δ	I ≡ (	0 − 	I ) where 	0 and 	I are the in-
version splittings in the free ammonia and the complex as defined
in Eq. [3.4], respectively, from [5.11] and [5.12] we obtain

δ	I ≈ 1

2π
(v10)2(	E)−2	0. [5.13]

Here, for the purpose of qualitative discussion, we have ig-
nored all odd anisotropic terms other than v10 resulting in the
mixing of free internal rotor states with different j + k parity.
The numerical values of (C J�M

jk ) for Ar · NH3 obtained by
Schmuttenmaer et al. (2) imply that the expected inversion shifts
for protonated complex are about 10% of the corresponding
value in the unperturbed ammonia, which is fairly consistent
with our observation of 3–15% (77–530 MHz) quenching in
different complexes observed in the present study.

To calculate the contribution of the second term in [5.11],
we will estimate 〈−ρ|ρ〉 by using the model inversion potential
function of free ammonia employed by van Bladel et al. (19)
and Millan et al. (23)

U (ϕ) = k

2
ϕ2 + a · exp[−bϕ2] + (V0 − a) [5.14]

with parameters obtained by van Bladel et al. (19) (see
Table 10). To calculate the basis wavefunctions we have used
the quadratic potentials whose curvature matches that of the
model potential [5.12] at its minima (dashed lines in Fig. 4).
The inversion coordinate has been converted to the linear out-of-
plane displacement by substitution ρ = r0 · sin ϕ, where r0 is the
N–D bond length. The direct integration produced the value of
〈−ρ|ρ〉 ≈ 3 · 10−8, which results in the contribution to the inver-
sion splitting from the last term in Eq. [5.11] being of the order

TABLE 10
Parameters of the Model Potential

(19) Used for the Calculations of the
Inversion Splittings in Rg · ND3

Parameter Value

k 91079.0 cm−1

ϕ0 0.3916 rad
a 23267.8 cm−1

b 3.191 rad−2

r0
N−D 1.012 A

ν0 2024.0 cm−1

E 362 cm−1

kmin/2 44562.85 cm−1

kmax/2 −28736.61 cm−1
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Model potentials

angle, radians
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FIG. 4. The model potentials used for inversion analysis. The double-well
potential plotted in thick line is a model potential used by van Bladel et al. (19);
fine and dashed lines indicate the approximation harmonic potentials whose
curvature matches that of th model potential at the equilibrium coordinates. The
parameters of the approximation potentials are given in Table 10.

of 100 kHz. Therefore, one can ignore the last term in Eqs. [5.8],
[5.11] and attribute the inversion quenching solely to the mixing
between different states of a nearly free internal rotor through
the anisotropic part of the intermolecular potential.

From Eq. [5.13] it follows that a quadratic dependence of the
inversion quenching on the magnitude of the anisotropic term is
expected. Bulski et al. (7) derived the functional form of the
intermolecular potential and showed that each R-dependent term
in Eq. [5.5] can be represented as a sum of the short range (SR)
and long range (LR) interaction terms, i.e.,

vlm = vSR
lm + vLR

lm . [5.15a]

The short range term decays (7) exponentially with R. The long
range term can be expressed through a truncated series as

vLR
lm (R) = −

10∑
n=6

f lm
n (R)Clm

n R−n, [5.15b]

where Clm
n include contribution from dispersion and induction

interaction, and the damping factor f lm
n (R) rapidly approaches

unity near the equilibrium value of the van der Waals bond
length (7). Buckingham (24) and Hutson (25) showed that at
least two leading terms, R−6 and R−7, in both induction and
dispersion terms in the long distance interaction part of the
Science (USA)
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FIG. 5. Observed dependence of the inversion quenching, δ	I on the long
range portion of the intermolecular potential ε10 (see text for details), in arbi-
trary units. The regression line was forced to pass through the origin, since the
quenching vanishes for pure ND3.

potential are proportional to the linear polarizability of the rare
gas (see Eqs. (4)–(10) in Hutson’s work and Eqs. (7a) and (46)
in Buckingham’s work).

Bulski et al. (7) showed that forv10, the C10
6 term in Eq. [5.15b]

vanishes, thus the v10 has a leading term of R−7 dependence.
Hence, in the first approximation, the features of the long range
part of the potential are simply scaled with linear polarizability
of the rare gas αi and the equilibrium bond distance R, and one
should expect a simple quadratic dependence of the inversion
quenching onαi R−7. Figure 5 shows the plot of the square root of
the inversion quenching, (δ	I )1/2, as a function of ε10 which is
defined as a sum of the long range interaction terms in the lower
and upper state of the complex, ε10 ≡ α((R�

vdW )−7 + (R�
vdW )−7).

The experimental data for the heavier complexes are described
by the quadratic dependence reasonably well, although the in-
version quenching for the neon complex appears to be somewhat
greater than it is expected from the simple scaling model. This
deviation may possibly be accounted for by the neglect of the
effect of the short range term in Eq. [5.15a], as well as the effect
of the R−9 term in the series Eq. [5.15b] which is more important
at the shorter van der Waals bond lengths.

V.3. VTR Band Origin Frequencies

One of the interesting results obtained in the study of this
family of complexes is that the variation of the �00 → �10 ori-
gin frequencies does not follow a pattern comparable to that ob-
C© 2002 Elsevier
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served in other complexes. For example, in the Rg · CO family of
complexes, which feature a T-shape configuration, the origin fre-
quency of the corresponding transition monotonically increases
from Xe · CO to Ne · CO (26–28). However, in the family of the
ammonia–rare gas complexes, the origin frequency reaches its
minimum at Ar · ND3.

The inspection of the approximate expression for the energies
of the VTR states, Eq. [5.10], indicates that the origin frequency
in the first order approximation should be a function of the term
v20. The detailed calculation of the origin frequency requires the
knowledge of the potential function and the energy structure of
the complex, information that cannot be extracted from the avail-
able experimental data. Therefore, in the discussion below we
simply try to rationalize the obtained results from a qualitative
analysis.

In Eq. [5.10] the terms arising from the interaction potential
have the general form of a sum on the right hand side of
Eq. [5.9]. The direct substitution of the expression Eq. [5.5]
into Eq. [5.9] leads to

EvdW = b0 j( j + 1) +
∑

j j ′kk ′lm

C J M�
jk C J M�

j ′k ′

× 〈 j ′k ′�|(−1)mvlm(R)Slm(θ, φ)| jk�〉. [5.16]

Assuming only the m = 0 terms dominate (2), and noting that
Sl0(θ, φ) = Y l

m(θ, φ) = ( 2l+1
4π

)1/2 Pl(cos θ ), we rewrite Eq. [5.16]
as

EvdW = b0 j( j + 1) +
∑
j j ′kk ′l

vl0C J M�
jk C J M�

j ′k ′

×
(

2l + 1

4π

)1/2

〈 j ′k ′�|Pl(cos θ )| jk�〉. [5.17]

The vlm term has the same meaning as in Eq. [5.8b]. Here, we
also neglected the torsional-radial coupling, thus assuming that
values of vlm are the same in both ground and excited states.
The matrix element, along with the normalization factor in
front, is the Gaunt coupling coefficient gl0 (11),

EvdW = b0 j( j + 1) +
∑
j j ′kk ′l

vl0C J M�
jk C J M�

j ′k ′ gl0( j, j ′, k, k ′, �).

[5.18]

On the other hand, Eq. [5.17] can be rewritten as

EvdW = b0 j( j + 1) +
∑

l

vl0

(
2l + 1

4π

)1/2[ ∑
j ′k ′

C J M�
j ′k ′ 〈 j ′k ′�|

]

× |Pl(cos θ )|
[ ∑

jk

C J M�
jk | jk�〉

]

= b0 j( j + 1) +
∑

l

vl0

(
2l + 1

4π

)1/2

〈Pl(cos θ )〉, [5.19]
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where 〈Pl(cos θ )〉 is the expectation value of a function in the
molecular state, in the same sense as it has been discussed in Sec-
tion 4.2. The origin frequency of the VTR band in the manifold
correlating to j ′′ = 0, k ′′ = 0 → j ′ = 1, k ′ = 0 is thus given by

ν = 2b0 +
∑

l

vl0

(
2l + 1

4π

)1/2

[〈� ′|Pl(cos θ )|� ′〉

− 〈� ′′|Pl(cos θ )|� ′′〉], [5.20]

where � ′, � ′′ are the functions of the general form of Eq. [5.6],
and the two terms in square brackets in Eq. [5.20] expand as
shown in Eqs. [5.18], [5.19]. Equations [5.17]–[5.20] show
that the energy of the complex states, as well as the transition
frequency, is not simply scaled with values of an anisotropic
terms vl0 (l �= 0) in the potential function, but also depends
on the mixing between states and the resulting change of the
orientation of the monomer in the complex-fixed reference
frame. Indeed, in the limit of the unmixed states, for example,
〈 j = 0, k = 0, � = 0|Pl(cos θ )| j = 0, k = 0, � = 0〉 = 0 for all
nonzero l and therefore in this limit, the averaged monomer ori-
entation is independent of the details of van der Waals potential.

The experimental data are sufficient to only determine one
significant coupling term in Eq. [5.17], and therefore, only one
coefficient in the sum in Eq. [5.19]. The quadrupole analysis
indicates that at least one of the terms, 〈P2(cos θ )〉, does have
an anomalously large value in the ground state of the Ar · ND3

complex, which also exhibits an unexpectedly low value of the
origin frequency. However, the accurate modeling of the origin
frequencies of the VTR bands requires more experimental data
and extends beyond the scope of the present paper.

VI. CONCLUDING REMARKS

The rotational structure corresponding to the hindered rota-
tion bands in three complexes, Ne · ND3, Ar · ND3, and Kr · ND3

has been observed and analyzed. The origin frequencies of these
complexes all lie fairly close to the frequency of the correspond-
ing rotational transition ( j = 0, k = 0 → j = 1, k = 0) in the free
ND3, which provides experimental evidence for nearly free in-
ternal rotation of the ND3 moiety in the complex, only weakly
hindered by the anisotropic parts of the PES of the complex. The
rotational and quadrupole analysis indicate that all three com-
plexes studied in this and a previous (1) paper have very similar
structure in their lowest states correlating with k = 0 states of the
free ammonia. The analysis of the experimentally observed val-
ues of the inversion splitting, combined with the analysis of the
origin frequencies and quadrupole structure of the �00 → �10

bands allows one to rationalize the apparent anomaly in the de-
pendence of the origin frequencies with the rare gas substitution.
An approximate quadratic dependence of the inversion quench-
C© 2002 Elsevier
ing on van der Waals interaction strength is experimentally found
and qualitatively explained using a perturbation theory analysis.
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