The Energy Levels of the $\nu_5/2\nu_9$ Dyad of HNO₃ from Millimeter and Submillimeter Rotational Spectroscopy

Douglas T. Petkie,* Thomas M. Goyette,† Paul Helminger,‡ Herb M. Pickett,§ and Frank C. De Lucia¶

*Department of Physics, Ohio Northern University, Ada, Ohio 45810; †Department of Physics, University of Massachusetts at Lowell, Lowell, Massachusetts 01854; ‡Department of Physics, University of South Alabama, Mobile, Alabama 36688; §Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109; and ¶Department of Physics, The Ohio State University, Columbus, Ohio 43210

Received March 22, 2001

In this paper we show that the rotational structure of the $v_5/2v_9$ infrared band near 11 μ m can be synthesized to high accuracy from pure rotational measurements in the millimeter- and submillimeter-wave region. The analysis uses an internal axis system Hamiltonian that accounts for the rotational dependence of the torsional splitting in $2v_9$, the induced torsional splitting in v_5 , and all of the infrared line positions, including those in the regions of strongest mixing and of highest excitation. This model also predicts the strength of the $2v_9$ infrared band due to the strong Fermi mixing with v_5 . The analysis is based on the 2317 millimeter/submillimeter lines and uses the well-documented SPFIT routines of JPL. © 2001 Academic Press

Key Words: nitric acid; v5; 2v9; HNO3; millimeter; infrared; spectra; spectroscopy.

I. INTRODUCTION

Nitric acid (HNO₃) has been extensively studied in both the microwave and infrared spectral regions because it is both a fundamental chemical species and an important constituent of the upper atmosphere. This is especially true for the v_5 (NO₂ in plane bend) and $2v_9$ (OH torsion) bands because their strong spectral features occur in the region around 900 cm⁻¹, a favorable region for atmospheric remote sensing. Because a strong Fermi resonance couples these bands into an interacting dyad, the development of their analyses has become intertwined.

The spectrum in this region was first observed at high resolution by Brockman et al. (1), who measured, but did not assign, a portion of the v_5 spectrum. Subsequently, Maki and Wells (2) measured and assigned transitions in v_5 and found it was necessary to consider a Fermi resonance with the nearby $2\nu_9$ band. Giesen et al. (3) were able to resolve the torsional splittings $(\sim 0.002 \text{ cm}^{-1}/60 \text{ MHz})$ in a diode laser spectrum of about 25 lines of $2\nu_9$. More recently, Maki and Wells (4) extended their earlier work to include over 1400 infrared lines in both v_5 and $2v_9$ (as well as 72 unpublished millimeter and submillimeter $(mm/submm) v_5$ lines from our laboratory) and published a more detailed analysis of the effect of the Fermi resonance. They, too, observed a small splitting in many of the $2\nu_9$ transitions in their diode laser spectrum. Perrin et al. (5) also have analyzed this region using as an experimental basis a high-resolution Fourier transform spectrum. Although these data did not resolve the $2\nu_9$

doublets, they did provide for a detailed analysis of the perturbations between the two states.

A number of years ago Crownover *et al.* (6) reported in a mm/submm study of the pure rotational spectra of the excited vibrational states the observation of a small (~2 MHz) torsional splitting in the v_9 state. More recently, Goyette *et al.* (7) observed splittings in the $2v_9$ (~50 MHz) and, perhaps surprisingly, in v_5 (~35 MHz) as well. Because both of these observed splittings have their physical origin in the torsional motion of the v_9 vibrational mode, it was possible to use the measured ratio of these splittings to calculate *directly* the mixing of the two "pure" vibrational states. This calculation quantified the value of F_0 at 8.53 cm⁻¹ and *predicts* the intensity ratio of the two infrared bands to be 1.43, in good agreement with the observed value of 1.4.

Coudert and Perrin (8) then combined the mm/submm observations of the splittings of Ref. (7) with their FTIR data set in the context of an IAM Hamiltonian. In this work they determined separate torsional parameters for each of the vibrational states.

More recently (9) we reported 860 mm/submm transitions in the symmetric-top limit (i.e., those lines not split by asymmetry) of the $v_5/2v_9$ dyad. All of these data were analyzed to within experimental accuracy (~0.1 MHz/3 × 10⁻⁶ cm⁻¹) by means of a Hamiltonian which included (1) a set of rotation/distortion constants for each of the torsional states of $2v_9$ and a single set for v_5 , and (2) Fermi interaction terms which couple v_5 and $2v_9$. In this model no adjustable parameters were provided for the observed splittings in v_5 , which are effectively predicted by the model from the physically real splittings in $2v_9$ and the vibrational interaction terms.

In this paper we present a complete analysis of the $v_5/2v_9$ dyad using an IAS Hamiltonian that accurately models the rotational

Supplementary data for this article are available on IDEAL (http://www.idealibrary.com) and as part of the Ohio State University Molecular Spectroscopy Archives (http://msa.lib.ohio-state.edu/jmsa_hp.htm).

dependence of the torsional splitting and the strong Fermi and Coriolis resonances. We compare the results with energy levels derived previously (5) from infrared measurements and a model of the mm/submm rotational levels in the ground vibrational state. We will show that the mm/submm analysis accurately predicts the entire rotational manifold of the infrared band. We will also argue that this case is particularly stringent and that this method should be generally applicable.

II. EXPERIMENTAL

Of the 2317 transitions used in this analysis, 860 have been reported previously (9). Of the remaining 1457, those above 178 GHz were measured in a FASSST spectrometer with video detection and optical calibration (10, 11). Lines between 118 and 178 GHz were measured in a system that used a KVARTZ synthesizer in a conventional FM source modulation mode. For the aforementioned lines, a glass cell of \sim 5 m length and 10 cm diameter was used and the radiation detected with a liquid Hecooled InSb hot electron bolometer. Lines below 118 GHz were either assigned from previous measurements or measured at the Jet Propulsion Laboratory with a phase-locked klystron system, a diode detector, and a 1-m-long double-pass absorption cell, as described in Ref. (12). In all cases, the cell pressure was maintained near 10 mTorr to ensure the measured lines had Doppler limited widths. We estimate the accuracy of all the data to be ~ 100 kHz or better.

III. HAMILTONIAN MODEL AND ANALYSIS

Several approaches have been used to treat the $v_5/2v_9$ dyad. The most important features are the perturbations that mix the vibrational states and the torsional motion associated with $2v_9$. In $2v_9$ the large amplitude torsional motion splits the energy levels into two sublevels, half of which are not populated. This leads to two torsional states that share one set of rotational labels, half in each torsional state. For $2v_9$ any energy level with K_a = even (symmetric torsional wavefunction) will be shifted down and any level with K_a = odd (antisymmetric torsional wavefunction) will be shifted up (8).

We have previously shown that as the Fermi interaction term F_0 between $2\nu_9$ and ν_5 becomes comparable to the vibrational energy splitting ΔE , the mixing of the two states causes the torsional splitting of $2\nu_9$ to be induced onto ν_5 and the values of the *observed* splittings $\delta_{2\nu_9}$ and δ_{ν_5} to become nearly equal (7). Consequently, in our analysis of the symmetric-top-like states, we have used this mixing to induce from the base torsional states $2\nu_9$ the torsional splittings observed in ν_5 (9). An interesting feature of this approach is that by using the observed splitting in each of the bands it is possible to separate the highly correlated Fermi mixing term F_0 and vibrational energy ΔE and determine the mixing coefficients for the combined wavefunction. These

mixing coefficients then *predict* the observed infrared intensity of $2\nu_9$, which is primarily "borrowed" from ν_5 (9). Alternatively, Coudert and Perrin have shown that the splittings can be analyzed in the context of an IAM approach with a different set of torsional parameters for $2\nu_9$ and ν_5 (8).

In our earlier analysis of the symmetric-top-like transitions, we used SPFIT (13) in the induced splitting mode described above. Predictions from this analysis served as a starting point for assigning transitions with asymmetry splitting. Unfortunately, it soon become obvious that these lines could not be fit with our earlier Hamiltonian, which could not model the rotational dependence of the torsional splitting into the asymmetric top limit. Additionally, in this much more complete data set, many of the levels are so highly mixed that their labeling becomes ambiguous, resulting in an unstable analysis. Without an analysis that provides predictions on the order of ~ 1 MHz accuracy, we could not bootstrap the assignments very far into the asymmetric top limit due to several other unassigned rotational transitions in v_3 , v_4 , $3v_9$, $v_6 + v_7$, and v_2 vibrational states, all of which have similar intensities to the transitions we were interested in. Consequently, we needed to adopt a Hamiltonian that could model the rotational dependence of the torsional splitting.

The new internal axis system (IAS) Hamiltonian includes a Fourier expansion of spectroscopic parameters in terms of $\cos(\pi \rho K)$ (14). To initially generate the IAS Hamiltonian, we used the experimentally determined equilibrium structure from Cox et al. (15) and the potential barrier to internal rotation from Perrin *et al.* (16) as inputs for a series of programs written by Pickett (14), MOIAM and IAMCALC. As part of the output, these programs determined the first order parameters for the IAS Hamiltonian and generated the constants ρ , E_{ρ} , A, B, C, and D_{ab} for the $2\nu_9$ vibrational state. With NO₂ being considered the top and OH the frame, symmetry considerations allowed both even and odd K_a to be conveniently labeled as belonging to the same vibrational state. The initial values for the centrifugal distortion and vibrational resonance terms were used from our previous work (9). However, it should be pointed out that a direct comparison of the fitted parameters between our early work and this work should not be made since this work does not use a principal axis system Hamiltonian. With the initial set of rotational and torsional parameters, it was straightforward to get the previously measured transitions in the symmetric top limit and initial assignments of transitions with asymmetry splitting fitted to their experimental uncertainties.

With the IAS Hamiltonian, the assignment and analysis of the spectrum continued with the program SPFIT (13) and the effective vibration–rotation–torsion Hamiltonian had the form of a 2 × 2 block matrix. The diagonal operators consisted of a Watson-type Hamiltonian in the A-reduction and I^r representation (17), rotated to an internal axis system, along with a Fourier series expansion of individual elements of the Hamiltonian. The Hamiltonian can be expressed as

$$H_{vv} = H_{vv}^R + H_{vv}^\tau \tag{1}$$

$$H_{\nu\nu}^{R} = E^{\nu} + A^{\nu}J_{a}^{2} + B^{\nu}J_{b}^{2} + C^{\nu}J_{c}^{2} + D_{ab}^{\nu}[J_{a}, J_{b}]_{+} - \Delta_{J}^{\nu}J^{4} - \Delta_{JK}^{\nu}J^{2}J_{a}^{2} - \Delta_{K}^{\nu}J_{a}^{4} - \delta_{k}^{\nu}[J_{a}^{2}, J_{bc}^{2}]_{+} - \delta_{J}^{\nu}[J^{2}, J_{bc}^{2}]_{+} + D_{abJ}^{\nu}J^{2}[J_{a}, J_{b}]_{+} + D_{abK}^{\nu}[J_{a}^{2}, [J_{a}, J_{b}]_{+}]_{+} + \cdots$$
[2]

$$\langle K, v | H_{vv}^{\tau} | K', v \rangle = \langle K, v | E_{\rho}^{v} + E_{\rho J} J^{2} + E_{\rho K} J_{a}^{2} + 2E_{\rho \pm} J_{bc}^{2}$$

$$+ E_{\rho Dab} [J_{a}, J_{b}]_{+} + E_{\rho JJ} J^{4} + 2E_{\rho \pm J}$$

$$\times \left[J^{2}, J_{bc}^{2} \right]_{+} | K', v \rangle \cdot \cos \left(\pi \rho \frac{K + K'}{2} \right) .$$

$$[3]$$

Off-diagonal $H_{vv'}$ operators included both Fermi- and Coriolistype terms with a corresponding Fourier series expansion terms and can be expressed as

$$H_{vv'} = H_{vv'}^{F} + H_{vv'}^{F\tau} + H_{vv'}^{C}$$
[4]

$$H_{vv'}^{F} = F_{0} + F_{J}J^{2} + F_{K}J_{a}^{2} + 2F_{\pm}J_{bc}^{2} + F_{JJ}J^{4} + F_{JK}J^{2}J_{a}^{2} + 2[F_{\pm J}J^{2} + F_{\pm K}J_{a}^{2} + F_{\pm JK}J^{2}J_{a}^{2} + F_{\pm JKK}J^{2}J_{a}^{4}, J_{bc}^{2}]_{+}$$
[5]

$$K, v | H^{F\tau} | K', v' \rangle = \langle K, v | F_{\rho 0} + 2F_{\rho \pm} J_{bc}^2 | K', v' \rangle$$
$$\cdot \cos \left(\pi \rho \frac{K + K'}{2} \right)$$
[6]

$$H_{vv'}^{C} = (C_{ab} + C_{abJ}J^{2})[J_{a}, J_{b}]_{+}, \qquad [7]$$

where

<

$$J_{bc}^2 = J_b^2 - J_c^2$$
 [8]

$$[A, B]_+ = AB + BA.$$
^[9]

A difficulty in the analysis occurs when the torsional and asymmetry splittings are similar (~50 MHz) and is related to the rotational energy level labeling and the strong Fermi resonance. When the Hamiltonian was diagonalized, vibrational assignments of the energy levels were made using the projection of the eigenvectors onto the vibrational states. Once all of the vibrational assignments were made, the energy levels were then sorted in ascending order and the normal asymmetric rotor labeling was assigned (13). The large Fermi resonance term, F_0 , which was the focus of interest in our early work (7), leads to a fundamental 59/41 percent mixing of the vibrational wave functions. When the asymmetric and torsional splittings are similar, the percent mixing between the two vibrational states is near 50/50 and the vibrational assignments (and therefore the rotational assignments) are very sensitive to slight adjustments of spectroscopic parameters. This caused the assignments of certain transitions with $J \ge 28$ to become ambiguous and unstable and the assigned rotational label needed to be changed from one iteration of the fit to the next. While this problem did not degrade the quality of the fit, it did become inconvenient. This problem was avoided by removing the fundamental Fermi interaction term, F_0 , and using a set of torsional parameters for the v_5 vibrational state. This model is referred to as the artificial spitting analysis and resulted in stable and more conventional assignments of the transitions. Periodically, the induced splitting analysis, which included F_0 but no torsional parameters for v_5 , was updated with newly fitted transitions from the artificial splitting analysis. Both models fit the observed mm/submm-wave transitions to the experimental accuracy with the same number of parameters.

As pointed out in the previous paragraph, the rotational energy levels follow the normal asymmetric rotor labeling scheme. This differs from our early work (9), as well as that of Coudert and Perrin (8), where the lower energy level in the symmetric top limit would be assigned to the even K_a rotational level due to the torsional splitting. The transitions from our early paper have been relabeled for this paper.

IV. RESULTS AND DISCUSSION

Tables 1 through 3 show the transitions measured in this work and their residuals in the artificial splitting analysis. The overall rms deviation of the fit to these data and the data from our earlier work (9) is 0.097 MHz in the artificial splitting analysis and 0.098 MHz in the induced splitting analysis. Each analysis has 56 adjustable spectroscopic parameters and contains the same 2317 mm/submm-wave transitions, all weighted equally with a 100 kHz experimental uncertainty. Table 4 shows the spectral parameters derived from artificial splitting and the induced splitting analyses. In each analysis, the band center for v_5 was fixed at the value determined by Ref. (8). The initial value for the internal axis system parameter ρ was based on the structure of the molecule, as discussed previously, and then determined empirically by adjusting this parameter until the rms deviation of the analysis was minimized. The results of the artificial splitting analysis, including all measured transitions and rotational assignments, are available as supplementary data at the journal's home page.

Table 4 shows the first order spectroscopic parameters, E_{ρ} , A, B, C, and D_{ab} , to be significantly different between the two analyses. This difference is due to large correlation coefficients between the parameters in the induced spitting analysis that is caused by the F_0 Fermi term. A better comparison of the constants can be made by noting the agreement between the average values of the rotational constants for each analysis, as shown in Table 5. Additionally, there is agreement in the

TABLE 1 Newly Observed Millimeter-/Submillimeter-Wave Transitions in the $\nu_5 = 1$ Vibrational State

$J' K'_a$	K_c'	J″	$K_a''K$	$_{c}^{\prime\prime} \nu(MHz)$	<i>o</i> - <i>c</i> ^{<i>a</i>}	$J' K'_a K'_c$	$J''K_a''K_b$	$_{c}^{\prime\prime} \nu(MHz)$	<i>o</i> - <i>c</i> ^{<i>a</i>}	$J' K'_a K'_c$	$J'' K''_a K'_c$	ν (MHz)	<i>o</i> - <i>c</i> ^{<i>a</i>}
25 19	7	25	17 8	89656.661	-65	28 18 10	28 18 11	125150.566	11	10 0 10	919	131063.572	-16
28 22	7	28	21 8	89683.673	-38	28 18 10	28 17 11	125182.833	-4	15 6 10	15 4 11	131084.211	-76
20 14	7	20	12 8	89895.597	-19	28 19 10	28 18 11	125292.205	-14	9 1 8	8 2 7	131107.922	-21
19 12	7	19	12 8	90004.598	-2	5 5 1	4 4 0	125295.128	-1	744	6 4 3	131110.295	0
27 19	8	27	19 9	91103.308	0	28 19 10	28 17 11	125324.453	-49	928	8 1 7	131177.225	-3
17 10	7	17	10 8	91579.160	2	27 17 10	27 17 11	126064.280	-26	826	7 2 5	131197.458	-33
29 23	7	29	22 8	91629.156	-39	27 17 10	27 16 11	126081.462	0	8 3 6	7 3 5	131198.050	12
15 9	4	15	88	92557.230	45	27 18 10	2/ 1/ 11	120103.433	-25	35 24 11	35 25 12	131214.274	2
15 8	7	13	6 0	925/4.308	23	27 18 10	27 10 11	120102.019	55	20.28.2	20 27 2	131231.092	-3
14 /	7	14	7 8	92903.832	-21	26 16 10	26 16 11	126880 496	-19	20 20 2	20 18 12	131246.070	-115
5 3	2	14	3 2	92910.010	70	26 17 10	26 16 11	126898 144	34	29 18 11	29 17 12	138588 239	-75
13 7	7	13	68	93181 515	-16	26 16 10	26 15 11	126903 873	-40	6 5 2	5 4 1	138596 656	73
13 6	7	13	58	93184.345	-27	26 17 10	26 15 11	126921.514	6	29 19 11	29 17 12	138597.778	44
12 5	7	12	4 8	93403.980	$\frac{2}{70} d$	25 15 10	25 15 11	127553.646	2	28 17 11	28 17 12	139279.528	-9
5 2	3	4	2 2	94524.832	-8	25 15 10	25 14 11	127575.228	9	46 33 13	46 33 14	139288.107	217
25 17	8	25	17 9	97172.890	-50	25 16 10	25 15 11	127592.121	-49	28 17 11	28 16 12	139300.364	5
28 21	8	28	20 9	97199.263	-88	25 16 10	25 14 11	127613.716	-30	28 18 11	28 17 12	139311.797	-23
32 23	9	32	23 10	98118.627	137	39 30 9	39 28 12	127666.807	-22	28 18 11	28 16 12	139332.632	-9
32 25	8	32	24 9	98121.976	-72	43 33 11	43 32 12	127676.069	145	5 5 0	4 3 1	139421.141	154
26 19	8	26	18 9	98605.873	-89	36 28 9	36 26 10	127684.508	-77	42 31 12	42 29 13	139685.219	82
28 21	8	28	19 9	98840.641	-82	25 21 5	25 19 6	127686.877	-78	27 16 11	27 16 12	139930.497	-21
19 12	8	19	11 9	104029.198	-20	26 26 0	26 25 1	127915.580	174	27 17 11	27 16 12	139947.678	10
18 11	8	18	10 9	104492.960	-16	26 26 1	26 25 2	127938.546	114	27 16 11	27 15 12	139952.110	-29
18 10	8	18	99	104508.455	-2	24 14 10	24 14 11	128163.170	-4	27 17 11	27 15 12	139969.296	7
17 9	8	17	89	104908.921	-9	24 15 10	24 14 11	128179.191	46	44 33 12	44 31 13	140100.576	158
17 10	8	17	99	104913.980	-14	24 14 10	24 13 11	128180.291	-48	41 30 12	41 28 13	140448.293	29
10 9	ð	10	89	105255.485	-20	23 13 10	23 13 11	120002.040	-10	20 13 11	20 13 12	140499.200	-11
10 8	0	10	6 0	105230.228	-19 37 d	28 23 0	20 21 /	128090.419	-20	26 15 11	20 14 12	140521.218	-19
13 6	0 8	13	59	105967 850	-57 u -53	23 13 10	23 12 11	128708.831	-23	26 16 11	26 14 12	140544 578	-19
13 5	8	13	4 9	105968 396	-11	36 25 11	36 25 12	128726 095	-28	19 17 2	19 15 5	140651 111	54
6 3	4	5	3 3	106178.142	-12	38 28 11	38 27 12	128730.684	27	39 27 12	39 28 11	140871.137	-43
6 2	4	5	2 3	106368.919	-10	23 14 10	23 12 11	128732.558	-31	25 14 11	25 14 12	141007.558	-14
14 5	9	14	5 10	118484.238	-14	39 30 10	39 29 11	128905.243	17	25 15 11	25 14 12	141029.138	-9
14 6	9	14	5 10	118515.732	-21	36 25 11	36 24 12	128982.803	-90	25 14 11	25 13 12	141030.248	-17
14 5	9	14	4 10	118516.330	-15	22 13 10	22 12 11	129166.055	-10	39 27 12	39 27 13	141034.452	-22
14 6	9	14	4 10	118547.824	-23	22 12 10	22 11 11	129167.713	-27	25 15 11	25 13 12	141051.808	-32
90	9	8	18	118581.070	-12	22 13 10	22 11 11	129190.811	-49	40 29 12	40 28 13	141141.234	-2
90	9	8	08	118616.181	2 d	31 25 7	31 23 8	129344.173	-6	24 13 11	24 13 12	141456.329	-12
8 1	7	7	2 6	118626.142	-12	39 30 9	39 27 12	129389.896	64	24 14 11	24 12 12	141503.019	7
13 4	9	13	4 10	118626.900	-33	48 35 13	48 34 14	129519.073	-120	40 29 12	40 27 13	141529.816	15
9 1	9	12	0 8	118651.299	22	21 11 10	21 11 11	129541.843	10	23 13 11	23 12 12	1418//.228	-52
13 3	9	13	4 10	118650 845	-20	21 12 10	21 10 11	129393.037	-33	25 12 11 45 34 12	45 22 12	1410//.900	-4
8 1	7	15	1 6	118660 904	$^{-0}_{2d}$	28 27 2	28 26 3	129858 326	-76	39 28 12	39 27 13	141791.342	24
15 14	í	15	12 4	118663 137	275	37 27 11	37 26 12	129866 294	-16	35 28 8	35 26 9	142966 514	11
7 2	5	6	3 4	118690.933	75	40 30 11	40 28 12	129872.120	62	38 26 12	38 25 13	143095.313	-30
13 5	9	13	3 10	118692.169	-27	20 10 10	20 10 11	129889.338	-12	29 24 6	29 22 7	143142.974	39
8 2	7	7	1 6	118695.671	22	41 33 9	41 32 10	129894.020	341	32 26 7	32 24 8	143174.952	22
7 3	5	6	3 4	118724.539	24	5 5 0	4 4 1	129901.385	-23	16 5 1 1	16 5 12	143550.049	-11
72	5	6	2 4	118729.448	-23	20 11 10	20 10 11	129915.350	-33	16 5 1 1	16 4 12	143581.660	9
39 29	11	39	27 12	118734.811	22	20 10 10	20 9 11	129916.166	-27	927	8 3 6	143639.815	-11
73	5	6	24	118763.109	-19	20 11 10	20 9 11	129942.188	-39	927	8 2 6	143673.997	-1 d
35 27	9	35	25 10	120225.820	94	37 27 11	37 25 12	130421.887	-15	15 4 11	15 4 12	143680.183	-19
16 14	2	16	12 5	120250.851	-52	42 30 12	42 30 13	130641.400	35	937	8 2 6	143708.179	9
6 3	3	5	3 2	120348.079	-24	16 6 10	16 6 11	130860.766	-13	8 4 5	7 4 4	143755.735	14
6 4	3	5	3 2	120968.961	34 111	16 7 10	16 6 11	130890.997	-50	14 3 1 1	14 3 12	143790.760	-25
4 4	10	3 20	2 2	124093.911	111	16 6 10	10 3 11	130891.0/6	-21	8 3 3	1 5 4	143803.339	28
38 29	10	58 5	2/ II 5 1	124104.706	-140	15 5 10	10 311	131021.880	-79	32 20 12	32 20 13	150203.304	-90
12 21	12	12	31 12	1245/0.504	71	35 24 11	35 24 12	131021.231	-0	32 21 12	32 20 13	150270.044	-104
43 31	14	43	51 13	123147.290	/ 1	55 24 11	55 24 12	151041.220	-0	JZ 20 12	54 17 15	150200.252	-104

^{*a*} Observed – calculated (o - c) are given in kHz. All experimental uncertainties are 100 kHz. An index *d* after the o - c indicates an unresolvable symmetric top limit doublet with the $K_a + 1$ levels not listed in the table. An index # also indicated an unresolvable doublet, but in the asymmetric top limit involving levels K_c and $K_c + 1$.

125

 TABLE 1—Continued

$J' K'_a K'_c$	$J''K_a''K_c$	V(MHz)	<i>o</i> - <i>c</i> ^{<i>a</i>}	$J' K'_a K'_a$	$J''K_a''K$	$_{c}^{\prime\prime} \nu(MHz)$	0 - C ^a	$J' K'_a K'_c J'' K''_a K''_c v(MHz) o - c'$
48 36 13	48 34 14	150479.589	-100	936	8 4 5	156192.702	-14	19 6 13 19 6 14 168446.532 -5
45 33 13	45 31 14	150569.619	110	16 4 12	16 4 13	156200.010	15	25 21 4 25 19 7 168523.132 -68
43 30 13	43 30 14	150724.525	7	936	8 3 5	156230.584	17	10 3 7 9 4 6 168659.857 -128
43 30 13	43 29 14	150996.925	26	946	8 3 5	156264.910	164	10 4 7 9 4 6 168693.604 50
31 19 12	31 19 13	151009.389	-17	15 3 12	15 3 13	156310.282	11 60	10 3 / 9 3 6 168694.114 -49
31 20 12	31 10 13	151038.383	-26	14 3 12	14 1 13	156472.580	35	9 5 5 8 5 4 168778.299 0
31 20 12	31 18 13	151059.689	-6	13 1 12	13 1 13	156486.200	-4	17 5 13 17 3 14 168779.429 -23
44 32 13	44 31 14	151281.542	56	40 28 13	40 26 14	157017.338	50	43 29 14 43 29 15 168801.111 -107
30 18 12	30 18 13	151690.364	-61	8 4 4	7 4 3	157216.400	-13	9 5 5 8 4 4 169000.431 -84
44 32 13	44 30 14	151695.462	48	5 4 2	4 2 3	157218.777	-63	$6 \ 6 \ 0 \ 5 \ 4 \ 1 \ 169163.721 \ -69$
30 19 12	30 17 13	151711.723	-27	39 32 7	39 29 10	157414.827	204 95	22 4 18 22 4 19 231303.235 12
30 19 12	30 17 13	151730.505	55	8 5 4	7 4 3	157438.530	-100	22 4 18 22 3 19 231394.853 55
5 5 1	4 3 2	151865.938	-85	42 33 10	42 31 11	157694.979	67	21 4 18 21 3 19 231418.487 -108
6 6 1	5 5 0	151977.708	-5	39 27 13	39 26 14	158005.690	-13	21 4 18 21 2 19 231450.777 -187
29 17 12	29 17 13	152295.944	-31	39 27 13	39 25 14	158048.235	-59	23 6 18 23 5 19 231462.267 -280
29 17 12	29 16 13	152317.183	-3	45 55 11	45 55 12	158097.021	-154	25 5 18 25 4 19 251465.950 -187 20 2 18 20 2 19 231480 827 -179
29 18 12	29 16 13	152339.442	-21	39 28 11	39 25 14	158211.535	-54	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
49 37 13	49 35 14	152710.722	-156	34 21 13	34 21 14	162821.444	-15	20 2 18 20 1 19 231514.551 178
43 31 13	43 30 14	152731.496	-21	33 20 13	33 20 14	163514.485	-11	20 3 18 20 1 19 231546.945 154
28 16 12	28 16 13	152842.095	52	33 21 13	33 20 14	163535.517	-24	12 7 6 11 6 5 231597.762 174
28 17 12	28 16 13	152862.915	52	33 20 13	33 19 14	163536.924	-38	25 8 18 25 6 19 231971.770 -145
28 16 12	28 15 13	152863.575	83	33 21 13	33 19 14	163558.020	-21	26 9 18 26 / 19 2323/3./93 45 45 27 18 45 26 19 232627 043 73
43 31 13	43 29 14	153003.901	23	32 19 13	32 19 14	164160.018	-21	45 28 18 45 26 19 232654.589 -81
42 29 13	42 29 14	153071.239	-111	32 20 13	32 19 14	164160.809	-12	11 10 2 10 10 1 232764.958 -250
42 29 13	42 28 14	153171.810	-59	32 20 13	32 18 14	164182.700	-2	27 9 18 27 9 19 232793.409 112
761	6 6 0	153176.936	-214	31 18 13	31 18 14	164704.624	-32	27 10 18 27 9 19 232820.706 311
27 15 12	27 15 13	153331.090	34	31 19 13	31 18 14	164725.960	16	27 9 18 27 8 19 232825.204 254
27 15 12	27 14 13	153352.871	68 d	31 18 13	31 17 14	164/26.180	-33	2/ 10 18 2/ 8 19 232852.26/ 220
26 14 12	27 14 13	153769 684	76	30 17 13	30 17 14	165217 505	-8	44 27 18 44 26 19 233297.872 285
26 15 12	26 14 13	153791.585	19	30 17 13	30 16 14	165238.893	-6 d	28 11 18 28 10 19 233339.379 247
26 14 12	26 13 13	153792.125	27	30 18 13	30 16 14	165260.293	7	28 10 18 28 9 19 233344.330 189
26 15 12	26 13 13	153814.086	30	29 16 13	29 16 14	165682.447	-11	28 11 18 28 9 19 233371.286 237
25 13 12	25 13 13	154161.977	31	29 17 13	29 16 14	165703.631	-39	11 9 3 10 9 2 233730.248 278
25 14 12	25 13 13	154184.658	19	29 16 13	29 15 14	165725 225	-5	29 11 18 29 11 19 233853.847 128
42 30 13	42 29 14	154273.196	-18	28 15 13	29 15 14	166103.573	-13	43 25 18 43 25 19 233865.259 -59
42 30 13	42 28 14	154373.756	22	28 16 13	28 14 14	166146.907	-21	29 11 18 29 10 19 233867.604 -127
24 12 12	24 12 13	154512.488	67	762	6 5 1	166201.415	19	43 25 18 43 24 19 233890.788 -173
24 13 12	24 11 13	154560.070	-3	45 32 14	45 30 15	166357.277	60	43 26 18 43 25 19 233892.641 -180
23 11 12	23 11 13	154824.858	72	27 14 13	27 14 14	166484.800	-22	29 12 18 29 10 19 233894.498 -97
23 12 12	23 10 13	1548/4.340	-3	27 13 13	27 14 14 27 13 14	166507 151	43 -87	45 20 18 45 24 19 255918.514 -150
41 28 13	41 28 14	155000.720	-29	27 15 13	27 13 14	166529.087	-26	42 24 18 42 24 19 234382.300 331
41 28 13	41 27 14	155095.162	-68	26 13 13	26 13 14	166829.582	8	30 13 18 30 11 19 234391.659 289
22 10 12	22 10 13	155102.539	45	26 14 13	26 12 14	166875.144	-27	42 24 18 42 23 19 234407.798 -43
22 11 12	22 9 13	155154.060	-17	25 12 13	25 12 14	167140.911	-3	42 25 18 42 24 19 234409.495 60
21 9 12	21 9 13	155348.720	39	25 13 13	25 11 14	167188.078	-27	31 13 18 31 13 19 234778.607 147
21 10 12	21 8 13	155566 269	-1	44 30 14	44 29 15	167421 632	-24 18	27 8 19 27 7 20 234799.308 140
20 8 12	20 8 13	155622.024	44	24 11 13	24 10 14	167470.607	-9	31 13 18 31 12 19 234810.191 76
41 29 13	41 28 14	155626.405	-30	23 10 13	23 10 14	167674.191	6	41 23 18 41 23 19 234822.578 376
41 29 13	41 27 14	155720.883	-54	44 31 14	44 30 15	167688.648	-14	27 9 19 27 7 20 234831.064 244
19 7 12	19 7 13	155757.780	7	23 11 13	23 9 14	167725.126	-28	31 14 18 31 12 19 234837.532 353
8 5 4	7 5 3	155914.620	-36	44 31 14	44 29 15	167760.357	-39	41 24 18 41 22 19 234876.006 152
18 012	18 013	133923.780	24	22 10 13	22 9 14	16/92/.030	-20	32 14 10 32 14 19 235150.530 -113 32 15 18 32 14 19 235183 708 -165
7 5 2	6 5 1	156089.605	-6	21 9 13	21 7 14	168159.074	-27	40 22 18 40 22 19 235185.472 -121
54 39 15	54 39 16	156116.074	-73	22 20 2	22 18 5	168264.235	-156	32 14 18 32 13 19 235187.926 31
17 6 12	17 4 13	156134.480	34	20 7 13	20 7 14	168285.193	-23	33 15 18 33 15 19 235456.501 21

 TABLE 1—Continued

$J' K'_a K'_c$	$J''K_a''K_a$	$_{c}^{\prime\prime} \nu(MHz)$	$O - C^a$	$J' K'_a K_a$	$\int_{a}^{a} J'' K_{a}'' K$	$\int_{c}^{\prime\prime} v(MHz)$	$0 - c^a$	$J' K'_a K'_a$	$J''K_a''K_b$	$\sum_{n=1}^{\infty} v(MHz)$	0 - c ^a
39 21 18	39 21 19	235471.157	-12	20 1 19	19 2 18	268386.184	127	21 4 18	20 3 17	305896.677	36
33 16 18	33 15 19	235483.672	-183	21 1 21	20 0 20	268409.750	9	20 4 16	19 5 15	305899.140	43
33 15 18	33 14 19	235487.130	-74	18 3 15	17 4 14	268457.762	-56	19 5 14	18 6 13	305951.047	-54
39 21 18	39 20 19	235498.365	-104 d	19 3 17	18 2 16	268484.567	265	20 5 16	19 4 15	305960.543	-43
33 16 18	33 14 19	235514.417	-163	18 4 15	17 3 14	268521.952	161	18 6 12	17 7 11	306016.783	15
39 22 18	39 20 19	235525.511	-236	16 5 11	15 6 10	208559.420	55 16	18 / 12	1/ 611	306076.322	-18
38 20 18	38 20 10	235677 358	-105	1/ 5/15	10 4 12	208304.104	40 -57 d	17 7 10	16 7 0	306129.203	-5 27 d
34 17 18	34 16 19	235699 451	-264	16 6 11	15 5 10	268621 576	-37 u 77	17 8 10	16 7 9	306188 207	27 u 28
34 16 18	34 15 19	235702 037	-316	15 6 9	14 7 8	268663 476	78	22 2 20	21 2 19	306319 189	-1 d
38 20 18	38 19 19	235704.741	-318 d	15 7 9	14 6 8	268724.888	218	11 10 1	10 8 2	307117.887	-96
34 17 18	34 15 19	235729.795	-53	42 21 21	42 21 22	268967.526	183	15 9 6	14 9 5	308171.226	176
38 21 18	38 19 19	235732.725	71	14 7 7	13 7 6	268989.031	222	15 10 6	14 9 5	308523.108	231
35 17 18	35 17 19	235801.659	44	41 20 21	41 19 22	269089.452	177 d	12 10 2	11 9 3	308902.458	209
37 19 18	37 19 19	235802.677	40	24 3 21	24 3 22	269131.209	19	39 15 25	39 13 26	317386.966	-95
35 18 18	35 17 19	235829.025	-160	27 7 21	27 5 22	269228.579	42	38 14 25	38 13 26	317563.999	32
36 18 18	36 18 19	235844.543	-110	39 18 21	39 17 22	269253.279	4 d	38 13 25	38 12 26	317565.364	27
11 7 4	10 7 3	235849.767	-243	28 8 21	28 6 22	269257.878	-10	37 12 25	37 12 26	317730.772	-20
36 19 18	36 18 19	235872.255	-1	39 19 21	39 17 22	269260.731	-/	37 13 25	37 11 26	317758.310	-53
30 18 18	30 17 19	2358/3.395	-112	30 9 21	30 9 22	269282.930	-43	10 5 5	930	31/833.343	22
11 0 2	10 0 1	233901.201	38	29 9 21	30 8 22	269290.211	-20	36 12 25	36 10 26	317932.060	-81
981	8 6 2	242392.873	30	31 11 21	31 10 22	269333 195	109	13 11 3	12 10 20	317957 051	-72
972	8 5 3	246053.985	19	31 10 21	31 9 22	269335.809	17	23 2 21	22 3 20	318082.445	0
12 9 4	11 9 3	252770.938	167	37 16 21	37 16 22	269343.999	-107	23 2 21	22 2 20	318114.179	-63 d
12 11 2	11 11 1	253796.028	24	32 11 21	32 11 22	269345.725	184	23 3 21	22 2 20	318145.957	-83
12 11 1	11 11 0	254613.031	-43	37 17 21	37 16 22	269349.802	114	22 3 19	21 3 18	318171.269	-57 d
17 3 14	16 4 13	255984.452	-207	36 15 21	36 15 22	269369.482	49	22 4 19	21 3 18	318202.625	-176
18 3 16	17 2 15	256010.976	-176	35 14 21	35 14 22	269380.704	74	25 1 25	24 0 24	318308.750	-76
14 6 8	13 6 7	256259.691	-76	33 12 21	33 11 22	269381.832	40	21 4 17	20 5 16	318346.422	-3
14 7 8	13 7 7	256261.465	-1	36 16 21	36 14 22	269384.745	64	21 5 17	20 4 16	318407.402	-109
13 7 6	12 7 5	256882.473	-42	33 13 21	33 11 22	269393.731	172	20 6 15	19 5 14	318469.017	-178
28 8 20	28 8 21	258519.758	-45	35 15 21	35 13 22	269399.172	92	19 6 13	18 / 12	3184/2.231	-/8 162 d
28 9 20	28 8 21	258539.130	-81	34 14 21	34 12 22	269401.708	-10	19 0 13	18 6 12	318501.010	-105 a
28 9 20	28 7 21	258562 005	-22	10 8 2	963	270311 222	-97	18 7 11	17 8 10	318566 665	-101
29 9 20	29 9 21	258707.812	108	13 10 4	12 10 3	276070.844	-105	18 8 11	17 7 10	318624.912	-75
29 10 20	29 9 21	258724.767	48	21 1 20	20 2 19	280862.281	-234	17 8 9	16 8 8	318788.647	-125
29 9 20	29 8 21	258728.545	143	20 3 18	19 2 17	280950.321	-339	17 9 9	16 9 8	318790.300	27
29 10 20	29 8 21	258745.387	-29	18 4 14	17 5 13	280970.756	-130	16 10 7	15 10 6	319209.651	69
30 10 20	30 10 21	258866.850	32	19 4 16	18 3 15	280991.535	-51	15 10 5	14 10 4	325518.101	3
30 11 20	30 9 21	258899.690	-235	17 5 12	16 6 11	281024.028	2	43 17 26	43 17 27	329016.352	-87
31 11 20	31 11 21	258997.876	-161	16 6 10	15 6 9	281139.341	-162 d	43 17 26	43 16 27	329026.263	-153 d
31 12 20	31 11 21	259010.145	-75	16 7 10	15 6 9	281169.891	-34	43 18 26	43 16 27	329036.365	-25
31 11 20	31 10 21	259014.059	-248	15 8 8	14 8 /	281324.255	-1/	15 11 5	14 10 4	329031.110	-153
32 12 20	32 12 21	259102.157	-105	15 8 8	14 7 7	281350.029	-81	42 10 20	42 10 27	329233.089	53 d
32 13 20	32 12 21	259125 977	-154	21 2 19	20 3 18	293312 206	-227	42 10 20	42 15 27	329203.297	72 JS U
33 14 20	33 13 21	259187.912	-169	21 2 1) 22 1 21	20 3 10	293338.237	-227	11 11 1	10 9 2	329411.928	194
33 13 20	33 12 21	259192.246	-89	21 3 19	20 2 18	293377.020	-201	41 15 26	41 15 27	329479.893	119
34 15 20	34 14 21	259239.175	204	20 3 17	19 4 16	293391.462	-39	41 15 26	41 14 27	329489.765	132 d
34 14 20	34 13 21	259243.066	-64	22 2 21	21 1 20	293404.663	52	41 16 26	41 14 27	329499.358	-135
52 31 21	52 30 22	266682.035	111 d	19 4 15	18 5 14	293437.672	-175	13 12 2	12 11 1	329521.287	97
12 9 4	11 8 3	266852.705	-51	20 4 17	19 3 16	293454.664	-29	12 9 3	11 7 4	329606.958	10
51 30 21	51 29 22	267025.123	64 d	18 5 13	17 6 12	293488.448	-37	39 13 26	39 13 27	329900.994	-137
50 30 21	50 28 22	267367.349	3	19 5 15	18 4 14	293499.774	-23	39 14 26	39 13 27	329912.405	-75
49 28 21	49 27 22	26/62/.917	-258 d	17 6 11	16 7 10	293361.539	48 212 -	39 13 26	39 12 27	329913.683	-25
48 2/ 21	48 27 22	20/800.1/1	-4	1/ 011	10 0 10	293391.811	213 d	39 14 26	39 12 27	329924.960	-97
4/ 20 21	41 23 22	20012/.400	-2/0	21 3 18	20 41/	305825 262	-20	37 12 26	37 11 27	330203.182	-130
47 27 21	47 25 22	268150 584	-141	27 124	23 0 23	305879 345	16	37 11 26	37 10 27	330299.737	-15/ &
37 12 26	37 10 27	330315 922	23	25 1 24	24 2 23	330760 826	113	22 5 18	21 4 17	330808 351	-24
36 11 26	36 9 27	330499.153		24 2 22	23 3 21	330772.303	19	16 10 6	15 11 5	330824.592	-5
26 0 26	25 1 25	330713.588	132	26 1 26	25 0 25	330781.568	55	25 2 24	24 1 23	330826.277	-46

 TABLE 1—Continued

$J' K'_a K'_c$	$J''K_a''K_a$	$_{c}^{\prime\prime} \nu(MHz)$	$o - c^a$	J'	$K'_a K'_c$	J'	$K_a''K$	$\int_{c}^{\prime} v(MHz)$	0 - C ^a	J'	$K'_a K'_c$	' <i>J'</i>	$K_a''K_a$	$_{c}^{\prime\prime} \nu(MHz)$	<i>o</i> - <i>c</i> ^{<i>a</i>}
24 3 22	23 2 21	330835.520	-93	24	4 21	23	3 20	342791.542	153	38	11 28	38	9 29	355333.379	17
21 5 16	20 6 15	330857.736	-44	23	4 19	22	5 18	342842.217	7	37	10 28	37	8 29	355535.010	120
13 12 1	12 11 2	330895.727	67	23	4 19	22	4 18	342872.900	-31 d	28	0 28	27	1 27	355656.283	-118
21 6 16	20 5 1 5	330917.116	-44	23	5 19	22	4 18	342903.646	-7	36	8 28	36	8-29	355687.623	-216
20 6 14	19 7 13	330925.308	-88	36	9 27	36	9 28	343064.766	-36	25	3 22	24	4 21	355696.418	37
20 7 14	19 6 13	330983.644	-80	27	0 27	26	1 26	343185.462	65	27	1 26	26	2 25	355704.757	17
19 7 12	18 8 11	331009.408	-67	26	1 25	25	2 24	343233.219	41	28	1 28	27	0 27	355724.139	-2
19 7 12	18 7 11	331038.157	-82 d	27	1 27	26	0 26	343253.283	-12	26	2 24	25	3 23	355740.743	37
19 8 12	18 7 11	331066.856	-146	25	2 23	24	3 22	343263.491	60	25	4 22	24	3 21	355756.693	21
18 8 10	17 8 9	331187.779	-97 d	22	5 17	21	6 16	343281.505	-11	27	2 26	26	1 25	355769.790	-42
18 9 10	17 8 9	331216.215	-4	25	3 23	24	2 22	343326.458	8	22	7 16	21	6 15	355860.285	0
19 13 6	18 15 3	331489.020	94	21	6 15	20	7 14	343371.911	29	21	7 14	20	8 13	355893.997	64
17 9 8	16 10 7	331499.850	-74	21	7 15	20	6 14	343429.709	71	20	9 12	19	8 11	356058.827	-17
16 11 6	15 11 5	331507.473	-166	20	7 13	19	8 12	343453.283	20	19	9 10	18	10 9	356202.813	121
17 10 8	16 10 7	331533.339	-89	19	9 11	18	8 10	343633.370	77	17	12 6	16	12 5	356254.171	-45
17 9 8	16 9 7	3315/3.137	-88	28	2 27	28	1 28	344327.067	2	19	10 10	18	99	356258.228	163
1/10 8	16 9 /	331606.660	- /0	28	127	28	0 28	344328.445	-100	14	13 I	13	12 2	356626.084	58
23 3 20	22 4 19	332017.033	48	17 1	0 /	10	10 6	344955.964	248	18	10 8	17	11 / 5 10	356682.395	/0
25 4 20	22 3 19	332078.700	-48	1/ 1	1 /	10	10 6	345040.663	18	24	4 20	23	5 19	358025.494	199
15 12 5	14 12 2	332392.029	112	12 1	1 2	11	84	340911.741	1.2.2	24	5 20	23	4 19	358084.830	183
16 10 0	15 10 5	334337.070	-100	12 1	1 Z 0 A	11	93	3494//.804	30	17	10 2	10	10 1	358114.589	208
12 12 1	13 10 3	225424 640	0/	52 2	0 4 5 70	52	25 20	349939.490	-190	16	10 1	10	10 0	250265 142	120
13 13 1	12 12 0	335434.040	-132	53 2	5 20	52	23 29	251071 445	165	10	12 3	13	10 2	260187 067	-132
15 15 0	12 12 1	227206 759	202	52 2	6 70	53	24 27	351071.445	105	14	12 1	15	10 2	360187.007	-/
16 15 2	14 11 3	337290.738	202	12 1	1 2	12	25 29	351072.924	206	17	12 4	16	12 3	360234.289	-30
16 15 2	15 15 1	337381 80/	-200	51 2	2 78	51	22 20	351800 183	-200	1/	1/ 1	10	11 0	361388 060	178
10 15 1	13 13 0	330080 220	-170	51 2	1 78	51	22 29	351800.183	125	14	14 1	12	13 0	261411 626	277
50 23 27	50 23 28	339540 824	-161	16 1	+ 20	15	13 29	351007 560	123	14	14 0	16	15 1	361708 334	277
50 23 27	50 23 28	330560 336	-101	50 2	, , , , ,	50	21 20	352142 750	-124	17	12 6	16	11 5	367373 200	-250
50 23 27	50 22 28	339561 074	-80	50 2	2 20	50	21 29	352142.750	126	17	12 0	16	12 /	363030 177	322
19 22 27	10 23 28	330870 070	-20	16 1	1 5	15	11 1	3522144.380	-120	17	13 3	16	14 3	364070 345	61
49 22 27	49 22 28	339888 402	-119	49 2	1 28	19	20.29	352472 044	217	40	12 29	40	11 30	367520 547	28
49 22 27	49 22 28	339889 956	-120	49 2	20	49	20 27	352472.044	217	40	11 29	40	10 30	367521 883	20
49 23 27	49 22 20	330007 353	-177	48 2	0.28	18	20 20	352773 351	-11	21	0 13	20	8 12	368486 713	-96
47 20 27	47 20 28	340490 316	165	48 2	0 28	48	19 29	352787 478	39	35	7 29	35	6 30	368535 014	-242
47 20 27	47 19 28	340503 965	109	48 2	1 28	48	20 29	352788 984	97	19	10 9	18	11 8	368958 458	2.2
47 21 27	47 20 28	340505 387	136	48 2	1 28	48	19 29	352803 187	225	19	10 9	18	10 8	368971 074	-25
47 21 27	47 19 28	340519.087	130	39 1	1 28	39	11 29	355094 200	-28	19	11 9	18	11 8	368983 411	-35
38 11 27	38 11 28	342685.649	44	39 1	2 28	39	11 29	355107.994	-123	19	11 9	18	10 8	368996.026	-62
38 12 27	38 10 28	342715.580	87	39 1	1 28	39	10 29	355109.715	204	25	8 17	24	8 16	417970.390	104 d
24 3 21	23 4 20	342731.058	69	39 12	2 28	39	10 29	355123.515	115	29	12 17	28	12 16	517106.514	-133
24 3 21	23 3 20	342761.239	50 d	38 1	0 28	38	10 29	355300.602	44	20	20 1	19	19 0	517200.500	137 #

determination of the difference between the perturbed band centers, ΔE . The interstate transitions between v_5 and $2v_9$ listed in Table 3, other transitions involving levels with significant mixing, and the measurement of the torsional splitting in each state allow an accurate determination of ΔE in each analysis. However, if the v_5 band center in the induced analysis is allowed to vary by including infrared energy levels, the uncertainties in the unperturbed band centers, ΔE_0 , and the Fermi constant become quite large and have values of ~48 MHz and ~9 MHz, respectively. This again is due to the large correlation (~ -0.999) between these parameters. However, even with this correlation, the determination of ΔE is not affected.

The microwave transitions for the v_5 vibrational state include rotational quantum numbers up to $J_{max} \le 54$ and $K_{amax} \le 39$, while those for the $2v_9$ vibrational state include $J_{max} \le 51$ and $K_{amax} \le 37$. Figure 1 shows the locations $(J, \tau = K_a - K_c)$ of the v_5 energy levels connected by transitions in the microwave fit. This figure includes a contour map of the mixing coefficients for the v_5 energy levels in terms of the $2v_9$ vibrational state wave function contributions in the artificial splitting analysis. A large region of significant mixing, where the percentage reaches 50%, is due to the $\Delta K_a = \pm 2$ Fermi interaction. A figure for $2v_9$ energy levels exhibits similar characteristics.

Rotational dependence of the torsional splitting is shown in Fig. 2 for J = 45 in the v_5 vibrational state and was calculated from the artificial splitting analysis. The figure shows a plot of the differences between the (K_a, K_c) and $(K_a + 1, K_c)$ energy levels on two different scales; the left axis shows the torsional contribution and the right axis shows the asymmetric splitting contribution. The torsional dependence is easily recognized in the symmetric top limit. As the asymmetric splitting becomes comparable to the torsional splitting, mixing significantly effects the rotational energy level labeling and no systematic pattern is discernable. Far into the asymmetric limit, a pattern reemerges when the energy levels with (K_a, K_c) and $(K_a, K_c + 1)$ become clustered (8).

TABLE 2 Newly Observed Millimeter-/Submillimeter-Wave Transitions in the $u_9 = 2$ Vibrational State

$J' K'_a$	K_c'	<i>J″</i>	K_a''	K_c'	ν (<i>MHz</i>)	$o - c^a$	$J' K'_a K'_c$	J'	" K _a " K _a	$(\nu(MHz))$	<i>o</i> - <i>c</i> ^{<i>a</i>}	J' .	$K_a' K_c'$	J″	$K_a''K_c'$	ν (<i>MHz</i>)	<i>o</i> - <i>c</i> ^{<i>a</i>}
19 13	7	19	11	8	89928.171	23	23 13 10	23	13 11	127994.659	24	22 1	94	22	17 5	131608.324	87
25 19	7	25	17	8	90131.858	-48	41 29 12	41	29 13	128013.853	36	6	4 2	5	4 1	131845.545	28
18 11	7	18	11	8	90194.652	18	23 13 10	23	12 11	128018.211	-5	34 2	24 11	34	23 12	132222.709	-131
28 22	7	28	21	8	90206.380	-23	23 14 10	23	13 11	128021.462	31	27 1	6 11	27	16 12	139025.602	-4
18 11	7	18	10	8	90210.130	13	17 15 2	17	13 5	128050.506	29	27 1	16 11	27	15 12	139071.483	-23
2/ 19	8 1	21	18	5	90242.590	_2	29 27 2	29	20 3	1280/0.441	98 56	27 1	1/11	27	10 12	139090.///	-14
16 9	7	16	20	8	91518.670	25	37 31 7	37	30 8	128096.204	116	7	4 3	6	5 2	139400 554	-33
16 9	7	16	8	8	91554.241	-12	37 27 11	37	26 12	128140.092	22	44 3	31 13	44	31 14	139427.695	30
16 10	7	16	9	8	91615.321	12	35 30 5	35	29 6	128176.487	-41	39 2	27 12	39	26 13	139437.758	3
16 10	7	16	8	8	91650.923	6	22 12 10	22	12 11	128467.627	-1	5	5 0	4	3 1	139608.900	204
5 3	3	4	3	2	92962.772	16	22 13 10	22	12 11	128497.220	-3	26 1	15 11	26	15 12	139669.073	0
6 1	5	5	1	4	93607.303	$\frac{24}{20}$ d	22 12 10	22		128498.644	-6 10	26 1		26	14 12	139678.733	-8
0 2	2	3	2	4	93037.222	59	22 13 10	22	20 7	128856 035	-10	20 1	10 11	20	13 12	139/39.400	-/
31 22	9	31	2^{2}	10	97437 702	66	31 28 3	31	27 4	128860 464	43	25 1	4 11	25	14 12	140246 833	40
24 16	8	24	16	9	98021.012	5	21 11 10	21	11 11	128882.785	16	25 1	15 11	25	13 12	140278.613	-45
24 16	8	24	15	9	98204.674	7	21 12 10	21	11 11	128912.161	-9	24 1	13 11	24	13 12	140717.418	9
$27 \ 20$	8	27	18	9	98615.038	-21	21 11 10	21	10 11	128914.124	-4	24 1	13 11	24	12 12	140741.235	-18
17 9	8	17	8	9	104329.525	8	21 12 10	21	10 11	128943.498	-32	24 1	14 11	24	13 12	140752.936	-15
17 10	8	17	9	9	104336.505	-19	33 29 4	33	28 5	128997.128	193	24 1	14 11	24	12 12	140776.745	-51
16 9	ð	16	87	9	104689.495	1	20 10 10	20	10 11	129237.962	-51	20 1	18 3	20 40	10 4	140807.684	-3/
10 0	8	15	6	9	104095.095	-5 -6 d	20 10 10	20	9 11	129272 123	23	43 3	33 11	43	31 12	141109 034	-67
9 2	8	9	ĩ	9	105878.135	72	20 11 10	20	9 11	129305.825	-24	23 1	2 11	23	12 12	141143.189	43
9 1	8	9	0	9	105879.106	21	36 26 11	36	25 12	129492.276	-121	23 1	13 11	23	12 12	141166.725	-2
63	4	5	3	3	106015.315	4	19 9 10	19	911	129545.119	33	23 1	12 11	23	11 12	141172.575	-11
6 2	4	5	2	3	106233.937	0	19 10 10	19	9 11	129579.237	-5	23 1	13 11	23	11 12	141196.120	-48
40 30	11	40 a	29	12	118494.137	64	35 24 11	35	23 12	129664.442	37	38 2	26 12	38	26 13	141327.146	-47
8 1	5	4	2	6	118519.608	21	3/2/11	3/	25 12	129/36.951	/4	43 3	SU 13	43	30 14	141388.971	-/
9 0	9	8	1	4	118537 474	-0	18 9 10	18	7 11	129803.783	-4	22 1		22	10 12	141537 205	-50
8 1	7	7	i	6	118569.249	66 d	17 7 10	17	7 11	130027.702	15	22 1	12 11	22	11 12	141537.835	Ő
7 3	5	6	3	4	118571.308	19	17 8 10	17	6 11	130106.654	-1	22 1	12 11	22	10 12	141568.241	-36
72	5	6	2	4	118579.995	25	16 6 10	16	6 11	130213.779	-2	21 1	10 11	21	10 12	141824.655	16
90	9	8	0	8	118587.904	25 d	16 7 10	16	5 11	130297.073	-17	21 1	11 11	21	9 12	141889.097	-46
8 2	7	7	1	6	118618.829	48	15 5 10	15	5 11	130369.267	23	43 3	32 12	43	30 13	142027.644	162
20 27	11	20	27	8 12	118638.314	30 70	15 6 10	15	5 II 4 11	130411.948	Q.	20	911	20	912	142098.249	6
50 21	3	30 5	27	2	120239 381	21	15 6 10	15	4 11	130456 003	4	20 1	9 11	$\frac{20}{20}$	8 12	142132.397	3
64	3	5	3	2	120947.843	2	14 4 10	14	4 11	130497.381	-6	44 3	33 12	44	31 13	142153.626	-131
6 5	2	5	5	1	123783.126	-99	14 5 10	14	4 11	130541.948	6	19	8 11	19	8 12	142333.586	8
33 26	8	33	24	9	124176.750	-276	14 4 10	14	3 11	130543.168	-14	19	911	19	8 12	142369.653	-40
37 26	11	37	25	12	124385.677	76	36 26 11	36	24 12	130565.899	-15	19	8 11	19	7 12	142371.050	-15
28 19	10	28	17	11	124584.536	9	14 5 10	14	3 11	130587.736	0	19	9 11	19	7 12	142407.173	-8
2/1/	10	21	1/	11	125246.480	20	13 3 10	13	2 11	130640 410	2	18	/ 11 9 11	10	6 12	142534.489	-3
27 17	10	27	16	11	125311.658	48	12 2 10	12	2 11	130686.110	-39	17	6 11	17	6 12	142704.961	-19
27 18	10	27	17	11	125358.906	-31	12 3 10	12	2 11	130733.832	-1	17	7 11	17	5 12	142786.903	2
26 16	10	26	16	11	126090.287	0	11 2 10	11	1 11	130801.943	10	16	6 11	16	4 12	142934.359	13
26 17	10	26	16	11	126117.241	21	35 25 11	35	24 12	130848.428	12	37 2	25 12	37	25 13	142949.403	-64
26 16	10	26	15	11	126160.609	-13	11 2 10	11	0 11	130852.278	13	39 2	28 12	39	26 13	143409.132	-18
26 17	10	26	15	11	126187.576	22	8 2 6	7	35	130997.293	-28	9	27	8	36	143473.542	6
30 23	11	30	20 17	12 11	120193.334	-40	9 1 8	ð	2 / 1 9	131020 440	-0 -11	0 8	4 5	7	4431	143349.046	39 41
25 15	10	25	15	11	126866.544	12	34 23 11	34	23 12	131034.150	-48	19 1	17 2	19	15 5	143683 108	67
24 14	10	24	14	11	127443.620	11	8 2 6	7	2 5	131045.824	29 d	45 3	34 12	45	32 13	143703.148	-2
24 15	10	24	14	11	127464.929	4	9 1 8	8	1 7	131051.196	20 d	20	17 3	20	15 6	143789.395	-233
24 14	10	24	13	11	127479.132	-19	8 3 6	7	2 5	131094.296	26	36 2	24 12	36	23 13	150073.844	-222
24 15	10	24	13	11	127500.524	57	9 2 8	8	1 7	131100.659	41	35 3	32 3	35	31 4	150135.804	84
39 29	11	39	28	12	127727.163	-13	10 1 10	9	09	131121.241	42	35 3	32 4	35	31 5	150139.571	-132

^{*a*} Observed – calculated (o - c) are in kHz. All experimental uncertainties are 100 kHz. An index *d* after the o - c indicates an unresolvable symmetric top limit doublet with the $K_a + 1$ levels not listed in table. An index # also indicated an unresolvable doublet, but in the asymmetric top limit involving levels K_c and $K_c + 1$.

129

 TABLE 2—Continued

$J' K'_a K'_c$	$J''K_a''K_c$	$\prime \nu(MHz)$	$O - C^a$	$J' K'_a K'_c$	$J''K_a''K_a$	$V' \nu(MHz)$	0 - C ^a	$J' K'_a K'_c$	$J''K_a''K_a$	$(\nu (MHz))$	<i>o</i> - <i>c</i> ^{<i>a</i>}
33 22 12	33 20 13	150266.524	74	19 8 12	19 6 13	155113.762	299	25 13 13	25 11 14	166391.168	-47
34 23 12	34 21 13	150292.446	-96	36 23 13	36 23 14	155120.694	151	24 11 13	24 11 14	166642.569	27
32 21 12	32 20 13	150467.225	19	18 6 12	18 6 13	155191.899	33	24 12 13	24 11 14	166670.334	-6
35 24 12	35 22 13	150666.834	104	18 / 12	18 5 13	155272.599	39 63	24 11 13	24 10 14	166600 107	-10
31 19 12	31 18 13	151106.338	20	36 33 3	36 32 4	155301.489	9	22 20 3	22 18 4	166785.198	-136
36 25 12	36 23 13	151147.521	-62	36 33 4	36 32 5	155303.350	-243	23 11 13	23 10 14	166937.603	16
30 18 12	30 18 13	151216.350	1	8 4 4	7 5 3	155306.384	-16	23 10 13	23 9 14	166938.894	4
31 20 12	31 18 13	151312.480	18	17 5 12	17 5 13	155324.469	11	23 11 13	23 9 14	166968.844	-27
30 19 12	30 18 13	151327.000	24	17 6 12	17 4 13	155409 239	-/	40 36 4	40 35 5	166996 501	-2
30 19 12	30 17 13	151448.207	45	7 5 2	6 5 1	155410.040	15	46 33 14	46 31 15	167066.055	52
37 26 12	37 24 13	151567.736	40	16 4 12	16 4 13	155436.979	29	22 9 13	22 9 14	167138.719	32
40 28 13	40 27 14	151691.069	67	15 3 12	15 3 13	155531.439	7	22 10 13	22 9 14	167170.979	16
38 27 12	38 25 13	151727.446	-24	14 2 12	14 2 13	155609.940	23	22 9 13	22 8 14	167172.346	-40
29 17 12	29 16 13	151762.982	64	39 25 15	39 25 14	155743.958	14	41 27 14	41 26 15	167215.121	53
29 18 12	29 17 13	151847.345	7	9 3 6	8 4 5	155970.445	-99	21 8 13	21 8 14	167339.574	3
29 18 12	29 16 13	151859.543	52	12 0 12	11 1 11	155985.538	17	21 9 13	21 7 14	167410.085	-19
28 16 12	28 16 13	152257.605	59	946	8 4 5	156018.628	0	20 7 13	20 7 14	167513.511	25
28 1/ 12	28 16 13	152285.324	93 17	930	835	156070.005	-14	20 8 13	20 6 14	167663 355	-25 44
28 17 12	28 15 13	152313.403	52	41 29 13	41 27 14	156569.856	-193	19 7 13	19 6 14	167702.284	0
38 25 13	38 24 14	152683.126	19	5 4 2	4 2 3	156831.772	-28	19 6 13	19 5 14	167703.810	-6
27 15 12	27 15 13	152706.955	92	8 4 4	7 4 3	157064.705	31	18 5 13	18 5 14	167791.647	9
46 34 13	46 32 14	152718.633	290	22 19 3	22 17 6	157071.905	- U 8	18 6 13	18 5 14	167832.729	03
27 15 12	27 14 13	152752.826	63	21 17 4	21 15 7	157362.809	-69	17 5 13	17 4 14	167943.987	36
27 16 12	27 14 13	152772.060	45	40 28 13	40 26 14	157408.378	13	17 4 13	17 3 14	167945.537	7
47 35 13	47 33 14	152817.725	-211	35 22 13	35 21 14	157436.819	-46	17 5 13	17 3 14	167988.641	-17
26 14 12	26 14 13	153140.009	90	22 18 4	22 16 7	158092.238	-61	16 3 13	16 3 14	167992.969	-45
45 33 13	45 51 14	153140.770	-1/1	20 16 4	20 14 7	158463 295	-155 44	15 2 15	$15 \ 2 \ 14 \ 16 \ 2 \ 14$	168084 766	-9
26 14 12	26 13 13	153164.149	61	38 26 13	38 25 14	159085.896	-4	15 3 13	15 1 14	168165.655	20
26 15 12	26 13 13	153173.803	47	31 18 13	31 18 14	162796.944	3	14 2 13	14 1 14	168182.854	16
37 24 13	37 23 14	153422.880	11	31 18 13	31 17 14	162814.108	-11	14 2 13	14 0 14	168233.180	77
25 13 12	25 13 13	153507.511	93 63	31 19 13	31 18 14	163218.990	-40	10 4 7	946	168484.396	-6/ 85
25 13 12	25 12 13	153537.529	63	30 17 13	30 17 14	163875.094	-30	10 3 7	936	168532.664	116
25 14 12	25 12 13	153562.872	38	36 29 8	36 27 9	163880.186	213	44 31 14	44 30 15	168667.607	-75
48 36 13	48 34 14	153845.791	42	30 17 13	30 16 14	163891.711	-44	9 5 5	8 4 4	168783.533	36
24 13 12	24 12 13	153873.091	58	39 25 14	39 24 15	163932.571	19	38 24 14	38 24 15	169603.135	100
24 12 12 24 13 12	24 11 13	1538/7.030	45	30 18 13	30 17 14	164012.267	-20	43 30 14	45 29 15	218329.040	164
44 32 13	44 30 14	153921.625	209	29 16 13	29 16 14	164594.031	-29	13 6 8	12 6 7	230904.208	29
23 11 12	23 11 13	154148.776	88	29 17 13	29 16 14	164606.238	23	13 5 8	12 5 7	230905.554	61
23 12 12	23 10 13	154208.059	-52	29 16 13	29 15 14	164612.596	-51	11 10 2	10 10 1	231366.035	36
34 32 2	34 31 3	154280.051	-15 #	29 17 13	29 15 14 24 18 7	164624.783	-17	41 22 19	41 22 20	232393.578	108 76 d
22 10 12	22 10 13	154446.726	-26	28 15 13	28 15 14	165128.605	11	11 10 1	10 10 0	232544.068	23
22 10 12	22 9 13	154448.643	55	28 15 13	28 14 14	165148.735	-13	11 9 3	10 9 2	232551.552	109
22 11 12	22 9 13	154479.067	38	28 16 13	28 15 14	165156.706	-8	40 21 19	40 20 20	233156.845	144
40 35 5	40 34 6	154483.318	151	28 16 13	28 14 14	165176.831	-37	40 22 19	40 21 20	233157.509	-45
40 55 0	21 9 13	154651.513	70	27 15 13	27 14 14 27 14 14	165613.781	2	40 22 19	40 20 20 40 31 9	233234.441	-45
21 10 12	21 9 13	154684.634	46	27 14 13	27 13 14	165616.684	-18	39 19 21	39 20 20	233885.703	-90
21 10 12	21 8 13	154719.195	64	27 15 13	27 13 14	165635.930	-24	39 19 21	39 19 20	233898.792	-255
45 32 14	45 31 15	154767.464	76	50 37 14	50 35 15	165637.898	-80	39 20 19	39 20 20	233899.831	-272
20 8 12	20 8 13	154894 501	50	26 13 13	+5 26 15	165991.581	28	38 19 19	38 19 20	234626 695	-49 314
20 9 12	20 7 13	154929.700	-7	26 13 13	26 12 14	166015.763	-30 d	38 19 19	38 18 20	234637.904	-19
19 7 12	19 7 13	155037.059	56	25 12 13	25 12 14	166339.303	35	38 20 19	38 19 20	234639.322	115
19 8 12	19 7 13	155074.524	33	25 13 13	25 12 14	166364.633	-2	38 20 19	38 18 20	234650.580	-169
19 7.12	19 6 13	1550/6.023	48	25 12 13	25 11 14	100303./95	-52	5/ 18 19	5/ 18/20	235363.284	77

 TABLE 2—Continued

$J' K'_a K'_c$	$J''K_a''K_a$	$\int_{c}^{\prime} v(MHz)$	0 - C ^a	$J' K'_a K$	<i>c J</i> ″	$K_a''K$	$_{c}^{\prime\prime} \nu(MHz)$	0 - C ^a	$J' K'_a K'_c$	$J''K_a''K$	$\sum_{x} \nu(MHz)$	$O - C^a$
37 18 19	37 17 20	235372.974	-87	17 6 12	16	6 11	280760.359	64	27 2 26	27 1 27	329974.422	24
37 19 19	37 18 20	235374.699	80	20 2 18	19	3 17	280767.710	-179	27 1 26	27 0 27	329977.251	-93
37 19 19	37 17 20	235384.739	265	16 6 10	15	69	280792.041	-211 d	13 12 1	12 11 2	330478.555	-78
11 7 4	10 7 3	235713.924	-247	17 6 12	16	5 11	280802.299	-212	20 6 14	19 7 13	330620.661	52
36 17 19	36 17 20	236094.531	88 71	18 5 14	18	4 15	280806.970	-217	19 / 12	18 8 11	330644.446	-1 150
36 18 19	36 17 20	236102.874	107	20 3 18	10	2 17	280827.850	-242	20 0 14	20 5 15	330674 672	-139 38 d
36 18 19	36 16 20	236113.178	125	21 2 20	20	1 19	280912.437	-104	26 0 26	20 3 13	330688.471	-19
23 5 19	23 4 20	242598.845	162	15 8 8	14	87	280935.424	64	19 8 12	18 7 11	330720.245	43
23 4 19	23 3 20	242600.639	78	15 7 8	14	77	280943.463	29	22 4 18	21 4 17	330723.586	55 d
972	8 5 3	245085.317	28	15 8 8	14	7 7	280984.650	-171	26 0 26	25 0 25	330738.888	67 d
12 7 5	11 7 4	245525.327	195	18 5 13	17	6 12	293189.487	-108	18 8 10	17 9 9	330741.798	69
11 8 3		245598.337	200	19 4 15	18	5 14 7 10	293201.007	-113	25 1 24	24 2 23	330/45.281	52
9 0 1	15 5 11	240293.439	275	20 3 17	19	4 16	293210.320	-80	20 1 20	23 0 23	330840 737	-52
17 3 14	16 4 13	255777.048	218	17 6 11	16	6 10	293251.131	45 d	16 11 6	15 11 5	330872.528	-40
14 6 8	13 6 7	255907.119	30	20 3 17	19	3 16	293269.997	-76 d	17 10 8	16 10 7	331095.342	-26
14 7 8	13 7 7	255908.950	13	18 6 13	17	5 12	293272.285	-45	16 10 6	15 10 5	334296.573	-11
10 10 1	990	257119.076	77	19 5 15	18	4 14	293286.484	-52	13 13 1	12 12 0	335239.702	113
10 10 0	991	257383.318	-76	16 7 9	15	88	293304.954	-14	13 13 0	12 12 1	335275.248	19
13 9 5	12 9 4	267666.295	-148	16 8 9	15	7 8	293386.168	-2	16 15 2	15 15 1	335349.461	30
44 22 22	44 21 23	267741 817	-73	22 1 21	21	1 22	293504 294	-103	15 11 4	13 13 0	335995 848	-11
44 23 22	44 21 23	267762.328	-78	22 2 21	21	2 20	293507.894	-18	48 21 27	48 20 28	336893.455	-157
9 7 3	8 5 4	268119.889	-12	22 1 21	21	1 20	293508.667	-240	48 22 27	48 21 28	336894.278	-125
12 9 3	11 9 2	268174.499	-65	23 0 23	22	0 22	293554.562	121 d	48 22 27	48 20 28	336908.365	-146
17 4 13	16 5 12	268241.939	117	23 1 23	22	0 22	293604.549	51	47 20 27	47 20 28	337338.878	-153
16 5 11	15 6 10	268246.709	181	23 1 22	22	1 21	304579.873	-153 d	47 20 27	47 19 28	337352.833	-132
18 3 15	17 4 14	268257.283	-38	23 2 22	22	1 21	304626.714	-135	47 21 27	47 20 28	337353.723	-6
19 2 17	18 3 10	2682/9.0/1	15 105 d	20 4 16	10	5 15	305685 965	230	4/212/	4/ 19/20	337777 208	-0
20 1 19	19 2 18	268308 416	203	18 6 12	17	6 11	305717.287	53 d	46 19 27	46 18 28	337788.329	173
16 6 11	15 5 10	268331.554	112	21 3 18	20	4 17	305722.014	116	46 20 27	46 19 28	337788.845	-11
15 6 9	14 6 8	268342.794	188 d	20 4 16	19	4 15	305727.798	151 d	46 20 27	46 18 28	337802.974	208
18 4 15	17 3 14	268346.596	231	17 7 10	16	8 9	305737.628	-1	45 18 27	45 18 28	338186.269	132
20 2 19	19 1 18	268404.197	288	19 6 14	18	5 13	305750.296	-182	45 18 27	45 17 28	338200.625	110 d
14 / /	13 / 0	268611.533	-38	18 / 12	1/	0 11	305763 436	200	45 19 27	45 17 28	338215.041	14/
41 19 22	41 19 23	269821.478	44	20 5 16	19	4 15	305769.670	114	44 17 27	44 16 28	338590.185	-159 d
41 19 22	41 18 23	269842.764	84	21 4 18	20	3 17	305808.580	66	16 14 3	15 14 2	338933.399	182
41 20 22	41 19 23	269845.280	18	12 10 2	11	93	307513.687	-87	43 16 27	43 15 28	338958.959	62 d
41 20 22	41 18 23	269866.412	-95	15 9 6	14	95	307974.876	149	43 17 27	43 15 28	338974.280	90
24 3 21	24 3 22	270456.997	-90	11 10 1	10	8 2	308178.814	142	42 15 27	42 15 28	339290.841	-53
40 18 22	40 18 23	270462.401	36	15 10 6	14	9 3	308429.039	133	42 15 27	42 14 28	339307.017	-15 d
40 18 22	40 17 23	270484.175	-9	26 2 25	20	1 20	317515 866	-36	42 10 27	42 14 20	339478 251	-51
24 4 21	24 3 22	270495.021	-248	26 1 25	26	0 26	317518.737	23	41 14 27	41 14 28	339618.125	-175
24 3 21	24 2 22	270502.032	-36	20 5 15	19	5 14	318189.038	-91 d	41 14 27	41 13 28	339635.341	-211 d
40 19 22	40 17 23	270508.408	-141	21 4 17	20	4 16	318217.873	-193 d	41 15 27	41 13 28	339652.498	-306
24 4 21	24 2 22	270540.234	-16	18 7 11	17	7 10	318223.477	-13 d	40 13 27	40 13 28	339926.528	-63
25 5 21	25 4 22	271952.440	98	20 6 15	19	5 14	318229.305	-28	40 13 27	40 12 28	339945.206	-15 d
25 4 21	25 3 22	2/1901.000	-105	22 4 19	21	5 18	318320.807	54 144	40 14 27	40 12 28	339963.702	-148
29 7 22	29 6 23	276418 290	-190 -229 d	17 8 9	16	8 8	318372 294	-46	21 6 15	20 7 14	343100 119	-18
29 8 22	29 6 23	276455.030	-88	17 9 9	16	98	318374.143	-9	22 5 17	21 6 16	343132.101	79
22 0 22	21 1 21	280349.034	-167	23 3 21	22	3 20	318709.052	48	20 7 13	19 7 12	343135.096	76 d
22 0 22	21 0 21	280398.913	-89 d	23 2 21	22	2 20	318711.065	5	21 6 15	20 6 14	343138.055	-8 d
22 1 22	21 0 21	280448.663	-139	32 7 26	32	6 27	329155.173	0	27 0 27	26 1 26	343159.496	5
17 5 12	16 6 11	280718.450	-200	32 6 26	32	5 27	329157.289	122	26 1 25	25 2 24	343165.206	65
18 4 14	1/ 313	280720 572	-238 -242	31 5 26	31	521 577	329311.849	90 155	21 / 13	18 0 10	3431/0.043	55 -154
16 6 10	15 7 9	280750 745	-198	15 12 3	14	12 2	329887.623	-29	23 4 19	22 5 18	343228 094	128
19 9 11	18 8 10	343245.887	33	18 9 9	17	9 8	343435.909	49	24 4 21	23 4 20	344044.294	4
23 5 19	22 4 18	343308.070	-37	24 3 21	23	4 20	344006.246	138	24 3 21	23 3 20	344047.399	-251

 TABLE 2—Continued

$J' K'_a K'_c$	$J''K_a''K_a$	$_{c}^{\prime\prime} \nu(MHz)$	$O - C^a$	J^{r}	' K' _a K	ζ J	" K _a "	K	c' v(MHz)	0 - C ^a	J^{\prime}	' K' _a	K_c'	J″	K_a'	'K' _c	ν (<i>MHz</i>)	0 - c ^a
24 4 21	23 3 20	344085.867	34	39	11 28	39	11 2	9	353002.971	219	12	12	1	11	10	2	361193.636	150
25 3 23	24 2 22	344137.378	53	39	12 28	39	11 2	9	353023.433	64	50	21	29	50	20	30	362270.109	125 d
17 10 7	16 10 6	344632.608	127	39	11 28	39	10 2	9	353024.999	513	17	13	5	16	13	4	362566.847	-221
13 10 3	12 9 4	345329.521	-33	39	12 28	- 39	10 2	9	353045.147	44	17	12	6	16	11	5	362842.783	-284
14 12 3	13 11 2	346283.588	121	38	11 28	- 38	10 2	9	353267.699	-114	17	14	4	16	14	3	363053.430	36
12 10 3	11 8 4	346588.909	188	38	10 28	- 38	92	9	353269.137	-46	48	19	29	48	18	30	363060.245	-6 d
12 8 4	11 6 5	348205.230	-23	12	94	- 11	7	5	353410.363	-20	47	18	29	47	17	30	363426.002	68 d
51 23 28	51 23 29	348683.973	194	21	7 14	- 20	8 1	3	355578.133	12	47	19	29	47	17	30	363439.013	14
51 23 28	51 22 29	348698.739	223 d	22	6 16	21	7 1	5	355588.946	-16	46	17	29	46	16	30	363773.261	214 d
51 24 28	51 22 29	348713.454	199	21	7 14	- 20	7 1	3	355614.438	-71 d	42	13	29	42	13	30	364973.515	183
50 22 28	50 21 29	349174.313	-189 d	22	6 16	21	6 1	5	355626.121	-32 d	42	13	29	42	12	30	364990.230	126 d
16 13 3	15 13 2	349204.297	23	28	0 28	27	1 2	7	355630.710	-80	42	14	29	42	12	30	365006.864	-14
12 11 2	11 9 3	349999.014	-73	20	8 12	- 19	81	1	355658.514	187 d	40	12	29	40	11	30	365504.102	-182
48 20 28	48 20 29	350041.463	-17	22	7 16	21	6 1	5	355663.390	47	40	11	29	40	10	30	365505.218	-281
48 20 28	48 19 29	350055.103	-143 d	20	9 12	- 19	81	1	355693.994	-20	12	8	5	11	6	6	365698.629	-105
48 21 28	48 19 29	350068.967	-43	27	2 26	26	12	5	355715.873	24	39	11	29	39	10	30	365740.211	16
13 10 3	12 8 4	350766.812	298	23	6 18	22	5 1	7	355728.614	69	39	10	29	39	9	30	365741.862	195
44 16 28	44 16 29	351544.653	-154	28	1 28	27	0 2	7	355731.570	. 80	38	10	29	38	9	30	365962.512	-93
43 15 28	43 15 29	351871.311	-84	26	2 24	25	3 2	3	355747.174	-107	38	9 :	29	38	8	30	365964.397	74
43 15 28	43 14 29	351886.504	-86 d	26	3 24	25	2 2	3	355837.689	-82	37	8 3	29	37	8	30	366145.666	14
25 3 22	24 4 21	352026.753	-11	24	4 20	23	5 1	9	355909.861	11	37	9 :	29	37	8	30	366171.906	-135
16 11 5	15 11 4	352056.525	-206	24	5 20	23	4 1	9	355987.653	-136	37	8 3	29	37	7	30	366173.813	-178
25 3 22	24 3 21	352064.696	-250	14	13 1	13	12	2	356261.432	83	31	3 3	29	31	2	30	367183.671	66
25 4 22	24 4 21	352069.646	-159	18	11 8	17	10	7	356362.947	105	31	2 3	29	31	1	30 3	367186.676	-73
25 4 22	24 3 21	352107.915	-72	16	12 4	15	12	3	358470.933	8	19	10	9	18	11	8	368505.768	-76
42 14 28	42 14 29	352179.492	-293	16	12 5	15	11 -	4	359396.933	-258	19	10	9	18	10	8 3	368521.254	-73
13 11 2	12 9 3	352321.844	32	17	15 3	16	15	2	359710.618	-175	19	11	9	18	11	8	368536.810	-107
41 13 28	41 13 29	352470.822	134	17	15 2	16	15	1	360338.759	110	19	11	9	18	10	8	368552.250	-151
40 13 28	40 12 29	352763.678	27	17	11 6	16	11	5	361053.983	189	18	12	7	17	12	6	368969.658	-57
40 12 28	40 11 29	352764.534	27	14	14 1	13	13	0	361164.478	170	24	19	6	23	19	5 :	517034.426	-127
40 13 28	40 11 29	352783.442	72	14	14 C	13	13	1	361182.263	105	23	17	6	22	17	5 :	517179.548	-327

TABLE 3 Newly Observed Millimeter-/Submillimeter-Wave Transitions between the $\nu_5=1$ and $\nu_9=2$ Vibrational States

J	$K_a' K$	$\int_{c}^{\prime} J^{\prime}$	" K _a "K	$\sum_{n=1}^{\infty} v(MHz)$	<i>o</i> - <i>c</i> '	$J' K'_a K'_c J'' K''_a K''_c \nu(MHz) o$	c^{a}
v ₅	$\leftarrow 2v_9$					$2v_9 \leftarrow v_5$	
29	22 8	29	16 13	118480.492	-10	39 27 12 39 32 7 131249.217 -10	8
40	30 10	40	26 15	151699.241	-2	39 28 11 39 32 8 139031.550 -2	8
33	24 9	33	20 14	151862.154	27	35 24 12 35 27 9 139610.536 -10	5
32	23 9	32	19 14	166405.081	66	31 20 12 31 22 9 141897.855 -6	2
32	23 9	32	18 14	166417.012	117	40 27 13 40 30 10 165700.627 9	0
37	29 9	37	23 14	166774.110	-29	25 2 23 24 4 20 332162.857 -5	6
36	28 9	36	22 14	167221.795	-152	25 3 23 24 5 20 332179.977 -7	3
32	14 19	32	10 22	255763.871	267	25 3 23 24 4 20 332208.441 9	7
24	4 20	23	3 21	340356.928	63	24 2 22 23 4 19 346127.517 14	4
24	5 20	23	3 21	340385.200	41	24 3 22 23 5 19 346141.426 13	0
24	4 20	23	2 21	340399.321	-97		
24	5 20	23	2 21	340427.742	29		
24	3 21	23	2 22	352182.610	-240		
25	5 20	24	4 21	366575.364	148		
25	6 20) 24	4 21	366601.472	28		
25	5 20) 24	3 21	366613.424	26		
25	6 20	24	3 21	366639.684	58		

^{*a*} Observed – calculated (o - c) are given in kHz. All experimental uncertainties are 100 kHz.

	Artificial Spli	itting Analysis	Induced Spli	itting Analysis
Parameter	ν ₅	2v ₉	ν ₅	2v,
ν₀	26355017.84 ^b	26874843.54(16)	26568683.31 ^b	26661177.91(16)
Α	12962.3000(328)	12962.6504(231)	12958.6045(678)	12966.4697(654)
В	12085.74056(3289)	12025.8774(232)	12140.5660(663)	11970.9309(638)
С	6242.05889(34)	6242.23697(35)	6234.3657(595)	6249.9286(595)
D_{ab}	-196.1026(734)	-184.5912(587)	-209.4372(644)	-170.9494(741)
D_{abJ} 10^3	2.48709(3427)	1.5035(656)	2.2231(559)	1.5521(603)
$D_{abK} \cdot 10^3$	-2.3144(145)	-2.0246(305)	-1.6356(590)	-1.0584(1006)
D_{abJJ} $\cdot 10^8$	-9.372(491)	-	-2.070(143)	1.366(369)
$D_{abJK} \cdot 10^7$	-	-2.927(94)	-	-1.385(142)
$D_{abKK} \cdot 10^8$	-6.66(27)	-	-	11.93(46)
$\Delta_{\rm J}$ $\cdot 10^3$	9.792336(18338)	8.434742(22236)	9.11824(1334)	9.03203(1086)
$\Delta_{JK} \cdot 10^3$	-7.75775(6226)	-3.29078(6177)	-5.26789(6203)	-4.29228(6810)
$\Delta_{\mathbf{K}} \rightarrow 10^3$	8.83441(4213)	5.80608(3323)	6.74679(10154)	5.79835(9758)
$\delta_{\rm J}$ $\cdot 10^3$	4.179128(9149)	3.59440(1101)	3.89825(670)	3.83703(532)
$\delta_{\rm K}$ $\cdot 10^3$	8.93080(1936)	6.30322(1210)	8.47317(3010)	7.38143(2918)
$H_J \cdot 10^9$	7.424(945)	-	-	-9.393(827)
$H_{JK} \rightarrow 10^7$		2.0485(518)	1.1842(505)	0.9881(1004)
$H_{KJ} \rightarrow 10^7$	-	-3.1527(902)	-3.4765(939)	-1.8510(1702)
$H_K \cdot 10^8$	-4.568(368)	·	24.587(293)	10.04(90)
$h_J \cdot 10^9$	4.415(468)		-	-3.965(412)
h _{лк} 10 ⁸	-8.082(207)	14.00(35)	1.04(29)	3.216(344)
$h_{\rm K}$ $\cdot 10^7$	1.638(13)	0.7772(208)	0.9558(323)	
Fourier Expansio	on of Rotational Constants			
ρ (dimensionless)	0.978793	0.978793	-	0.978793
E _ρ	-17.71(1)	-25.40(1)	-	-43.15(1)
$E_{\rho J} \rightarrow 10^4$	-4.22(15)	-12.8(2)	-	-15.7(3)
$E_{\rho K} \cdot 10^3$	-	2.60(6)	· _	3.06(7)
$E_{p\pm} \cdot 10^4$	3.92(9)	3.58(9)	-	6.99(25)
$E_{\rho Dab} \cdot 10^4$	-2.0(2)	_	-	-1.6(3)
$E_{\rho JJ} \rightarrow 10'$	_ ^	—	-	-1.6(2)
$E_{\rho\pm J} \cdot 10^8$			-	8.8(22)
Interaction Const	ants			
Cab	-18.2382(465)	2.4633	(275)
$C_{abJ} \cdot 10^7$	-		-1.246(79)
\mathbf{F}_{0}	. –		25576	5.17(6)
FJ	37.57560	0(7035)	-8.2144	97(12382)
F _K	-45.0138(813)	7.7158	2(2166)
$F_{JJ} \rightarrow 10^4$	3.1224(1178)	1.0857	(893)
$F_{JK} \rightarrow 10^4$	-9.2498(2223)	-1.0585	(1038)
F _±	19.90903	3(3753)	-3.4492	2(246)
$F_{\pm J} \rightarrow 10^{5}$	1.882(3	76)	6.1689	(5187)
$F_{\pm K} \rightarrow 10^4$	-3.0170(651)	2.7490	(625)
$F_{\pm JK} \cdot 10^8$	2.686(8	3)	-	
$F_{\pm JKK} \cdot 10^8$	-3.079(1	04)	-	
Fourier Expansio	n of Interaction Constants			
F_{ρ^0}	21.67(4)		-	
$F_{\rho\pm}$ 10 ⁴	-9.74(19)		

TABLE 4 Spectroscopic Parameters (in MHz) for the ν_5 and $2\nu_9$ Vibrational States of HNO₃^a

 a Estimated errors in parenthesis represent one standard deviation. Enough digits are supplied to reproduce the spectra. b The band center was fixed at the value determined from the infrared/microwave analysis in Ref. (8).

Comparison of Spectroscopic Parameters (in MHz)											
Parameter	Artificial Splitting Analysis	Induced Splitting Analysis									
Average values											
A	12962.4752(201) ^a	12962.5371(471)									
В	12055.8090(232)	12055.7485(460)									
С	6242.14793(35)	6242.1471(421)									
Dab	-190.3469(470)	-190.1933(491)									
Torsional splitting											
Ε _ρ	$-43.11(1)^{b}$	-43.15(1)									
Difference in perturbed band centers											
$\Delta E = E_{2\nu 9} - E_{\nu 5}$	519825.700(160)	519825.497(160)									

TABLE 5

^a Estimated errors in parenthesis represent one standard deviation.

^b Represents the combined torsional splitting, $E_{\rho,\nu 5} + E_{\rho,2\nu 9}$.

Both analyses accurately predict the observed 1.4 intensity ratio of the two infrared bands (5). For the induced splitting analysis, the ratio of the mixing coefficients of the J = 0 levels predict an intensity ratio of 1.43, while ratio of the torsional splitting parameters, E_{ρ}^{ν} in Eq. [3], predicts an intensity ratio of 1.37.

FIG. 1. Solid circles (•) show the locations of the rotational levels included in the fit of the v_5 microwave transitions. An overlapping contour plot of the mixing coefficients from the artificial splitting analysis illustrates the location of the perturbations with $2\nu_9$. The number on the contour represents the percentage of the total wave function belonging to $2\nu_9$. In the induced spitting analysis, the mixing starts at 41% with the J = 0 rotational states. The analysis and data for $2\nu_9$ results in a similar plot.

FIG. 2. Rotational dependence of the torsional splitting for J = 45 in v_5 calculated from the artificial splitting analysis. The differences between the K_a , K_c and $K_a + 1$, K_c energy levels are shown on two different scales; the left axis shows the torsional contribution, indicated by open circles (O), and the right axis shows the asymmetry splitting contribution, indicated by plus signs (+). The torsional dependence is easily recognized in the symmetric top limit. When the asymmetry splitting becomes comparable to the torsional splitting, rotational energy level labeling becomes ambiguous and no systematic pattern is discernable. Far into the asymmetric limit, a pattern reemerges when the energy levels with K_a , K_c and K_a , $K_c + 1$ become clustered (8).

The $v_5/2v_9$ band of HNO₃ is a particularly stringent test for the capacity of microwave analyses to synthesize infrared spectra because of the strong perturbations between the two states and the extensive, high quality infrared data that sets the standard for comparison. Figure 3 shows the locations of the experimentally determined $v_5 = 1$ infrared energy levels of Refs. (5). The accuracy of the predictions of these same levels from the results of the microwave analysis and the infrared analysis of Ref. (5)are also indicated by symbols on the graph and summarized in Table 6. Inspection of Table 6 shows that the distribution of errors for the microwave predictions of the infrared energy levels and the predictions of these same levels using the spectroscopic parameters from Ref. (5) are about the same, thus showing the synthesis capability of the microwave analysis for this complex dyad. However, the synthesis is in all likelihood much better. For many of the infrared levels the corresponding pure rotational spectrum has been directly measured to microwave accuracy $(\sim 0.1 \text{ MHz})$ and that part of the synthesized spectrum should be more accurate by approximately the ratios of the measurement uncertainties ($\sim \times 100$).

Inspection of Fig. 3 shows that the distribution of error in $J, \tau = K_a - K_c$ for v_5 is similar between the infrared analysis and the microwave predictions of the infrared levels, with most of the error located at the very edge of the infrared data set. A similar distribution of error is observed for $2\nu_9$. From the available information, it is not possible to tell if this is because

 TABLE 6

 Distribution of Error in the Predictions of the Infrared Energy Levels from the Results of the Microwave and Infrared Analyses^a

	١	′ ₅	2	v ₉	com	bined
Number of IR energy levels	12	:07	1	13	23	320
Analysis	Micro- wave	Infrared ^b	Micro- wave	Infrared ^a	Micro- wave	Infrared ^a
Percentage of levels between (cm ⁻¹)						
$0 \le Obs-Calc < 0.001$	94.95	92.96	96.68	94.25	95.78	93.58
$0.001 \leq \text{Obs-Calc} < 0.002$	3.40	6.55	2.96	5.66	3.19	6.12
$0.002 \leq Obs-Calc < 0.004$	1.41	0.50	0.36	0.09	0.91	0.30
$ Obs-Calc \ge 0.004$	0.25	0.00	0.00	0.00	0.13	0.00

^{*a*} The experimental infrared energy levels, along with the spectroscopic parameters used to generate the infrared predictions, were reported in Ref. (5).

the microwave model extrapolations deteriorate very rapidly at the edge of the infrared data set, or if the infrared measurements which led to these levels are of lesser accuracy than the rest of the infrared data.

FIG. 3. The plot shows the locations of the experimentally determined infrared energy levels from Refs. (5) used to test the predictions of the microwave and infrared analyses. The spectroscopic parameters of Ref. (5) were used to generate the infrared predictions. The rms deviation of that analysis, $\sigma_{\rm rms} = 0.51 \times 10^{-3} \text{ cm}^{-1}$, was used as a benchmark to test the microwave predictions. The solid circles (•) indicate levels with (obs – calc) < $3\sigma_{\rm rms}$ for both the infrared and microwave predictions. Levels with a cross sign (×) indicate microwave predictions with (obs – calc) > $3\sigma_{\rm rms}$ and levels with an open circle (\odot) indicate infrared predictions with (obs – calc) > $3\sigma_{\rm rms}$.

V. CONCLUSIONS

In this paper, we have shown by analysis of the pure rotational spectrum of both the ground and $v_5/2v_9$ dyad of HNO₃ that it is possible to synthesize to high accuracy the rotational manifold of the corresponding infrared band. This case is particularly challenging because of the complex torsional structure and strong mixing of the two states. Additionally, the quality of the infrared analysis sets a high standard for comparison. We conclude that this approach should be especially advantageous for heavier species, whose Doppler-limited infrared spectrum is too crowded for a detailed analysis.

ACKNOWLEDGMENTS

We thank Agnes Perrin for providing us with the details of the infrared analysis. D.T.P. thanks the NASA–ASEE Summer Faculty Program and John C. Pearson for sponsoring his visit to the Jet Propulsion Laboratory. We also acknowledge NASA for its support of this work.

REFERENCES

- P. Brockman, C. H. Bair, and F. Allario, *Appl. Opt.* 17, 91–100 (1978).
- 2. A. G. Maki and J. S. Wells, J. Mol. Spectrosc. 108, 17-30 (1984).
- T. Giesen, M. Harter, R. Schieder, G. Winnewisser, and K. M. T. Yamada, Z. Naturforsch. A 43, 402–406 (1988).
- 4. A. G. Maki and J. S. Wells, J. Mol. Spectrosc. 152, 69–79 (1992).
- A. Perrin, V. Jaquen, A. Valentin, J.-M. Flaud, and C. Camy-Peyret, J. Mol. Spectrosc. 157, 112–121 (1993), doi:10.1006/jmsp.1993.1009.
- R. L. Crownover, R. A. Booker, F. C. De Lucia, and P. Helminger, J. Quant. Spectrosc. Radiat. Transfer 40, 39–46 (1988).
- T. M. Goyette, C. D. Paulse, L. C. Oesterling, and F. C. De Lucia, J. Mol. Spectrosc. 167, 365–374 (1994), doi:10.1006/jmsp.1994.1242.
- L. H. Coudert and A. Perrin, J. Mol. Spectrosc. 172, 352–368 (1995), doi:10.1006/jmsp.1995.1184.
- T. M. Goyette, L. C. Oesterling, D. T. Petkie, R. A. Booker, P. Helminger, and F. C. De Lucia, *J. Mol. Spectrosc.* **175**, 395–410 (1996), doi:10.1006/jmsp.1996.0046.

- D. T. Petkie, T. M. Goyette, R. P. A. Bettens, S. P. Belov, S. Albert, P. Helminger, and F. C. De Lucia, *Rev. Sci. Instrum* 68, 1675–1683 (1997).
- S. Albert, D. T. Petkie, R. P. A. Bettens, S. P. Belov, and F. C. De Lucia, Anal. Chem. 70, 719A–727A (1998).
- R. R. Friedl, M. Birk, J. J. Oh, and E. A. Cohen, J. Mol. Spectrosc. 170, 383–396 (1995), doi:10.1006/jmsp.1995.1079.
- 13. H. M. Pickett, J. Mol. Spectrosc. 148, 371-377 (1991).
- 14. H. M. Pickett, J. Chem. Phys. 107, 6732-6735 (1997).

- A. P. Cox, M. C. Ellis, C. J. Attfield, and A. C. Ferris, J. Mol. Struct. 320, 91–106 (1994).
- 16. A. Perrin, J.-M. Flaud, C. Camy-Peyret, B. P. Winnewisser, S. Klee, A. Goldman, F. J. Murcray, R. D. Blatherwick, F. S. Bonomo, and D. G. Muircray, J. Mol. Spectrosc. 166, 224–243 (1994), doi:10.1006/jmsp. 1994.1187.
- J. K. G. Watson, in "Vibrational Spectra and Structure" (J. R. Durig, Ed.), Vol. 6, pp. 1–89, Elsevier. Amsterdam, 1977.