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Abstract

Chain molecules with one low-lying bending mode provide a set of model species for the exploration of quantum monodromy in
quasi-linear molecules. Recent work on water [N.F. Zobov et al., Chem. Phys. Lett. 414 (2005) 193–197] and NCNCS [B.P. Winnewisser
et al., Phys. Rev. Lett. 95 (2005) 243002.] have shown that the topology of the energy–momentum maps of such molecules follows closely
the predictions based on the mathematical concept of non-trivial monodromy. From existing data and new calculations which extrap-
olate beyond the existing data for several species, we can now present the topological properties of the bending-rotation energy–momen-
tum maps of a range of molecules, from rigidly linear to rigidly bent. The generalized semi-rigid bender (GSRB) Hamiltonian used for
the extrapolations is reviewed, and the mathematical concepts required to define the monodromy perspective are presented. Further-
more, it is shown that the energy–momentum map for the end-over-end rotational energy, represented by the effective rotational constant
B or �B, has previously unremarked properties which, like the basic bending-rotation energy–momentum map, are robust across the whole
set of molecules studied. The molecules discussed are OCCCS, NCCNO, HCNO, OCCCO, ClCNO and BrCNO, NCNCS, HCCNCO,
NCNCO and NCSCN.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Very early in the history of quasi-linear molecules it was
recognized that the term value intervals between adjacent
vibrational bending levels decrease with increasing excita-
tion energy as a bent molecule approaches the energy of
the top of the barrier to linearity. In 1964 Dixon [1] recog-
nized further, from NH2 electronic spectra, that the term
value intervals increase again as soon as the molecule pass-
es above the barrier to linearity with increasing excitation.
As a result, interesting minima can be seen by plotting the
NH2 term values against Ka. These minima are called the
0022-2860/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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‘‘Dixon dips’’ and occur just at the top of the barrier. A
few years later in 1967 Johns [2] summarized the effects
of quasi-linearity in some three-atomic molecules following
the formalism proposed by Thorson and Nakagawa [3].
This classic work presents a correlation of the energy levels
of a linear molecule with those of a bent molecule. While a
linear molecule possesses a two-dimensional, essentially
harmonic, potential function, a bent molecule possesses a
two-dimensional potential well with a hump in the middle
and a circular minimum, but only motion in one of the two
dimensions is considered a vibration, and is roughly har-
monic. Johns pointed out that although the energy levels
correlate smoothly between the two cases, there is a differ-
ence between the vibrational quantum number needed for a
linear molecule, denoted as vl, and that relevant for a bent
molecule, denoted as vb. The two sets of quantum numbers
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are related by the expression vl = 2vb + jKaj. The asymmet-
ric rotor angular momentum quantum number Ka quantiz-
es the projection of the total angular momentum on the
axis of least moment of inertia, a, which is an approximate-
ly good quantum number in the near-prolate asymmetric
rotor. However, in the linear molecule, Ka actually is a
good quantum number, representing the vibrationally
induced angular momentum along the axis of the molecule,
and is identical with j‘j in the traditional linear molecular
model. In 1976 Yamada and Winnewisser [4] extended this
work by performing model calculations in order to under-
stand in more detail the correlation between a linear mole-
cule and a bent molecule and to classify the molecules using
a quasi-linear parameter that could be empirically
determined.

To describe correctly the bending dynamics of the full
range of molecules from bent to linear it was found that
a Hamiltonian with a reference coordinate system which
depends on the large-angle bending coordinate is required,
and special measures must be taken to deal with a singular-
ity at the linear configuration. Such a model was intro-
duced in 1970 by Hougen, Bunker, and Johns (HBJ) [5]
to treat the vibration–rotation problem in triatomic mole-
cules. The extension of this Hamiltonian to polyatomic
quasi-linear molecules will be briefly reviewed in this paper.

It is humbling to note that all the work on molecules
exhibiting large-amplitude bending vibrations up to a few
years ago, including reviews [6,7], missed the hidden kernel
of quasi-linearity, the unifying underlying mathematical
property determining the dynamics, namely the quantum
manifestation of non-trivial monodromy which must dom-
inate the topological properties of the associated molecular
term value maps.

The concept of monodromy (Greek for ‘‘once around’’) is
now essential in advanced classical mechanics. In the math-
ematical realm, geometrical obstructions to global action-
angle variables were discussed in 1972 by Nekhoroshev [8].
Duistermaat in 1980 provided an example that brought the
subject close to real systems by applying the theory to the
spherical pendulum [9]. In 1983 Cushman [10], building on
the work of Duistermaat [9], discussed in great detail the
geometry of the energy–momentum map of the spherical
pendulum, a system which is completely integrable since
energy and angular momentum are conserved. As we are
now finding out, many other simple physical systems exhibit
non-trivial classical or quantum monodromy.

In 1991, Bates [11] gave an example of a completely inte-
grable particle motion in the plane that did not possess a
global set of action variables. This example is motion in
a circularly symmetric potential shaped like the bottom
of a champagne bottle, and hence there is not only a con-
served energy, but a conserved angular momentum as well.
The punt, or hump, at the bottom of the potential implies,
via Morse theory, that the topology of an energy surface
bifurcates from one of the topological type of S2 · S1 to
one of topological type S3. This change in the topology
forces an associated torus bundle to be nontrivial, and
hence there cannot be a globally well-defined pair of action
variables. In what follows we shall refer to the values of the
energy and angular momentum at the top of the potential
hump as the critical, or monodromy point.

The translation of the classical notion of monodromy
into the quantum domain first appears in 1988 in the work
of Cushman and Duistermaat [12], and was given a spec-
troscopic realization by Child and collaborators [13–15].
Child [14] pointed out via classical trajectory calculations
that for a particle moving in a plane in a potential well,
the sense of precession below the monodromy point chang-
es sign abruptly if the analogous trajectory lies above the
monodromy point. This effect can be related to the fact
that for all energy values the outer potential energy wall
acts as a concave barrier in configuration space, while the
inner potential energy hump presents a convex shape for
energies below the monodromy point and no barrier at
all for energies above the monodromy point. Thus, the
reflection properties of the potential energy walls encoun-
tered by the particle change at the classical monodromy
point.

Quantum monodromy studies must necessarily be con-
cerned with energy eigenvalues, and this means studying
the organization of energy levels and the nature of their
dislocation close to the top of the potential barrier in a
two-dimensional anharmonic potential well. Not surpris-
ingly, the robust properties of the topology of the potential
energy surface are mapped onto the energy–momentum
map and thus into the rovibrational spectra of quasi-linear
molecules. In the present work, the manifestations of quan-
tum monodromy for real champagne bottle potentials will
be discussed.

The publications on this subject so far have treated only
the patterns observed in the spectrum associated with the
two degrees of freedom describing the bending of a mole-
cule. However, there are two more degrees of rotational
freedom, with quanta smaller than the bending quanta,
but coupled, as we shall see, with the bending motion; these
are the two components of the end-over-end rotation of a
molecule, about its b and c principal axes. We will present
the energy–momentum plot of the two primary bending
degrees of freedom in one plot, and the end-over-end ener-
gy in a separate plot; the two energy contributions are
roughly additive, especially near the linear limit.

The remainder of the paper is organized as follows: In
Section 2, we review the implications of the correlation dia-
gram between a linear and a bent molecular model. In this
context, we introduce ten molecules with bending potential
functions which span most of that range. Section 3 presents
a brief review of the current version of the General Semi-
Rigid Bender (GSRB) Hamiltonian. Section 4 deals with
the monodromy calculation for a champagne bottle poten-
tial and the monodromy matrix. Section 5 presents each of
the ten model molecules and the perspective given by their
energy–momentum maps. New data on NCNCS are used
to show the effect of monodromy on the Ka = 1 splitting.
A concluding discussion follows in Section 6.
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2. The correlation between linear and bent molecules

Our concepts of molecular structure are determined by
the potential surfaces of molecules. A linear molecule is lin-
ear because it has a deep, roughly parabolic cylindrically
symmetric bending potential function. A bent molecule is
bent due to a deep potential well, roughly parabolic in
the radial coordinate, about an equilibrium angle which
is comfortably far from the linear configuration. In both
cases the bending motion upon vibrational excitation
may be considered to be infinitesimal. So we have a word,
in each of the two limiting cases, that contains all that
information. However, there is a fairly large number of
molecules – much larger than thought as the phenomenon
was originally defined – that we call quasi-linear, because
the bending motion is not infinitesimal, the potential func-
tion is very anharmonic, may have a hump, and moderate
excitation (2, 10, or 20 quanta) may take the energy levels
above that hump. We wish to treat this whole set of mole-
cules with one formalism; nature certainly does. The sim-
plest way to do this is to draw a correlation diagram, in
which we can follow energy levels with a given set of quan-
tum numbers from the linear limit to the bent limit or vice
versa. This is done in Fig. 1. The upper part of the diagram
shows model calculations for a triatomic two-dimensional
rigid bender, meaning that the stretching vibrations are
ignored and the end-over-end rotation is omitted by taking
J = Ka. A parabolic potential well is taken for the linear
limit on the left side, with the fundamental bending
quantum m0 as the unit of energy. A Gaussian hump is
added, which becomes progressively larger across the
diagram. The term values for the linear case are thus
E/(hcm0) � (vl + 1), whereas those for the right hand limit
shown are E=ðhcm0Þ � ðvb þ 1=2Þ þ AK2

a=ðhcm0Þ [4].
The most important reason for showing this figure

(yet again) is that it is not intuitively easy to follow
the transition of a vibrational degree of freedom over
into a rotational degree of freedom. While the linear
molecule has a degenerate bending mode, that is with
two vibrational degrees of freedom (one in the plane,
one perpendicular to it; they can also be defined in polar
coordinates), the motion of both determined by the
potential function, the bent molecule is described as hav-
ing a non-degenerate, one-dimensional bending motion.
The depicted curve is the one-dimensional or radial
potential function for that bending motion, and the other
dimension, out of the plane, is considered to be a rota-
tional degree of freedom, with the motion determined
by the inertial properties of the molecule. Our classifica-
tion of these degrees of freedom is based on the Born-
Oppenheimer-type separation of vibration and rotation,
which works well at both limits of the range but does

not work in the transitional region. The potential curves
shown are in each case a radial cut through the two-di-
mensional cylindrically symmetrical potential for the two
degrees of freedom under consideration, regardless of
their classification.
By following a few of the lower excited levels across the
diagram, one can get a feel for the transition. The first
excited state of the linear molecule, on the left in Fig. 1
at E � 2hcm0, has the vibrational quantum number vl = 1
and the (vibrational) angular momentum quantum number
‘ = 1. When we follow this state across the diagram, this
level retains the value of its angular momentum quantum
number, though we are familiar with calling it Ka for the
bent case, which quantizes the projection of the total (rota-
tional) angular momentum along the axis of least moment
of inertia. This, then, is a conserved quantity and a good
quantum number, and we may use Ka and ‘ interchange-
ably for this discussion. This level is, however, in the vibra-
tional state vb = 0 for the bent limit: v is not a good
quantum number except in the two limiting cases.

If we take the level of the linear molecule with vl = 2 and
‘ = 0, and follow it across the diagram, we see that it
retains the value of ‘ = Ka = 0, but it reveals itself in the
bent limit as the lowest rotational level of the vb = 1 or first
excited vibrational state of the bent molecule. This shows
us the expression relating vl and vb:

vl ¼ 2vb þ jKaj or vb ¼ ðvl � j‘jÞ=2: ð1Þ
The physical basis for this relation is that if the two-dimen-
sional vibrational wave equation for the linear molecule is
solved in cylindrical coordinates, then the eigenvalues of
the radial wave equation have the quantum number n = vb.

The quasi-linear parameter shown in the lower part of
Fig. 1 was devised in order to classify molecules according
to an empirical measure of how far away they are from one
limiting case or the other. The most practical measure that
was found, that combines the effects of the masses of the
atoms, the force constants of the potential well and the
height of the barrier, is the ratio c of the intervals between
the ground state and the two levels followed in the above
discussion,

c ¼ DEð‘ ¼ 1Þ
DEð‘ ¼ 0Þ ¼

Eðvl ¼ ‘ ¼ 1Þ � Eð0Þ
Eðvl ¼ 2; ‘ ¼ 0Þ � Eð0Þ ð2Þ

or

c ¼ DEðKa ¼ 1Þ
DEðKa ¼ 0Þ ¼

Eðvb ¼ 0;Ka ¼ 1Þ � Eð0Þ
Eðvb ¼ 1;Ka ¼ 0Þ � Eð0Þ ; ð3Þ

where the intervals DE(‘) or DE(Ka) are shown in Fig. 1.
This ratio is seen to have the values 1/2 for the linear

limit, and, in the bent limit, assuming a Born–Oppenheimer
separation, near 1/100. To make the scale nearly symmet-
ric, we use for the quasi-linearity parameter, somewhat
arbitrarily,

c0 ¼ 1� 4c: ð4Þ
The energy of the lowest excited state with Ka = 1 is given
roughly in the bent limit by the value of the A rotational
constant, since the bent molecule is a near-prolate asym-
metric rotor. As the molecule is made more linear, the A

constant becomes larger; this corresponds to the increase
in this quantum as one moves to the left in the diagram.



Fig. 1. Correlation between the bending-rotation energy levels of linear and bent triatomic molecules, drawn from model calculations [4]. The potential
functions are given by V ¼ hcm0ð12 q2 þ ae�bq2 Þ with ln(2ab) = 1.5 where a and b are dimensionless parameters that determine the shape of the potential and
q is a dimensionless coordinate which represents displacement from the linear configuration. vl is the vibrational quantum number of a linear molecule, and
the superscript (or small label) ‘ refers to the vibrational angular momentum. ‘ corresponds in the bent limiting case, where the vibrational quantum
number is vb, to Ka, the quantum number of the rotational angular momentum component about the axis of least moment of inertia. Molecules discussed
in this paper are located as indicated on the scale of the quasi-linearity parameter c0.
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But it does not go towards infinity at the linear configura-
tion, as it would if the Hamiltonian for an asymmetric ro-
tor were used: instead it goes over into the vibrational
energy quantum m0 in the linear limit. Away from either
limit, this quantum has both vibrational and rotational
character; there is no good separation of variables.

At the bottom of Fig. 1, a selection of chain-form mol-
ecules are entered on the c0 scale. Each of these molecules
exhibits one large-amplitude bending mode, connecting
otherwise nearly rigid linear groups of atoms. The remain-
ing vibrational modes are considerably higher in energy, so
that these species offer spectra in which the energy
manifold associated with the low-lying bending mode, cor-
responding closely to a simple curvilinear valence bending
coordinate, can be studied without major complications
due to interactions with other vibrations. The large-ampli-
tude mode of each of these molecules has been shown to
have a potential function and an energy level distribution
corresponding to the indicated position of the molecule
on the c0 scale. The existing literature on their spectra, sup-
plemented by new calculations and new measurements for
one of them (NCNCS), are used in this work to illustrate
the insights on this class of molecules granted by the new
perspective based on the concept of quantum monodromy.
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We will use primarily the conventional notation for bent
molecules because the quantum mechanical Hamiltonians
that have proved capable of reproducing the energy levels
of such systems across the entire range are those that use
the lower symmetry of the bent case.

3. The General Semi-Rigid-Bender (GSRB) Hamiltonian

The Semi-Rigid Bender (SRB) Hamiltonian of Bunker
and Landsberg [16] is one of the variations derived from
the original HBJ Hamiltonian [5]. Appropriate for the
rotation–vibration of a molecule possessing a single
large-amplitude vibration, the complete rigid bender mod-
el is a four-dimensional Hamiltonian with one vibrational
degree of freedom describing the bending of an otherwise
rigid molecular framework, and three rotational degrees
of freedom. The SRB model extends the rigid bender
model by allowing for relaxation of the molecular frame-
work (stretching) as it undergoes large-amplitude motion.
The SRB can be viewed as either an extension of the rigid
bender model or as an approximation to the nonrigid
bender of Hoy and Bunker [17]. In its derivation a curvi-
linear bending coordinate was introduced representing the
large-amplitude bending vibration, and two rectilinear
stretching coordinates. This Hamiltonian could be used
for any triatomic molecule. The initial work incorporating
relaxation due to the stretching modes included only one
rotational degree of freedom [16]. To account for molec-
ular end-over-end rotation, Bunker and Stone [18] extend-
ed the previous theoretical work. Although rigorous and
detailed non-rigid models for a triatomic molecule with
a large-amplitude bend have been developed, such as
the model of Hoy and Bunker [17], the Morse Oscillator
Rigid Bender Internal Dynamics (MORBID) Hamiltonian
[19] and the variational calculations that have been very
successful with H2O [20], it is feasible but not yet practical
to use them for more than four atoms. The SRB concept,
however, can be extended to model the dynamics of any
chain molecule with a particularly low-lying bending
mode, and to reproduce most of the features of the spec-
tra of such molecules, even if experimental accuracy can-
not quite be achieved. The list of molecules to be
discussed, specified in the lower part of Fig. 1, shows that
for this collection of data we need a model that can han-
dle a quasi-linear molecule with 4–6 atoms. We have
therefore remained with the level of approximation of
SRB calculations. As will be seen, the parameters that
can be derived are physically informative and have predic-
tive value.

The SRB is described in Refs. [16,18,21]. The large-am-
plitude coordinate, q, is the supplement of the valence
angle. The reference configuration employed for the Ham-
iltonian depends on this angle. Therefore, at the core of the
SRB treatment is a q-dependent four-dimensional extended
moment of inertia matrix. This matrix, its inverse, and var-
ious derivatives (potentially up to the third derivative) with
respect to q, are needed in the calculations. In much SRB
work these quantities are recalculated for each different
molecular geometry and thus for each different modeling
of the large-amplitude bending motion, sometimes requir-
ing a prodigious amount of algebra and code. However,
it is possible to reformulate these quantities, algebraically,
in terms of the Cartesian coordinates of the nuclei and
the derivatives of these coordinates with respect to q [22].
This reformulation, the General Semi-Rigid Bender
(GSRB) Hamiltonian, does not depend on the number of
atoms in the molecule, can be used for planar or non-pla-
nar molecules, and can also be applied to large-amplitude
motions other than bending vibrations, for example tor-
sional motions. To date the GSRB program has been used
to study the large-amplitude bending motion of chain mol-
ecules of various lengths; HSiF [23], HNCO [24], HNCS
[25], ClCNO and BrCNO [26], OCCCS, NCNCS,
NCNCO, and NCNNN [22], NCCNO [27], HCCNCO
[28], and HC5N [29]; the inversion motion in H2S2

[30,31]; the large-amplitude bending motion of the HF
moiety in H2CO–HF [32]; and the ‘‘pinwheel’’ motion in
SiC2 [21].

In order to use the GSRB program for a particular
molecular system two subroutines must be supplied: one
to specify the Cartesian coordinates of the nuclei and their
derivatives for each value of the large-amplitude coordi-
nate, and one to provide the potential energy function
for the large-amplitude motion. The moment of inertia
matrix is built from molecular internuclear distances and
bond angles whose values and variation with q are specified
by input parameters. For the molecules of concern here
these geometric quantities were defined as power series in
q or (q � qe), where qe is the equilibrium value of q, either
full, even, or odd series, as appropriate.

In the present work, three types of potential function
were used:

For the molecules OCCCS, NCCNO and HCNO the
potential is written as a power series of even terms in q,

V ðqÞ ¼ 1

2
faaq

2 þ 1

24
faaaaq

4: ð5Þ

The constant faa may be either positive or negative, in the
latter case defining a hump. The quartic force constant
faaaa is small in a molecule close to the linear limit, but
when there is a negative quadratic force constant, the quar-
tic constant has been found to define the outer wall of the
potential function. This potential has given the best fits for
molecules with no hump or only a small hump at the linear
configuration.

For the molecules OCCCO, BrCNO, ClCNO, NCNCS,
HCCNCO and NCNCO a modified quartic potential well
with a Lorentzian hump proposed by Barrow, Dixon and
Duxbury [33] was used,

V ðqÞ ¼ Hð1þ cq2Þfaaðq2 � q2
eÞ

2

faaq4
e þ ½8Hð1þ cq2Þ � faaq2

e �q2
; ð6Þ

where H is the height of the potential hump, qe the non-
zero equilibrium value of q, faa in this case is the quadratic



Fig. 2. Champagne bottle potential function V(r) with r2 = x2 + y2. The
origin of the coordinate system is at the critical point on top of the
potential hump. The space below the critical point has the surface
topology S2 · S1 and above S3. Therefore no set of global action-angles
variables can exist.
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force constant at qe, and the parameter c adjusts the anhar-
monicity around the minimum of the potential well.

For S(CN)2, because it is so close to the bent limit, the
GSRB calculations were made by fitting eight adjustable
anchor points of a cubic spline function about qe; the
barrier height could not be obtained from the pure rota-
tional data available. Since the equilibrium internuclear
distances were held fixed in the fitting, the potential func-
tion is only very approximately determined. A full fitting
would have fewer potential parameters and would fit the
equilibrium internuclear distances; the geometry and
potential are strongly correlated due to the currently lim-
ited data.

SRB models, including the present version of the
GSRB, do not fully account for higher order effects such
as ‘-type doubling in linear molecules or centrifugal dis-
tortion, since these are determined to a large extent by
the force field of the stretching modes. This strongly limits
the range of J values for which the SRB can reasonably
be used when fitting directly to transition frequencies.
Various approaches to mitigating this deficiency have
been used. One approach is to simply use the calculated
low-J rotational energy levels to determine effective rota-
tional constants for individual Ka sublevels of vibrational
states and use these to extrapolate to higher J values.
Another approach has been to remove the effective cen-
trifugal distortion from the experimental data (rather like
‘de-perturbing’ a spectrum), before fitting the SRB model.
This can be done by obtaining B-values from the experi-
mental data and fitting to these with an SRB [34]. Anoth-
er approach has been to add ad hoc ‘-type doubling [22]
or centrifugal distortion terms to the SRB Hamiltonian
[35]. In the present work we have combined the addition
of an ad hoc ‘-type doubling with the determination of
low-J based rotational constants to provide useful infor-
mation up to vb = J = 10.

For determining the structural and/or potential func-
tion parameters of a molecule from a spectrum, the
parameters are determined by non-linear least squares fit-
ting to experimental data. The number of parameters that
can be determined varies with the nature and amount of
data available. The most important parameters, which
can almost always be determined except in a few extreme
limiting cases, are the two dominant potential parameters,
which determine the height of the barrier and the outer
potential wall, the internuclear distances of one or both
of the bonds adjacent to the pivot atom, and the
relaxation (semi-rigid) parameters of one or more of
those bonds. In addition the relaxation with bending
(semi-rigidity) of some of the other internuclear distances
and bond angles can often be determined, along with
equilibrium values of some of these internuclear distances
and bond angles. Because of the strong coupling of rota-
tion and bending in quasi-linear molecules, it is possible
to determine the potential function very reliably from
pure rotational data alone if the molecule is well away
from either limit.
4. Monodromy calculation for the champagne bottle

potential

This section represents an attempt to make the mathe-
matics of monodromy accessible to a wider audience of
spectroscopists, to augment previous treatments [11,13,
36,37] and to indicate its importance in understanding the
spectra of quasi-linear molecules. We first briefly review
the mathematical description of the situation (see also
Refs. [38–40] for more advanced details).

We endeavor to show monodromy in the champagne
bottle potential by examining the trace of motions in con-
figuration space, that is, in the two-dimensional space of
the position variables x, y. Consider the classical motion
of a particle of unit mass in the xy-plane under the influ-
ence of the potential, V(r),

V ðrÞ ¼ r4 � r2; ð7Þ
where r2 = x2 + y2 as usual. This potential is shown in
Fig. 2. It has a smooth w shape in cross-section and is rota-
tionally symmetric about the origin, which is at the top of
the quadratic hump. Somewhat fancifully, this potential is
called the champagne bottle due to the hump in the bot-
tom. Continuing the oenological analogy we will, on occa-
sion, refer to the hump as a punt which represents the
indentation in the base of a wine bottle. More details
may be found in Refs. [11,39].

Let px and py denote the linear momenta of the particle
in the x and y directions. Then, as is customary in classical
mechanics, we may write the equations of motion of the
particle in first order form as
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_x ¼ px;

_y ¼ py ; ð8Þ
_px ¼� 2x½2ðx2 þ y2Þ � 1�;
_py ¼� 2y½2ðx2 þ y2Þ � 1�: ð9Þ

These differential equations possess two first integrals: the
angular momentum j and the energy h. They are

j ¼ xpy � ypx; ð10Þ

h ¼ 1

2
ðp2

x þ p2
yÞ þ ðx2 þ y2Þ2 � x2 � y2: ð11Þ

This follows from the fact that the forces are derived from
a potential that is rotationally invariant. Consequently, in
phase space (the four- dimensional space of position and
momentum variables x, y, px, py) the integral curves of
the differential equations of motion (i.e. the trajectories)
lie on the intersection of the two three-dimensional surfaces
in phase space defined by j = constant and h = constant.
When convenient we will also use polar coordinates (r, h)
in configuration space and the related natural phase space
coordinates (r, h, pr, ph). Now, as can be shown, the typical
intersection of these two surfaces is a two-dimensional sur-
face with the topological type of a torus (a surface without
boundary) and we are interested in how all the tori fit
together. Each pair of values of j and h defines a separate
torus such as that shown in Fig. 3. The analogy to keep
in mind now is a family of line segments over a circle: a
family of (short) vertical segments over a horizontal circle
forms a cylinder. However, if the family of segments has
a half-twist (from vertical-up around to vertical-down),
they form a Möbius band instead. This is what we want
to determine: do the integral curves of the differential equa-
tions of motion form a set of tori with a twist, or not? In
the case of the champagne bottle system, it is difficult to
visualize as we have a two-parameter family of tori in
four-dimensional phase space. It turns out that a gross
topological measure of this fundamental property may be
found simply by looking at how the tori fit together when
their energy and angular momentum are related by
j2 + h2 = a2, a a constant. This of course defines a circle
of radius a about the origin, the point where j = h = 0 in
the space spanned by j and h.
Fig. 3. Each pair of values of j (angular momentum) and h (energy)
defines a separate torus in phase space (x, y, px, py). Each point on the
torus surface is determined by two angle coordinates, /1 and /2. c1 and c2

represent two independent loops on a torus.
Imagine picking two independent loops on a torus
(more precisely, a basis for the first homology) as illustrat-
ed in Fig. 3, and moving them from torus to torus (that is,
from trajectory to trajectory, each characterized by its val-
ues of j and h), in a continuous fashion, as you traverse the
circle j2 + h2 = a2.

It is a topological fact that looping around the energy-
angular momentum circle j2 + h2 = a2 in increments need
not have c1 and c2 come back to themselves, but they will
come back to some integral linear combinations of them-
selves: this transformation, or product of a series of trans-
formations, is represented by a 2 · 2 matrix M

M ¼
a b

c d

� �
; ð12Þ

where a, b, c, d are all integers and the determinant
ad � bc = ±1. M is the monodromy matrix and measures
the twist in how all the tori fit together. Since the matrix
M depends on the choice of the basis {c1, c2}, we are actu-
ally only interested in M up to similarity, i.e. M 0 = PMP�1

for P 2 GLð2;ZÞ, so that M 0 is a matrix with integer entries
as well. However, it follows that if M is not the identity ma-
trix, then the bundle of all the tori is twisted, just like the
Möbius band.

The following section will show that the monodromy
matrix M for the champagne bottle problem may be writ-
ten as

M ¼
1 0

1 1

� �
; ð13Þ

and hence that the bundle of all the tori is globally twisted.
As we discuss in Sections 4.2 and 4.3, this has dramatic
implications for the ordering of rovibrational energy levels
in linear chain molecules possessing a potential energy sur-
face similar to that in Fig. 2.

4.1. Explicit calculation of the monodromy matrix

Each torus corresponding to given values of j and h sit-
ting in four-dimensional phase space projects to an annulus
in the configuration space centered at the origin under the
projection map (x, y, px, py) fi (x, y). The map from the
torus to the annulus is a two-to-one map for points away
from the boundary of the annulus, and this corresponds
to whether or not the radial momentum pr is positive or
negative.

We now consider the effective potential and how it
determines the radii of the inner and outer boundaries of
the annulus in our champagne bottle problem. Suppose
we are given a Hamiltonian of a particle in a rotationally
invariant potential of the form

hðq; pÞ ¼ 1
2
jpj2 þ V ðjqjÞ ð14Þ

and let r = jqj. Here q; p 2 Rn, where we typically think of
n = 2 or 3. Since the potential is rotationally invariant, the
angular momentum J is conserved. Let j = jJj, and write



Fig. 4. For j > 0 and h < 0 (but close to 0) the projection under the map p:
(x,y,px,py) fi (x,y) takes a phase space torus (Fig. 3) to an annulus in
configuration space with inner and outer boundaries. a+ represents a cycle
over which we integrate ph dh, b+ represents a cycle over which we integrate
pr dr. X represents the flow of the Hamiltonian vector field (i.e. a trajectory)
for an oscillating particle in the potential trough between the outer (concave)
and inner (convex) potential walls. Solid curves represent pr > 0, while
the dashed curves corresponds to pr < 0. In the case of h < 0 we
see that limj#0þX ¼ bþ, indicating that the integral curve of X looks

+
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the Hamiltonian equations of motion in polar coordinates.
The equation for the radial momentum pr is

_pr ¼ �
oh
or
; ð15Þ

and because of the conserved angular momentum, we may
substitute out ph etc. to get

_pr ¼ �
dV
dr
þ j2

r3
: ð16Þ

The important point here is that this equation may be con-
sidered as a Hamiltonian equation of motion for the one
degree of freedom Hamiltonian

hjðr; prÞ ¼ 1
2
p2

r þ V jðrÞ; ð17Þ

where V jðrÞ ¼ V ðrÞ þ j2

2r2. Vj(r) is called the effective or
amended potential, and it is best to think of it as a family
of problems depending on the parameter j. From the sym-
metry/reduction viewpoint, we would say that the reduc-
tion of the full problem by the rotation group has yielded
a reduced problem, that is still Hamiltonian, and the re-
duced Hamiltonian is hj. This is a special case of a general
theory of reduction of Hamiltonian systems with symme-
try. Perhaps a more physical viewpoint is to think of an
observer sitting at the origin in a frame corotating with
the particle and observing only the radial part of the mo-
tion. The observer then sees the radial motion as described
by the one degree of freedom Hamiltonian with the amend-
ed potential. Roughly speaking, the potential has to be
amended to account for the non-zero angular momentum
acting as a barrier so that the particle cannot reach the
origin.

To make things perhaps more concrete, let’s run
through the explicit calculation for the champagne bottle:
in polar coordinates the Hamiltonian is

hðr; h; pr; phÞ ¼
1

2
p2

r þ
1

r2
p2

h

� �
þ r4 � r2 ð18Þ

and so the Hamiltonian equations of motion are

_r ¼ pr ð19Þ

_h ¼ 1

r2
ph ð20Þ

_pr ¼ � 4r3 þ 2r þ p2
h

r3
ð21Þ

_ph ¼ 0 ð22Þ

Now the last differential equation says that ph = constant,
which we will call j (it is of course the angular momentum).
Substituting this constant value into the differential equa-
tion for pr, we find

_pr ¼ �4r3 þ 2r þ j2

r3
¼ � dV jðrÞ

dr
ð23Þ

with

V jðrÞ ¼ r4 � r2 þ j2

2
ð24Þ
2r
as you would expect from the theory. For a given value of
hj and j, one can find the minimum and maximum values of
r (here we are thinking of finding the boundary radii of the
annulus) by setting pr = 0 into the reduced Hamiltonian

hjðr; prÞ ¼
1

2
p2

r þ r4 � r2 þ j2

2r2
: ð25Þ

This yields a sixth order polynomial for r, which is cubic in
s = r2:

2s3 � 2s2 � 2hjsþ j2 ¼ 0: ð26Þ
With a (very) little calculus you can show that this polyno-
mial has three real roots for j „ 0, and precisely two of them
are positive. If j = 0, then the conclusion still holds if h < 0,
except that the third root is now equal to zero.

The inner and outer boundaries represent the minimum
and maximum values of the radial coordinate r in the
amended or effective potential Vj(r) = r4 � r2 + j2/(2r2).
Thus even for h > 0, the projection for j „ 0 is still such
an annulus. These boundaries for j „ 0 are only bounds
to the value of r and should not be confused with cross-sec-
tions of the champagne bottle potential.

Let us now consider a trace on the torus and to describe
it in terms of loops, such as c1 and c2 in Fig. 3. Now a loop
is a type of a cycle and in the projection of a torus shown in
Fig. 4 we let a±, b± be a basis for cycles on the torus in
phase space. We choose b± so that they represent pure
radial motion, and a± so that they represent pure angular
motion. Plus or minus signs are assigned depending on
whether or not the angular momentum is positive (j > 0)
or negative (j < 0). A pair consisting of one a cycle and
one b cycle is a basis for the fundamental group of the
torus.

A common way of picking the loops and moving them
continuously, as described in the previous subsection, is
to compute local action-angle variables (I1, I2, /1, /2)
like b .
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and letting c1 be the oriented loop that corresponds to
/2 = constant and similarly for c2. /1 can then be used as
a parameter on the loop c1 with the orientation of the loop
given by the direction of increasing /1; similarly for c2 and
/2. In the case at hand we make the concrete choice of
actions by letting I�1 ¼ j, which corresponds to the integral
of ph dh over the loops a+ or a�, and I�2 be the integral of pr

dr over the loops b+ or b�. More precisely, the action
I�1 ¼ j is everywhere, and the actions I�2 may be analytically
continued. The actions I�2 are locally real-analytic func-
tions, and so there is no ambiguity in analytically contin-
uing them in any simply-connected domain. Furthermore,
it is crucial to keep in mind that these are local construc-
tions which are not valid when the angular momentum
j = 0.

We let X denote a loop in an integral curve of the equa-
tions of motion, in other words a single trajectory, and con-
sider its properties in various regions of the energy–
momentum space. We first consider the case of negative
energy (i.e. below the top of the punt displayed in Fig. 2)
but still close to zero, say h = �e. Imagine a motion of
the particle with slightly positive angular momentum
0 < j� 1. If the particle starts at the inner boundary of
the annulus, it will move with increasing r until it hits the
outer boundary, and then return. All the while, it will be
moving in such a way that the angle h is slowly increasing.
To summarize, the particle moves so that it is oscillating
back and forth in the potential trough while the angle slow-
ly increases. We draw one cycle of this motion in Fig. 4.

Note that when the energy is negative, h < 0, then taking
the limit as the angular momentum j tends to zero from
above, lim j fl 0+, means that the trajectory or integral
curve X looks more and more like the loop b+.

Reversing the sign of the angular momentum so that
j < 0, as shown in Fig. 5, the situation is almost identical,
and taking the limit as the angular momentum j tends to
zero from below, lim j › 0�, the trajectory or integral curve
X looks more and more like the loop b�. Combining this
negative energy case with the previous one we see that b+

and b� meet at the limit j = 0, that is,

b� ¼ bþ for negative energy: ð27Þ
Fig. 5. As the previous figure (Fig. 4) for h < 0, but with j < 0. a� and b�

are the labels of the cycles for j < 0. For h < 0 we see that limj"0�X ¼ b�,
indicating that the integral curve of X looks like b�.
We now consider positive energy, for which the picture is
slightly different. This is shown in Fig. 6. If the angular
momentum were zero, the particle would shoot straight
across the punt, and have an angular change of p as it
moved across the potential well. However, we need to draw
this when the angular momentum is positive, but still close
to zero. Now we see that in the limit j fl 0+, bþ ¼ X � 1

2
aþ.

This is most easily seen by dilating a+ out to the outer
boundary of the annulus, which we may do since it repre-
sents a homology class. Here we should recall the following
definition: two curves are homologous if their difference
forms the boundary of a surface. In our case, the surface
is an annulus. Hence, any circle of constant radius in the
annulus is homologous to any other having the same orien-
tation. Since it is clear that the curve a+ can be deformed to
the outer boundary by continuous dilation, the two curves
a+ and the outer boundary are homotopic. Since the two
curves are homotopic, they represent the same homotopy
class, and hence the same homology class.

For negative angular momentum we have the limit
j › 0�, b� ¼ X þ 1

2
a�, as can be seen in Fig. 7. Combining

this positive energy case with the one above, we see that
bþ þ 1

2
aþ meets b� � 1

2
a�, so that

b� ¼ bþ þ 1
2
aþ þ 1

2
a� for positive energy: ð28Þ

Some calculation shows that the energy–momentum map
from the phase space R4 to R2 given by (x,y,px,py) fi (j,h)
can take values in the j, h plane given by

ðj ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r6 � 2r4
p

; h P 3r4 � 2r2Þ; ð29Þ
where r P 2�1/2 is the radial coordinate in {x,y} space.

The boundary of this image is shown by the solid curve
in Fig. 8, with only the region above the curve being phys-
ically accessible. Region 1 is below the monodromy point
while region 2 is above. Every point of regions 1 and 2 that
is not on the boundary of the image and not at the origin is
a regular value, and the inverse image of every regular
point in the image is a torus in four-dimensional phase
space.
Fig. 6. As Fig. 4 with j > 0 but now with h > 0 (but close to 0). Here the
oscillating particle has energy above the hump and only encounters the
outer (concave) potential wall. For positive energy h > 0 and positive
j > 0; limj#0þX ¼ bþ þ 1

2
aþ if a+ is dilated to the outer boundary of the

annulus, which indicates that the integral curve of X looks like b+ with
bþ ¼ X � 1

2
aþ.



Fig. 7. As the previous figure (Fig. 6) for h > 0 but now with j < 0. For
positive energy h > 0 and negative j < 0; limj"0�X ¼ b� � 1

2
a�, which

indicates that the integral curve of X looks like b� with b� ¼ X þ 1
2
a� if a�

is dilated to the outer boundary of the annulus.

Fig. 8. Image of the energy–momentum map for the champagne bottle
potential. The actions I�1 and I�2 are defined as I�1 ¼

R
a� phdh and as

I�2 ¼
R

b� prdr where the � sign corresponds to j < 0 and the + sign to j > 0.
Region 1 is below the monodromy point while region 2 is above. c denotes
a loop enclosing the critical point. The shaded regions are where the
continuations of the action variables may be compared. The transition
maps for the actions in region 1 and 2 differ and are given in Eqs. (30) and
(31).
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The inverse image of each boundary point is a circle.
Each one of these points when j „ 0 represents a circular
orbit in the phase space, which occurs when the angular
momentum is extremized for a given energy. The lowest
point in the image also has as inverse image a circle, but
represents the points where the particle is at rest in the bot-
tom of the potential well. The inverse image of the origin is
a pinched torus, which may be viewed as the torus in Fig. 3,
with the loop c2 collapsed to a point. This pinched torus
represents all the trajectories whose limiting position is
the origin as time t fi ±1. The pinch point is of course
where the particle sits in unstable equilibrium at the top
of the punt.

Since the pair of cycles {a�,b�} are only well-defined
when the angular momentum is negative, and the cycles
{a+,b+} are only well defined when the angular momentum
is positive, we can use the results of the above limiting
argument to see how they are related in the regions labeled
1 and 2 of Fig. 8. This enables us to say what happens to
the cycles when we traverse the loop c in j,h space once
in the positive (counterclockwise) sense. In both regions 1
and 2, a+ = a�. That a+ = a� globally is due to the fact
that a is an integral curve of the action of the rotation
group. This is a free action on the set of regular values
of the energy–momentum map. In Eqs. (27) and (28)
above we found the relationship between b� and b+ in
both regions. Combining this information we find that in
region 1

aþ

bþ

� �
¼

1 0

0 1

� �
a�

b�

� �
ð30Þ

while in region 2

a�

b�

� �
¼

1 0

1 1

� �
aþ

bþ

� �
: ð31Þ

The monodromy map is just the product of the two transi-
tion maps from region 1 to 2 and back again. From this we
conclude that what happens to the tori as we move around
the loop c is

M ¼
1 0

1 1

� �
: ð32Þ

As stated above, this means that the bundle of all tori is
twisted. We shall see the consequences of this in Sections
4.2 and 4.3, below. The preceding calculation is technical-
ly simple, but largely hides a crucial geometric fact. That
is, when the torus has positive energy and zero angular
momentum, its projection into the configuration space is
not an annulus, but a disc. The map is no longer two-
to-one, because there is an entire circle of points on the
torus that project to the origin of configuration space.
Hence, the limit of the cycles b+ and b� is not well-de-
fined. However, the limit of the Hamiltonian dynamics
is well-defined, and that is why we make the calculation
in the way that we do.

4.2. Vector interpretation of determining monodromy

There is another interpretation of monodromy in classi-
cal mechanics that may help the reader visualize the quan-
tum case. Recall that the action variables are constant on
the tori, and so may be viewed as functions on the image
of the energy–momentum map. Their independence means
further that the actions define local coordinates in the ener-
gy–momentum space. From the coordinate lines I = con-
stant we may construct a frame of vectors that we may
move in a parallel fashion. Here parallel is defined as look-

ing parallel in the action coordinates. Moving the frame
around the set of regular values defines a notion of parallel
transport that is locally path independent, but need not be
globally so. This notion of parallel transport is globally
well-defined even though the action variables are only
locally defined, because of the restrictions on the transition
maps between local sets of action variables. If there is no
global parallelism, we say that the torus bundle has



Fig. 9. Partial image of the quantum lattice energy–momentum map for
the molecule NCNCS which has a champagne bottle potential for the
bending mode m7. Bent vibrational notation is given on the right hand side.
Blue dots represent term values for vb for which the Ka = 0 points lie
below the monodromy point. The red dots are the series of term values just
above the monodromy point. The classical monodromy point is indicated
by a black star which is located near the term value for Ka = 0, vb = 3. The
two column vectors (D Ka, Dvb) = (0, 1) and (DKa, D vb) = (1, 0), indicated
at unit cell a, are transported in parallel fashion counterclockwise (red
circle) around the critical point. By following the path c from unit cell a to
unit cell f around the monodromy point we clearly see that vector (0,1)
returns to itself while vector (1,0) becomes vector (1,1). The transforma-
tion matrix for the vectors is the monodromy matrix given in Eq. (32).
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monodromy. More details of this point of view may be
found in [11]. The quantum analogue of this is to view
the lattice of spectral points as having a defect. We have
not stressed this interpretation in this paper as it is far
harder to see the moving frame in the dynamics of the par-
ticle motion.

4.3. Quantum Monodromy

The connection between classical and quantum mechan-
ics is given by the quantization rule that says that the wave
functions will have support on those tori for which the
actions are an integral multiple of 2p�h (for the sake of this
discussion we are ignoring the Maslov correction). This
quantization rule is independent of the choice of local
actions because the actions in overlapping regions may be
taken to be related to each other by a linear transformation
in GLð2;ZÞ. This quantization rule gives us a set of local
quantum numbers, which depend on the choice of actions.
In particular, we get a direct correspondence between the
non-existence of global action variables, and the non-exis-
tence of a global set of quantum numbers that describe the
system. It is in this sense that we refer to the lattice of quan-
tized action variables as possessing a defect. A full discus-
sion of the details of the quantum constructions may be
found in [45, 46].

Inspecting Fig. 1 we see that the molecules BrCNO,
ClCNO, NCNCS, HCCNCO and NCNCO each must
have vibrational states below the critical point in the poten-
tial function. If such a quasi-linear molecule experiences
sufficient thermal excitation, then the higher lying bending
states become more and more populated. In the classical
picture we could say the molecule can traverse the potential
hump and thus has an unstable linear configuration at the
critical point. In the classical realm such an unstable equi-
librium is called a focus-focus singularity [36,47,48]. Inte-
grable quantum systems with two degrees of freedom and
a focus-focus singularity, like our champagne bottle poten-
tial, will exhibit non-trivial quantum monodromy [47].

In the quantum realm the continuous energy–momen-
tum map given in Fig. 8 is replaced by the quantum lattice
of the system [13–15] as mentioned above. Fig. 9 displays a
part of the image of the quantum lattice energy–momen-
tum map for the molecule NCNCS (discussed later in Sec-
tion 5.6, below) which has a champagne bottle potential for
its large-amplitude bending mode m7. In this quantum lat-
tice, the interpretation given in Section 4.2 becomes conve-
nient to visualize. In this figure we move a unit cell a

spanned by the two column vectors (DKa, Dvb) = (0, 1)
and (DKa, Dvb) = (1, 0) around the critical point (which is
located near Ka = 0 for vb = 3 and is indicated in the center
of Fig. 9 as a black star). The parallel evolution of the two
vectors (see Section 4.2) on an anticlockwise circuit starting
at a and proceeding around the monodromy point to g
shows that the vector (0,1) returns to itself while the vector
(1,0) becomes (1,1). Thus, exactly as the pair of cycles {a,b}
are skewed by the monodromy matrix of Eq. (32) during
the counterclockwise motion around the loop c in the clas-
sical Fig. 8, the unit cell column vectors in the quantum
case of Fig. 9 are skewed by the identical monodromy
matrix during the equivalent counterclockwise loop c in
the quantum diagram. The clockwise transport is effected
by the inverse of this matrix. The take-home message is
that there is no global vibrational quantum number: below
the monodromy point vb is justified as such, i.e. it is a local
quantum number (blue dots in Fig. 9) while above the
monodromy point the linear notation with vl is more
appropriate. A more detailed discussion of the properties
of the energy–momentum map of NCNCS is offered in Sec-
tion 5.6.

Since only the energy and the angular momentum are
conserved physical quantities of the system, only Ka

remains a good quantum number. Due to the existence of
classical monodromy there exists in the quantum lattice
of the energy–momentum map no global regularity and
therefore, as mentioned above, neither vb nor vl are good
global quantum numbers. Thus quantum monodromy
can be interpreted as a lattice defect which causes a robust
dislocation of energy states [49] and constitutes an intrinsic
property of the molecular quantum system.

5. Quasi-linear molecules, their structures, two-dimensional

potential wells and energy–momentum maps

From a dynamical point of view all the chain-form mol-
ecules which will be discussed in this section have one com-
mon physical property, namely the existence of a low-lying
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bending vibration well separated from the rest of the other
normal modes, which are all above 400 cm�1. As men-
tioned before, these molecules with their equilibrium struc-
tures span the entire range from a truly linear molecule to a
truly bent molecule.

Quasi-linear molecules are found to have structural
parameters (internuclear distances and bond angles) that
do not allow us to assign to them a single Lewis structure
or any clear-cut carbon bond hybridization scheme. The
punt in the champagne bottle potential function (the barri-
er to linearity) of these molecules is the residual of a differ-
ence between two (or more) large energy contributions
arising from a balance between different electron correla-
tion effects [42]. For simplicity, we represent the molecular
structures in the following subsections using the notation
for the dominant bonding scheme among the relevant res-
onance structures. For details of the data and calculations
on which the plotted geometrical quantities are based, and
discussions of the structures in each case, the reader is
referred to the original publications on each molecule.

The importance of the rotational constant B associated
with end-over-end rotation in quasi-linear molecules was
recognized in the work of HBJ [5], and considerable effort
was expended in that and other work to quantify it. The
range of molecules considered was not broad enough at
that time to reveal the basic features of the evolution of this
constant with vb and Ka. It is indeed important, and is the
major novel focus of this work. The angular momentum
quantized with Ka can be separated, in first order, from
the end-over-end rotation in the linear limit, but in a real,
bent molecule it is one of three coupled rotational degrees
of freedom. The more bent a molecule becomes, the less the
end-over-end rotation can be separated from the rotation
about the a axis.

As a measure of the end-over-end rotation, we take an
effective rotational constant defined for each value of Ka

and vb; thus we will call it B(Ka,vb), obtained for linear
or nearly linear species as the first coefficient in a simple
polynomial fit in J(J + 1) to the corresponding series of
energy levels for successive J values. For species closer to
the bent limit, the levels which correlate with those just
specified for the linear case give us a value of
BðKa; vbÞ � �B ¼ ðBþ CÞ=2, again for each value of Ka

and vb. For this presentation we will average any resolvable
asymmetry splitting or ‘-type doublets, in particular for
Ka = 1 and 2. As noted above, in the bent limit the rota-
tional degrees of freedom cannot be cleanly separated,
and with increasing asymmetry Ka no longer has the prop-
erties of a good quantum number. However, in the range of
what we generally term a near-prolate rotor (j < �0.9), the
definition given here is still a useful indication of the distri-
bution of rotational energy. The coupling of the end-over-
end rotation with the large-amplitude bending-rotation
motion will be seen to be significant.

Although the potential function can be considered com-
plete if plotted just for positive q, we want to show a cut
through the entire two-dimensional coordinate space con-
sidered in the rigid bender Hamiltonian, and we thus plot
the curve for azimuth 0 and p as Epot(q,Azimuth). This cor-
responds to the energy/momentum plots mapped from the
spectrum, which are derived from the general classical case
in which positive and negative Ka can be distinguished, and
in particular allows the differentiability of the curves con-
necting the energy levels, in the patterns produced by the
mapping, to be easily seen.

The information is presented for each molecule in a
sequence which follows the perspective of the analysis of
rotationally resolved spectra. We first propose a model
for the structure, and then derive effective parameters from
the spectrum, such as a set of B(Ka,vb) values, and look for
trends. This is the assignment phase. Only after such trends
are understood can the quantitative analysis of the spec-
trum be iteratively extended and, with the appropriate
(effective) Hamiltonian, completed. For many of the mole-
cules discussed, the trends observed were very perplexing.
Earlier, we just went on to fit the spectrum as best we
could, without fully seeing what all the anomalies meant;
now we know we can make an energy–momentum plot
using B(Ka,vb) values to gain insight into the dynamics
directly. A full analysis using the GSRB allows us to deter-
mine the potential function and also the bending-rotation
levels, if not already measured, for all but very bent species.
The potential curve was the final stage of our analysis, pre-
viously. We now take this one step further with the bend-
ing-rotation energy/momentum plot, which grants us
immediate insight into the systematics of the dislocation
of energy levels and the resulting complexities of the
spectra.

The color scheme is the same for each plot and each
molecule: states with the same value of vb as the Ka = 0
state closest to the monodromy point are plotted in red;
states with a higher vb (all states if there is no monodromy
point) are plotted in pink; and states with a lower vb are
plotted in blue. States with a common vb are connected
by blue, red or pink lines; states with a common vl are con-
nected by green lines.

As in Fig. 1, we start with the linear limiting case. The
effects of monodromy emerge as we work our way across
the range of c0 from �1 to +1.

5.1. Tricarbon oxide sulfide, OCCCS

The experimental data for OCCCS were obtained from
microwave [51,52], millimeter wave [53–55], and infrared
measurements [56], high-resolution Fourier transform mea-
surements in the far-infrared [57], and Doppler-limited ter-
ahertz spectroscopy [58]. Panel (a) in Fig. 10 shows the
clearly linear equilibrium structure. The potential function
resulting from GSRB calculations based on the data is
shown in panel (c) together with the bending vibration
energy levels, in the traditional presentation form. The low-
est bending term value of 77.4 cm�1 guarantees that the m7

bending mode is well separated from all the other normal
vibrational modes. The m7 bending manifold can be



Fig. 10. (a) The structure of OCCCS (GSRB parameters [22]) in the principal axis system [50]; (b) end-over-end rotational contributions to the energy
plotted as DB versus Ka; (c) the radial bending potential function for m7 [22]; and (d) the two-dimensional bending-rotation term values for J = Ka plotted
versus Ka. Points plotted for vl 6 8 and Ka 6 8 are experimentally determined; higher levels are calculated with the GSRB.
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described successfully by the model of a very nearly har-
monic two-dimensional isotropic oscillator [22]. The poten-
tial function shown in Fig. 10 panel (c) is given by Eq. (5),
and the quadratic and quartic force constants are given in
Table 1. The molecular structure parameters derived via
Table 1
Potential parameters used in the calculations of the various potential function

Molecule faa/cm�1 rad2 faaaa/ cm�1rad4

OCCCS 3758.0a 11954.0
NCCNO 1493.9a 23007.4
HCNOb �602.4a 47373.6
OCCCO 915.7c

BrCNO 4083.3c

ClCNO 4755.4c

NCNCS 3578.6c

HCCNCO 5864.9c

NCNCO 6927.9c

S(CN)2 56434.2c

a Force constant defined at the linear configuration.
b The original quadratic force constant has been multiplied by 2 and the origin

the other entries in this table and Eq. (5).
c Force constant defined at the minimum qe of the champagne bottle potent
the isotopic substitution method [50] were used for starting
parameters and were fixed for the parameters that could
not be determined in the GSRB calculation [22]. The
rs/GSRB structure of OCCCS is that displayed in panel
(a) of Fig. 10. The conserved physical quantities are energy
s for the molecules to be discussed

H/cm�1 c/rad�2 qe/rad References

[22]
[27]

[34,41]
18.3 1.475 0.421 [42]

130.8 �0.044 0.479 [26]
166.9 �0.051 0.501 [26]
270.9 �0.048 0.681 [22,43]
537.2 �0.092 0.686 [28]

1014.8 �0.044 0.884 [22]
29000.0 1.417 [44]

al quartic constant by 24 in order to make these constants compatible with

ial.
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and angular momentum and they are presented in two
complementary diagrams, the form of which is chosen for
the whole set of molecules in order to identify any signature
of quantum monodromy. In panel (a) of Fig. 10 the axis of
the end-over-end rotation is indicated by b. The rotational
energy is represented by the effective rotational constant
B(Ka,vb), for convenience shown as DB = [B(Ka,vb) �
B(0,0)] versus Ka; that is, the change in the B(Ka,vb)
value from the ground state value due to the bending-rota-
tion motion is shown. In panel (d) of Fig. 10 the bending-
rotational term values E(Ka,vb)/hc of states with zero
end-over-end rotation but including rotation about the axis
of least moment of inertia, thus with J = Ka, are plotted
versus Ka. This is the total energy associated with the two
degrees of freedom required to describe the bending
dynamics.

The two energy–momentum plots resemble each other
for OCCCS very closely. It should be noted that each bend-
ing-rotation state is represented in these plots as a point in
a phase space. The connecting straight lines represent the
groupings defined by two possible assignment notations
for vibrational states: linear notation (green color) and
Fig. 11. (a) The structure of NCCNO (GSRB parameters [27]) in the principal
as DB versus Ka; (c) the radial bending potential function for m7; and (d) the tw
All points plotted represent experimental data.
bent notation (pink color). The identical form of these
two plots, like an idealized ladder diagram [60], show that
the OCCCS molecule can be considered a poster species
for the linear molecular model. Lines connecting states
of the same vibrational state, in the linear notation, are
smooth, indeed quite straight; lines drawn relevant for
the bent notation are all discontinuous at Ka ” ‘ = 0. All
of these geometrical or topological properties are charac-
teristic for a linear molecule, or a quantum harmonic
oscillator.

5.2. Cyanofulminate, NCCNO

The molecular structure of NCCNO was first deter-
mined by high-resolution Fourier transform microwave
spectroscopy [62] and used in the GSRB calculations [27]
which led to the potential function displayed in Fig. 11
panel (c). The low-lying central CCN bending mode of
NCCNO was characterized by rotational spectroscopy in
the millimeter wave and sub-millimeter wave range as well
as by high resolution ro-vibrational spectroscopy in the far
infrared range [27]. The term value of the first excited state
axis system; (b) end-over-end rotational contributions to the energy plotted
o-dimensional bending-rotation term values for J = Ka plotted versus Ka.



Fig. 12. (a) The structure of HCNO in the principal axis system (substitution [63] and SRB [34,41] parameters); (b) end-over-end rotational contributions
to the energy plotted as DB versus Ka; (c) the radial bending potential function for m5 [34]; and (d) the two-dimensional bending-rotation term values versus
Ka for J = Ka. All points plotted represent experimental data.
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of the bending mode was found to be 80.524 cm�1 so that it
is well separated from all other vibrational modes. The
GSRB analysis of the rotational and far infrared data
[27] provides us with an effective CCN bending potential
function given by Eq. (5) that has a minimum at the linear
configuration. From Table 1 it is seen that the quartic con-
tribution is substantial, but the quadratic term is clearly
positive. Thus no critical point can exist in the potential
surface. However, a curvature of the lines connecting the
DB values in panel (b) and term values in panel (d) of
Fig. 11 can be observed: the quartic term in the potential
function causes a slight curvature of the green (linear nota-
tion) and pink (bent notation) lines which is opposite in the
two plots.

5.3. Fulminic acid, HCNO

HCNO is the simplest of the nitrile oxide family of
molecules, and has been extensively studied because of
its quasi-linear properties [59,64–67]. In contrast to the
previous molecule, it has an effective bending potential
function, for the large-amplitude vibration, that is essen-
tially quartic with a small but negative quadratic contri-
bution [34,41]. The conventional resonance structures
are H–C„N¯–O§

M H–C¯@N@O§; deuterium substi-
tution supports the identification of the lower bending
mode as the predominantly HCN large-amplitude bend.
Eq. (5) represents the potential function with force con-
stants listed in Table 1. The height of the potential hump
in the bottom of the potential well as shown in Fig. 12 (c)
is 12 cm�1, well below the lowest ground state Ka ” ‘ = 0
energy level. The effective potential function derived from
the bending-rotation energy levels is not identical to the
equilibrium potential which was calculated ab initio in
1996 [68,34], since zero-point contributions of the small-
amplitude vibrational modes increase the barrier height.
Up until that time, the determination of an accurate ab ini-

tio structure of fulminic acid was a real challenge to quan-
tum mechanical methods, because depending on the
theoretical method and level of calculation, the calculated
barrier height varied from zero to several hundred reci-
procal centimeters. The situation was even worse for
calculating the term value of the fundamental excitation
of the large-amplitude HCN bending vibration [69].



Fig. 13. (a) The structure of OCCCO (ab initio parameters [42]) in the principal axis system; (b) end-over-end rotational contributions to the energy
plotted as DB versus Ka; (c) the radial bending potential function for m7 of OCCCO [42]; and (d) the two-dimensional bending-rotation term values
E(Ka,vb)/hc plotted versus Ka for J = Ka. All data plotted are experimentally determined and can be found in Ref. [61].
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The experimental term value was determined to be
224.10 cm�1.

The very modest hump in the potential surface due to
the negative quadratic term suffices to define a critical or
monodromy point. Therefore the curvature of the green
(linear notation) and pink (bent notation) curves con-
necting the points in both energy–momentum maps, espe-
cially the exaggerated kink at the ground state Ka = 0
point, mark the onset of quantum monodromy, even
though there are no states below the critical point of
the potential function. Although the semi-rigid bender
model [34,41] has greatly contributed to our understand-
ing of the rovibrational dynamics of the HCNO mole-
cule, it cannot reproduce the rotational and vibrational
energy levels within experimental accuracy. However,
entire networks of anharmonic resonance systems in the
spectra of HCNO were built up using the Ritz combina-
tion principle [65,70]. The physical reason for this situa-
tion is not only the HCN large-amplitude motion with
the onset of quantum monodromy, visible in the ener-
gy–momentum maps, but also the fact that the other
vibrational modes are not well separated from the
HCN bending mode. The CNO bending mode is located
at 537.18 cm�1 while the lowest stretching mode has a
term value of 1254 cm�1. Upon excitation of any of the
three stretching modes, the effective potential which can
be determined for the HCN bending mode changes sig-
nificantly [34].

5.4. Tricarbon suboxide, OCCCO

Among quasi-linear molecules tricarbon suboxide is his-
torically outstanding. Starting in 1935 extensive spectro-
scopic work, electron diffraction studies and theoretical
calculations tried to illuminate the conflicting experimental
results: is this molecule now linear or bent at the central
carbon atom as depicted in panel (a) of Fig. 13? For the
chemists and spectroscopists at that time it was difficult
to imagine that an either/or decision, linear or bent, was
simply not appropriate. The revealing history of this
enormous scientific effort and conceptual struggle to
understand the structure, dynamics, and bending potential
function for OCCCO is summarized in Ref. [6]. With the
advent of modern high-resolution sub-millimeter wave



Fig. 14. (a) The structure of BrCNO in the principal axis system is presented with GSRB parameters [26] based in part on ab initio values [71]; (b) end-
over-end rotational contributions to the energy plotted as DB versus Ka; (c) the radial bending potential function for m7 based on GSRB calculations [26];
and (d) the two-dimensional bending-rotation term values plotted versus Ka for J = Ka. All data plotted are experimentally determined. (For interpretation
of the references in colour in this figure legend, the reader is referred to the web version of this article.)
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[72] and infrared spectroscopy [61] the band system of the
fundamental of the large-amplitude vibration was finally
observed directly and studied in great detail. The extremely
low wave number of only 18.3 cm�1 provides a full separa-
tion of the CCC bend from all the other normal modes and
gives rise to a complex hot band system which extends over
70 cm�1 in the far infrared spectral region [61]. This dense
and complex structure is essentially repeated in every band
system in the mid infrared region.

In the linear-to-bent correlation diagram given in Fig. 1,
no pattern at all can be recognized in the energy manifold
for OCCCO. In panels (b) and (d) of Fig. 13 we see the pat-
terns for the end-over-end rotational energy and the bend-
ing-rotation energy as a function of the rotational angular
momentum quantum number Ka. These energy–momen-
tum maps show an accentuation of what we have observed
for HCNO. The ground vibrational state with Ka = 0 is just
a few cm�1 above the monodromy point in the potential
surface [42]. SRB fitting of OCCCO data was carried out
already in 1980 by Bunker [73] and extended by Jensen
and Johns [74,75].
5.5. Bromonitrileoxide, BrCNO, and Chloronitrileoxide,
ClCNO

Low-resolution infrared and photoelectron spectrosco-
py studies in combination with medium-level ab initio cal-
culations [78,79] had suggested that the molecules
BrCNO and ClCNO might possess highly anharmonic
BrCN and ClCN large-amplitude bending modes which
would be consistent with the molecular structures displayed
in of Figs. 14 (a) and 15 (a). Lichau et al. [26] examined this
possibility by reporting the high-resolution rotational spec-
tra for both molecules in the millimeter wave spectral
region. The analysis revealed a new category of quasi-line-
arity. The reduced rotational data for the two molecules
are plotted in Figs. 14 (b) and 15 (b). The two-dimensional
potential surfaces (see Eq. (6) and Table 1) were derived
from the pure rotational data with the help of the GSRB
Hamiltonian and are in very good agreement with the
high-level ab initio calculations of Koput [71,76]. This gave
us great confidence in predicting bending-rotation energy
levels for higher vibrational states, and for other molecules.



Fig. 15. (a) The structure of ClCNO in its principal axis system is shown with GSRB parameters [26] based in part on ab initio values [76]; (b) end-over-
end rotational contributions to the energy plotted as DB versus Ka; (c) the radial bending potential function for m7 [26] based on GSRB calculations; and
(d) the two-dimensional bending-rotation term values plotted versus Ka for J = Ka. All data plotted are experimentally determined. (For interpretation of
the references in colour in this figure legend, the reader is referred to the web version of this article.)
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BrCNO and ClCNO show nearly identical spectral proper-
ties which can be studied by inspecting Figs. 14 and 15. The
levels Ka = 0, 1, and 2 of the ground vibrational state for
both molecules (indicated in blue) are well below the
monodromy point while the levels Ka = 0, 1, 2,. . . for
vb = 1 (indicated in red) are above the barrier, and include
the Ka = 0 level closest to the top or monodromy point.
The lowest (blue) curve in panel (d) of each figure is clearly
differentiable, while the higher curves (red and pink) are
not. Thus, the mathematically predicted effects of quantum
monodromy are clearly demonstrated. If we inspect panel
(b) for both BrCNO and ClCNO we find the striking prop-
erty that the end-over-end rotational contributions
[B(Ka,vb) values] to the energy for both molecules have a
minimum at Ka = 0 for the vb = 1 vibrational state, not
the ground state. This was one of reasons why the rotation-
al spectra for these molecules were very hard to assign. An
analogous effect was observed earlier by Koput [80,81] in
the analysis of the microwave spectrum of CH3NCS, a
quasi-symmetric top molecule, which is further indicative
of the fact that we encounter here a robust property of
all these molecular quantum systems. These were the first
observed cases of a non-monotonic progression of B(Ka,vb)
with vibrational excitation.

5.6. Cyanogen isothiocyanate, NCNCS

At the present state of the investigation of the spectrum
of NCNCS only rotational data are available. It is symp-
tomatic that a correct assignment of the microwave data
was impossible until model calculations accounting for
the large-amplitude bending motion were invoked in the
work of King et al. [77] in 1985, which extended only to
the ground state and the first three excited states of the
large-amplitude CNC bending mode, the first excited state
of which lies at �80 cm�1. The currently available data set
now includes millimeter wave rotational transitions in the
ground state and five excited bending states [43]. The
molecular structure in the principal axis system given in
Fig. 16 (a) represents the predicted ab initio equilibrium
structure of NCNCS. NCNCS was later [22] revisited in
a GSRB treatment. We have extended those GSRB calcu-
lations up to vb = Ka = 12, and found that for the states
assigned so far they predict the values of E(Ka,vb)/hc within



Fig. 16. (a) The structure of NCNCS based on recent high-level ab initio calculations [43] is given in the principal axis system; (b) end-over-end rotational
contributions to the energy are plotted as DB versus Ka; (c) the two-dimensional radial bending potential function for m7 (bent numbering) was determined
by GSRB least squares fit to the available rotational data [77,22,43]; and (d) the two-dimensional bending-rotation term values plotted versus Ka for
J = Ka. Points for vb 6 5 are experimentally determined.

Fig. 17. Ka = 1 splitting observed for NCNCS in the ground vibrational
state vb = 0 and five higher excited bending state (squares) of the large-
amplitude mode m7. The abruptness of the transition of the asymmetry
splitting of the bent NCNCS molecule to the rotational ‘-type doubling of
linear NCNCS is manifest. The round dots are predicted values.
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1 cm�1, and the B(Ka,vb) values within a fraction of a
MHz, not resolvable in Fig. 16. The potential parameters
derived from the microwave data alone are given in Table
1 and define the curve shown in panel (c). Panel (b) shows
us the observed DB versus Ka. The blue and red curves dis-
play the values for NCNCS molecules in the four bending
states previously observed, including the ground state, for
which B(Ka,vb) progressively decreases. The pattern chang-
es abruptly with vb = 4, in a manner not previously expect-
ed, but precisely predicted. If we inspect the red curve for
vb = 3 we see that the Ka = 0 level is characterized by the
smallest effective rotational constant and therefore the larg-
est effective moment of inertia – and this is just at the total
energy corresponding to the monodromy point. As we are
now learning, this is a very robust property of quasi-linear
molecular systems. If we look at the Ka dependence of
bending-rotation energies E(Ka,vb)/hc [panel (d)] on Ka

for the states vb > 3, we observe a close similarity to the
energy–momentum plots for the linear molecule OCCCS



Fig. 18. (a) The structure of HCCNCO displayed in the principal axis system is based on the GSRB analysis [28]; (b) end-over-end rotational
contributions to the energy plotted as DB versus Ka; (c) the radial bending potential function for the CNC bending mode m9 (bent numbering) [82] is based
on the GSRB analysis [28]; and (d) the two-dimensional bending-rotation term values plotted versus Ka for J = Ka. Points for vb 6 3 are experimentally
determined.
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shown in Fig. 10, our linear poster-molecule. The curves
for vb < 3 in Fig. 16 (d), on the other hand, as will be seen
below, resemble those obtained for a clearly bent asymmet-
ric rotor molecule. The quantum monodromy plot in
Fig. 16 (d) has precisely the topology that was predicted
in the mathematical [11] and theoretical [13–15] work for
a system that exhibits quantum monodromy. The smooth
and differentiable blue curves associated with the bending
state vb = 0, 1, 2, evolve rapidly into a succession of red
(vb = 3) and pink curves (vb = 4, 5, 6, . . .) with pronounced
kinks at Ka = 0. The green curves representing the linear
notation with (vl = 8, 10, 12,. . .) become differentiable.
Furthermore, as we saw in the detailed view of Fig. 16
(d) given in Fig. 9, the vibrational and rotational unit vec-
tors undergo a skew transformation when carried around
the monodromy point, as predicted by the topological
theory.

5.6.1. Splitting of levels with Ka = 1

In 1942–1943, there was brief controversy between
Gerhard Herzberg and Harald Nielsen about the origin
of the J-dependent splitting of the Ka = 1 (vl = 1, ‘ = 1) lev-
els of CO2 and other linear molecules. Herzberg proposed
that it was an effective asymmetry splitting, thus due to
inertial properties of the molecule [83]. Nielsen saw it as
the result of Coriolis interactions between the bending
motion and the stretching motions in the molecule [84].
Nielsen’s formulation proved to reproduce the splittings,
known as ‘-type doubling, but a close correlation between
the two explanations was recognized. The dependence of
this splitting on bending excitation differs fundamentally
in the two limiting cases, however. Is there a gradual tran-
sition from one form to the other? Can we find a simple
closed expression which will at least roughly describe this
splitting across the entire range from linear to bent? These
were questions we asked earlier. The data for NCNCS
shows the answer. For Fig. 16 we averaged the two mea-
sured values of DB to give one value for Ka = 1. If we
now plot the energy interval represented by the difference
between the same two effective B(Ka = 1, vb) values, as in
Fig. 17 for NCNCS, we see a very simple curve. We learn
immediately from this plot, first, that there is no one simple



Fig. 19. (a) The structure of NCNCO given here refers to the GSRB parameters [22], which are based on the early microwave work [85,86]. The molecule
is displayed in the principal axis system; (b) end-over-end rotational contributions to the energy plotted as DB versus Ka; (c) the radial bending potential
function for m7 (bent numbering) [22]; and (d) the two-dimensional bending-rotation term values plotted versus Ka for J = Ka. Points for vb 6 3 are
experimentally determined.
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closed expression that will represent the splitting, and sec-
ond, there is a remarkably swift transition from the almost
negligible vb dependence typical for a bent molecule to the
strong linear dependence expected for a linear molecule.

In the bent limiting case, the splitting can be well
approximated by ðBvb

� Cvb
Þ=2, where B and C are

obtained for each vb from an asymmetric rotor fit to the
rotational transitions. The vibrational dependence on vb

is very small, since it is the difference between the (usually
similar, for this type of molecule) vibrational variations of
Bvb

and Cvb
. The term linear in vb is only about one percent

of the ground state splitting. For the bent case, the splitting
is thus an inertial effect, and the splitting is nearly constant
upon vibrational excitation. This is just what we see for
vb = 0, 1, and 2 of NCNCS. For states above the monodr-
omy point, the splitting is indeed dominated by Coriolis
interactions of the bending mode with the stretching modes
of the neighboring bonds. It is a vibrational effect; it is
dominated by a substantial term linear in (vb + 1), with a
modest constant term, a left-over from the phase space
below the monodromy point. For a linear molecule like
OCCCS, the constant term is entirely negligible. As we
see in Fig. 17, the transition from the bent to the linear
behavior is effected within a range of no more than three
vibrational states: The state closest to the critical point,
and the two adjacent states.

The equivalent plots for the other species presented here
look like excerpts or extrapolations of this plot, with the
critical point occurring at lower or higher vb, in direct rela-
tion to the location of the monodromy point. In terms of
molecular dynamics, this abrupt shift in the mathematical
description of the dynamics is fully in keeping with the per-
spective of quantum monodromy in this family of mole-
cules. For these molecules, Herzberg and Nielsen were
both right.

5.7. Ethynyl isocyanate, HCCNCO

For HCCNCO, as for NCNCS, the assignment of the
microwave data by Ross et al. [28] required the use of a
large-amplitude theoretical model. In the case of
HCCNCO this was a GSRB treatment which eventually



Fig. 20. (a) The structure of S(CN)2 determined in the early microwave work [87,88] and shown in the principal axis system; (b) end-over-end rotational
contributions to the energy plotted as DB versus Ka based on the work of Kisiel and coworkers [44]; (c) in blue, the radial bending potential function for m4

(bent numbering) [44,88], and in red, the GSRB fit to a cubic spline function (see Section 3); and (d) the two-dimensional bending-rotation term values
plotted versus Ka for J = Ka [44]. Points for vb 6 5 are experimentally determined.
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incorporated the microwave spectrum of the ground and
the first three excited vibrational states of the large-ampli-
tude CNC bending mode. This treatment resulted in the
quantitative determination of the molecular structure pre-
sented in Fig. 18 (a) and the two-dimensional potential
function [see Eq. (6) and Table 1] shown in panel (c).
The data and original calculation only extend up through
vb = 3, just as in the case of the microwave data for
NCNCS prior to the present experimental work. However,
we gained confidence in the predictive capability of the
GSRB from the accuracy of the predictions for higher vb

confirmed by our NCNCS work and therefore we have
extended the calculations, as in the case of NCNCS, up
to vb = Ka = 10. The corresponding rotation-bending term
values E(Ka, vb) are plotted versus Ka as an energy–mo-
mentum map and displayed in panel (d). Inspection of
the red curve for the bending state vb = 4 reveals, as in
the case of NCNCS, a kink at Ka = 0, but it is not as pro-
nounced as in the previous example. However, the end-
over-end rotational contributions plotted in panel (b)
reveal without doubt that the red curve for vb = 4 exhibits
the smallest DB(Ka,vb) value at Ka = 0. In this particular
molecule the energy levels with Ka = 0 and vb = 4 and 5
just about straddle the classical monodromy point, as is
shown in panel (c). The pink curves in panel (b) and (d)
for the bending states vb = 6, 7, 8, 9, 10 are clearly above
the classical monodromy point and therefore reveal the
evolution of the end-over-end rotational energy–momen-
tum map from that of a bent molecule to that of a linear
molecule.

5.8. Cyanogen isocyanate, NCNCO

This molecule has a very different potential function
from that of its isomer NCCNO, discussed in Section
5.2. Fig. 19 shows that it has a rather strongly bent
equilibrium angle and a high barrier to linearity [see
Eq. (6) and Table 1]. The currently available experimen-
tal data [85,86] only extend up through vb = 3, as in the
case of the microwave data for NCNCS and HCCNCO.
Again, we have extended the GSRB calculations up to
vb = Ka = 10 and plotted in panels (b) and (d) of
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Fig. 19 the experimental and predicted effective DB val-
ues and the predicted bending-rotation term values. Both
plots show that the critical point is close to the Ka = 0
level of the vb = 8 bending state, which is just the situ-
ation found recently for water [20], confirming predic-
tions of Child et al. [13–15]. While the plot displayed
in panel (d) of Fig. 19 confirms our expectations, the
plot of B(Ka,vb) vs Ka given in panel (b) is more
remarkable. We see that the B(Ka = 0, vb) value in the
first few bending states, below the top of the barrier, ini-
tially increases from the ground state, as in the normal
case for a bent molecule, but then for low Ka it plunges
into a minimum which totally overwhelms the tendency
to increase with increasing excitation, and finally rises
abruptly, above the monodromy point, to resume its
upwards trend but now in a pattern characteristic of a
linear molecule.

Although the extrapolation of the predicted eigen-
values up to the critical point is farther for NCNCO
than for HCCNCO, we are confident that the pattern
is correctly predicted, and that the experimental energy
levels and B(Ka,vb) values will be found to lie within
a few wave numbers or MHz, respectively, of the pre-
dicted values. As in the case of water, interactions with
other excited vibrational states will of course complicate
the picture.

5.9. Sulfur dicyanide, S(CN)2

As can be seen from Fig. 20 or Table 1, there is a sub-
stantial gap between the potential functions for NCNCO
and the truly bent limiting case, represented here by
S(CN)2, an isomer of NCNCS. As we started this work,
there was only an imprecise indication of the bending fun-
damental from IR data [89,88], and very limited microwave
data in the ground state [87,88]. Recent millimeter wave
measurements, to be reported in detail elsewhere [44], have
provided rotational data for vb = 0–5, enough to allow a
GSRB calculation (see Section 3) which arrives at a poten-
tial roughly consistent with that yielded by ab initio calcu-
lations [44]; both curves are plotted in Fig. 20. (The
rotational data is fit far more satisfactorily with six effective
Watson Hamiltonians for the six vibrational states.) Inten-
sity measurements in the rotational spectrum give an exper-
imental estimate of the vibrational quanta. A deep and
narrow potential well defines the small-amplitude vibration
of a bent molecule. The energy–momentum plot of
E(Ka, vb)/hc, shows a set of perfectly smooth, differentiable
parabolas, entirely dominated by the vibrational quanta in
vb and the much smaller parabolic rotational contribution
AK2

a. The plot of DB versus Ka in panel (b) shows a new ele-
ment: for low Ka, there is a zigzag pattern which is typical
of the rotational structure in the spectrum of near-prolate
asymmetric rotor molecules [90]. This is superimposed on
the gentle parabola described by the centrifugal distortion
parameter DJK. The zigzag pattern is not related to
monodromy, but to the DKa = 2 interactions in an
asymmetric rotor. Actually, this pattern overlays each of
the DB versus Ka plots of the lowest vb states of the last five
species treated above, which can be analyzed, if with poor
results, as asymmetric rotor molecules. However, this con-
tribution to the pattern is far smaller for all of the above
species than the resolution of the plots shown here, and
is in addition partially quenched by the proximity of adja-
cent vibrational levels. In S(CN)2, the height of the barrier
relative to the vibrational quanta, the large ratio of the
vibrational quanta to B(Ka, vb), and the asymmetry param-
eter j = �0.84773, as opposed to the value of
j = �0.99938 for the ground state of NCNCS,
j = �0.99865 for HCCNCO and j = �0.99718 for
NCNCO, ensure that the pattern due to asymmetry domi-
nates the rotational end-over-end energy. This, then, is the
signature of a truly bent molecule.

6. Conclusion

As has been shown in Section 5, the classical monodromy
point of the punt in a champagne bottle potential can be
associated in the quantum world with a Ka = 0 energy level
(or two levels) nearest to it and introduces a quantum lattice
defect that leads to robust properties of quantum monodr-
omy in the spectra of quasi-linear molecules.

With the data now available for the molecules discussed
here, and with the help of the GSRB Hamiltonian to pro-
vide realistic predictions based on these data, we have a
rather complete picture of what to expect from the spectra
of molecules that have in their two-dimensional anharmon-
ic potential surface a critical or monodromy point in the
range of excitation that is accessible experimentally. The
bending vibrational energy–momentum maps for the mol-
ecules BrCNO (see Fig. 14), ClCNO (see Fig. 15), NCNCS
(see Fig. 9 and Fig. 16), HCCNCO (see Fig. 18) and
NCNCO (see Fig. 19) show beyond doubt the existence
of quantum monodromy. The anharmonic component of
the potential function for NCCNO, HCNO and OCCCO
causes distortions of the energy/momentum map that form
a smooth progression from the harmonic oscillator to the
champagne bottle potential. In addition, a dramatic effect
of quantum monodromy on the end-over-end rotational
energy of quasi-linear molecules is clearly demonstrated
for all quasi-linear molecules discussed: The Ka = 0 energy
level closest to the monodromy point exhibits a strong local
minimum of the rotational constant (a local maximum of
the relevant moment of inertia). This property is absolutely
robust and must underly the spectral pattern for the water
molecule and various other species generally considered
bent. In order to illuminate further this manifestation of
quantum monodromy in the rotational constant we show
for the molecules NCNCS (Fig. 21), HCCNCO (Fig. 22)
and NCNCO (Fig. 23) three-dimensional images of their
respective quantum lattices composed of DB values as
functions of Ka and vb. The systematic progression in
the location of the minimum and the characteristic shape
of the deformity that travels with it are a revelation.



Fig. 21. Three-dimensional image of the quantum lattice for the end-over-
end energy contribution plotted as DB(Ka,vb) versus Ka and vb for the
molecule NCNCS. The data points beyond vb = 5 are predicted by the
GSRB Hamiltonian.

Fig. 22. Three-dimensional image of the quantum lattice for the end-over-
end energy contribution plotted as DB(Ka,vb) versus Ka and vb for the
molecule HCCNCO. The data points beyond vb = 3 are predicted by the
GSRB Hamiltonian.

Fig. 23. Three-dimensional image of the quantum lattice for the end-over-
end energy contribution plotted as DB(Ka,vb) versus Ka and vb for the
molecule NCNCO. The data points beyond vb = 3 are predicted by the
GSRB Hamiltonian.
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These surfaces should be invaluable for the understanding
and assignment of rotational and rovibrational spectra of
quasi-linear molecules in all spectral regions. The
non-monotonic dependence of B(Ka = 0,vb) on vb was
simply not foreseen.

The minimum in the B(Ka,vb) values is related to the
probability-density distribution of the wave functions.
The probability-density close to the linear configuration
can become substantial for Ka = 0 as the energy approach-
es the critical point [91]. Since it became conventional to
plot only radial probability distribution, which must go
to zero at q = 0 due to the definition of the differential met-
ric, this fact has been widely overlooked. Since the moment
of inertia reaches a maximum with the molecule extended,
this means the rotational constant B(Ka,vb) will reach a
local minimum at the Ka = 0 level closest to this energy.

Due to the uncertainty inherent in quantum mechanics
the transition from the realm below the critical point to
the realm above it is softened. Thus the minimum in
B(Ka,vb) can also occur for a Ka = 0 level just below the
monodromy point, as is the case in HCCNCO. Quantum
monodromy in a champagne bottle potential can be con-
sidered a 1:(�1) resonance [36].

We now can confidently predict the qualitative structure
of the energy level manifold of essentially any bending
mode in isolation. In general, as in H2O or HCNO, the
large-amplitude bending mode is seldom well separated
from the other vibrational modes, and the simplicity and
symmetry of the energy–momentum plots shown here will
not be easy to see. However, these patterns determine the
unperturbed pattern of large-amplitude bending modes
that interact with the small-amplitude modes of all real
molecules.

During the course of this work we realized that the
availability of excellent tools, that is both Hamiltonians
and computers, to numerically fit our data had blinded
us to the hidden beauty and symmetry of the invariants
of the dynamic systems we were studying. Furthermore,
chemical physicists, spectroscopists, theoretical physicists,
chemists, and mathematicians have their own terminology,
concepts and tools that make it difficult to pass concepts
from one field into the other. Therefore we agree with
Sadovskiı́ and Zhilinskiı́ [36] that a collaborative effort
should be made to overcome these barriers in the study
of monodromy in molecular systems.
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