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On the [-Type Doubling and I-Type Resonance of Molecules
in the Microwave Region™

GunTER G. WEBERT

Department of Physics, Duke University, Durham, North Carolina

The I-type doubling and the I-type resonance of molecules in the micro-
wave region are phenomena which one encounters quite often but in many
cases they are not correctly interpreted. The present work has the purpose, to
make clear the theory and also to apply it to the interpretation of the spectra
of some molecules: methyl cyanide, methyl acetylene, and tertiary butyl
acetylene.

INTRODUCTION

The microwave spectra of several symmetric top molecules with Cy,-symmetry
have been studied by different authors during the last decade. In some cases it
was even possible to give a detailed account of the vibration-rotation-interaction.
At the same time the theory has been developed to a large extent, due to Nielsen
(1, 2), Amat (3), Grenier-Besson (4) and Maes (5).

This makes possible a more refined interpretation of microwave spectra of
molecules, like methyl cyanide (6-8), methyl acetylene (9), and tertiary butyl
acetylene (10, 11). Such a refined interpretation has been given recently in the
case of trifluoro-methyl-acetylene by Grenier-Besson and Amat (12).

The purpose of the present work is to show how these theories, which are in
every case a refinement of Nielsen’s theory (1, 2), can be applied to the analysis
of the spectra mentioned above. First, we recall briefly some notations which
will be used throughout this text. Second, we describe the elements of the energy
matrix and compare the formula given by Grenier-Besson and Amat (12) with
the formula used by Venkateswarlu et al. (7). Third, we interpret referring to
that formalism, the rotation-vibration spectra of some symmetric tops.

I. DOUBLING AND RESONANCE

It will be useful to recall some notations [following Grenier-Besson (4)].
Resonances and doubling may be defined as follows: Suppose, we have an effect
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which can be related to a matrix element
sy b |0, &), n=12---,

where v, , the vibration quantum number is diagonal. §, £ represent the rest
of the quantum numbers (J, K, 1), h,’ is the nth-order Hamiltonian.

(a) EIH &) = |H|E)

This means that two eigenvalues (¢, ¢) are degenerate, as is well known. If a
perturbation with matrix elements (¢ | h,’ | &) destroys the degeneration, it is
usually called “doubling.”

(b) If, on the other hand,

E[H' &) — (¢ |H | ¥)

is small but not zero, the shifting caused by (¢| h.' | &) is called “resonance.”
We do not deal with “accidental” resonances here but only with resonances
which are due to the matrix elements we wrote.

As has been shown by Nielsen (1), Grenier-Besson (4), Maes (5), and Amat
(3), one can distinguish several types, and we list three of them:

(1) Al, = +2, AK = +2,

This leads in the case of K = +1, I; = =41 to that effect which is usually called
l-type doubling, or, more precisely, it leads to rotational 1(2,2)-type doubling.

(2) Rotational resonance and doubling of 1(2,—2)-type. As this effect only
exists for molecules with a symmetry or order 4, 6 - -- but not for molecules
with a symmetry of order 3, we do not describe it in detail.

(3) Rotational resonances of type 1(2,—1). These resonances only exist for
symmetry axes of order 3, 5 - - - . But they cannot give a doubling, as has been
shown by Nielsen (2) and Grenier-Besson (4). We have for CH;CN an example
for this “rotational resonance.”

II. THIRD-ORDER CORRECTION FOR VIBRATION-ROTATION - ENERGY
OF A SYMMETRIC TOP WITH (;,-SYMMETRY

Having stated the various possible effects of vibration-rotation interaction,
following Nielsen (2), Amat (3), Grenier-Besson (4), and Maes (5), in Part
Il we want to show now how it is possible to take these effects quantitatively
into account. Right from the beginning we confine ourselves to molecules with
Cy-symmetry. Thus we shall not mention matrix elements which are different
from zero only for another symmetry.

Even among the matrix elements which can be attributed to a third-order
perturbation we find some which, as Maes (5) has shown, contribute very little
to the energy. As a matter of fact, in the region where J =~ K =~ 1, we find the
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TABLE I
ENERGY MATRIX FOR J = 11
=1 = —1

K -1 0 1 -1 0 1

J-l L_l — A —2F'\/§
=1 4 0 Lo 2F~\/2

| 1 L+ A P

—1 P L+ A
l=-135 0 —2F~/2 Ly

L1 2F~/2 Li—A

1 It should be noted, that the elements L, , etc. have not the same value as for the J= 3
matrix.

following matrix elements:

Second order: Diagonal Off-diagonal

Hamiltonian (WIK | vIK) WIK|v,l +£2 K+ 2)

hy' Energy contrib. 2, 4, 6th order l-type doubling: 4th order
- [-type resonance: 6th order

Third order: (IK | vIK) WK |v,l 2, K % 1)

Hamiltonian Energy contrib. 4, 6th order 6th order

hs' (WIK | vIK =+ 3) WK |v,1+2, K +3)

Energy contrib. 10th order 10th order

First, we write the matrix for J = 1 [Maes (4)]. This shows us (Table I) the
essential form which also directs us to the J = 3 matrix (Table II). It is well
known that the energy in our case can (until the second-order diagonal elements
only) be described by the following equation:

E =E,+ BJ[J(J+1) — K]+ C,K* — KI:sB
— D,JHJ + 1) — Dyxd(J + 1)K — DgK*

The following values can be taken from Nielsen’s second-order perturbation
(1). It goes without saying that it would be entirely misleading to use in thss
respect a correction term corresponding to that used by Venkateswarlu, Baker,
and Gordy (8). This correction term represents part of the third-order correction,
but cannot account for everything which is due to the third-order perturbation.
We shall refer to this term later on.

Now we shall calculate the energy matrix for J = 3.

(1)

Calculation of the diagonal elements hy' — hy — hy'

Lo(J = 3,K = 0,1 = 1)
— E, + 12B, — 144D, ,

(2a)
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L(J=3K=11=+1)

(2b)
= Ev + lle + Cv - 2?0 - 14:4:DJ —_ 12DJK - DK,
. LiJ=3K=—11= +1) 20
(6]
B =FE,+ 11B, 4+ C, + 2;C — 144D; — 12D,x — Dx,
. Lo(J = 3,K = 2,1 = +1)
(2d)
= Ev + SBv + 401, — 4§‘C i 144DJ — 48DJK e 16DK,
Lo(J =3 K=—21=+1)
(2e)

= E, + 8B, + 4C, + 4¢{C — 144D, — 48D;x — 16D .

The selection rule AK = 0 implies that L; and L_; which are correlated with
K = 43 are not needed for the transition J = 2 — 3. We shall not deal with
these levels therefore. It can easily be shown that the rest of the diag-
onal (namely, the elements with [ = —1, I’ = —1) consists of the same ele-
ments, only with reversed order. It is obvious that Ly, and L_, differ only in
the term —2KI¢sC. Now, for the submatrix with? = 1, I’ = 1 we have K run-
ning from —3 to +3 and { = 1, L, running from L_; to L5 . For the rest of the
diagonal we have

—2KItC = —2K|1|¢C.

It is clear that we have the same L,, but running from L.; to L_; in this part.

Now we shall deal with the off-diagonal elements 0.
First type
WdiK| ho' |ve, 1 £ 2, K + 2)
= @{lJ(J+1) —KE£D|IJJ +1) — (K+1)(K£2)] (3)
X (v F D (v =14 2)}"

<_17_1 ’ 171> = QO\/%, (43‘)

From the fact that the matrix represented is Hermitian, we can conclude that
Elalg”) = E"al&)*
which in our case is reduced to

Elalg”) = ("] al &)

«ejn
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Obviously, the calculation is simplified further on by the symmetry with regard
to the second diagonal. This also applies to the second type of off-diagonal
elements.

Second type
(There are only two different elements if we disregard the sign.)

W, LKl k' ol £2, KF1)=F2KF D{[J(J +1) — K(KF 1] (5
(v £ 14 2) @ F D}

<_17_2 l 1’_3> = <—1:—1 l 1a_2> = —F\/m: (53}
(—1,0]1,—1) = —F+/48. (5b)

To clarify the I-type doubling matrix elements
(LK|l+2 K+ 2),

we write the following part of the matrix:

.. (—=1,-3|1,—-1) .. O 0 0 0
. 0 (—1,—2]1,0) 0 0 0
0 0 (=1,—1]1,1) 0 0

r 0 0 (—1,0| 1,2) 0 :

0 r 0 0 (—=1,1]|1,3) -

We have the relation P = 4¢,, from which we get
qo\/m =P \/1—5y
qO’\/ 218_0= P\/g(—),

Hence, the definite form of the I-type doubling elements of the (J = 3) matrix is
P+/15 0o 0 0 0
0 P30 0 0 0
0 0 6 P 0 0
r 0 0 P30 0
0 r 0 0 PVI5

There are still other matrix elements which should be mentioned. They may be
neglected as (in the case of J =~ K = 1) they are contributing to the energy
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ete. (For =7 we substitute |7 | and write it simply: ; where &7 = (K |l =+
2, K 7 1).) This results in the factorized matrix (Table IIT). The matrix con-
sists of four submatrices, as can easily be seen:

[All Al2jl
A21 A22 ’
A = 0, in other words, A is a null-matrix. A, plays no role in the result of

the determinant.
This can be shown by induction beginning with the following simple case.

ax b1 0 0
as b, 0 0| Jar by |5 ds
as ba C3 dg - A b2 Cy d4 )

ay b4 Cy d4

This completes the proof that the energy matrix can be factorized.

Next comes the solution of the “unperturbed problem.” As is well known,
in the unperturbed problem we disregard the matrix elements except the diag-
onal elements. The results are, therefore,

X=L0,
X =L, X = Ly, =+ 6P,

(7)
X=L_2, X=L+2;

(X = L), (X =Ly).

[For the explicit values see Eqgs. (2a-e) ] _

To solve the “perturbed problem’ requires an answer to the question how
the matrix can be reduced further. If we take a submatrix of the factorized J = 3
matrix, it is immediately evident that the reduction is a procedure similar to
the reduction of the J = 1 matrix (Table I). We further write the unitary
matrices which can be used for reducing by a similarity transformation. The
unitary matrix U transforms the submatrix A as follows: ‘

where UAU = A%,
1000000
0100000
}0000100
U=|0000()10,
10010000
0001000
0000O0O01
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an 0 ) 0 0 0 25T 0
0 [42%) 0 0 (1533 0 0
0 0 ap auw O 0 ay
A = 0 0 A3 A4q O 227} 0 ;
0 52 0 0 A5 0 0
0 0 0 Qg4 0 Qge 0
0 0 a3 0 0 0 ap
an O 0 (257
0 an as O
0 a ass O
A* = ag1 0 0 Qg6 0 Qaes 0 y
0 as Gu ayn
4 Q3 A O
0 as 0 an
A* explicitly written:
L_; — 3A" 0 0 | F /120
0 L, — 27" | | F /120 0
0 [ F|+/120 | Li + A’ + 6P 0
| F |+/120 0 0 Ly + 20" 0 P+/30 0
0 Lo— A ||F|V/88 | P\VT5
P \/% | F I\/4—8 Ly 0
0 P \/ 15 0 L; + 3aA”

To calculate the secular determinant, some evident changes of rows and columns

are made:
L.y — 20" | | F 14/120
| F |4/120 | Li + A’ + 6P
Ly + 24" 0 P+/30 0 0
0 Li—4A | |IF|V/8 0 | F |+/120
P+/30 | F|4/48 | Lo P+/15 0
0 0 P~/15 | L; + 3A” 0
0 | F |4/120 0 0 L_; — 3A”

From this form of A* we write the secular determinant.
The secular determinant for J = 3 is

det || A% | = {(L_s — 28”7 — X — AX) (L, + A&’ &+ 6P — X — AX)
— 120 F% X {(Ly + 240" — X — AX)[(L_, — A" — X — AX)
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X (L — X — AX) X (Ls + 30" — X —AX) — 15P%) — 48F* (L,
+ 3 A/I/
— AX)(L; + 3A” — X — AX)(L_s — 3A” — X — AX) + 120F*(L,

+ 3A” — X — AX)]} = 0.
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— X —AX) (Lo — X — AX) — 15P)] — 30P* (L, — A" — X

The energy levels due to hy, +h; + hy' + hy’ for J = 3 in terms of micro-
wave-spectroscopic parameters.
(The third-order terms A’, ete. are written explicitly below.)

K=0
I = +1
K=1

I = +1
K= -1
—l=1
K = +2
I = +1
K = +2
l=F1

L, = E, + 12B, — 144D,

15 P* _ 48 F*
2(Bv—0v+§0) Bv_Cv—2§C’

_|_

L' =E,+11B,+ C, — 2¢C — 144 D, — 12D«

120 F*? /
P
+ 6 +B“4%_%C+A,

L' =FE,+11B, 4+ C,+2C — 144D, — 12D,

15 P* _ 48 F* N

+

bl

L =E,+8B,+4C, — 4:C — 144 D, — 48 D«

6 P* 120 F* "
+B,,—C,,+§C+Bv—0v—2§0+2A’

Ls=E,+8B,+ 4C — 144 D, — 48 D«

120 F*
— — 2 A",
B, | C, —2¢C

(8a)

(8b)

(8c)

(8d)

(8e)

L; and L_; are not needed explicitly due to the selection rule AK = 0. The
third-order rotation-vibration-energy terms from the diagonal are in general
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given by the following formula (5) :

AEhK[mJﬂJ+1)+meﬂ%m+2wr+EZmﬂg]. (9)
(8#88)
For J = 3 they are, if |[| = 1,

AL() = 0,

!/

AL, = [127]8,3 + s —1 + n8 + 2ms 8 + D mss %{‘ = A,

’

AL, = — [12178,3 + ms1 4+ ms + 2m38 + > ms.s %—s] = — A,

4

AL, =2 [12178,3 4+ 4ns o + m8 + 2ms5 + > mss %{l = 27",

ALL, = —2 [12178,3 4+ 4dng o+ 3 + 288 + Z 78,8 g‘s:‘ = —2A”.

For practical reasons, however, it is useful, not to take the energy levels, but
rather their differences. We shall have to deal now with the formulas which
represent these differences.

(a) There are essentially three formulas for nonrigid symmetric tops: We
obtain a frequency formula from Nielsen’s work regarding the second-order
perturbation. It is used by Venkateswarlu, Baker, and Gordy (&) to describe
CH,CN rotation-vibration interaction.

y = 2B,(J + 1) — 4D,(J + 1)* — 2Dyx(J + HK?

(10
where
AP(J,K,l) = &=(J + 1)g for K =1= =1
and
J+ DI+ = (K+1)] ¢
AP(J,K,l) =
WD K=+l X IC( = ©) — B (11)

for K #1 =+ 1.

C, B,, D,, and D,k are the well-known constants; ¢ and s refer to I-type dou-
bling and coriolis doubling, respectively.

Nonetheless, it is necessary to introduce a semiempirical correction term
which in some cases even gets an order of magnitude comparable with the split-
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ting described by Nielsen’s theory. We shall treat this problem in more detail
in Part II1.

(b) A more refined treatment (also of second order) has been devised by
Grenier-Besson (4). It stresses that there is an influence of the off-diagonal
elements on the energy levels.

(¢) Grenier-Besson and Amat give a formula (12) which is an extension of
Maes’ third-order perturbation calculation. We use this third-order perturbation
throughout the text.

The formula runs as follows:

= 2B*(J + 1) — 4D,(J 4+ 1)® — 2D,x(J + 1) (Kl — 1)*
+ 20"(J + 1)(Kl — 1) £ 4¢,(J + 1)
— 4¢,/(J + 1)*/(B, — C, + Cuf) (Kl — 1)
(for KI = +1) (for KI # +1).

Here B, and C, designate the same constants of inertia. The constants D, ,
D,k , and {; have the same meaning as above. ¢, is the constant of 12,2-type
doubling, r the constant of [2,-1-resonance, 7.; the coefficient of the term in
KIJ(J + 1). These constants are related to B* and p* as has been shown by
Amat (12):

(12)

B* = B, — Dix + »p, (13a)
p* = p — 2Dk + 2¢,°/(B, — C, + C.p), (13b)
and '
B,* = B, + 4°/(B, — C, — 2C.}) = B,, (14a)
p =+ 8°/(B, — C, — 205). (14b)

If we note that »r = F, and P = 4q,, it can be seen that every term of Eq. (12)
is related to the third-order perturbation described above, or is related to lower
order perturbations plus the unperturbed state. To compare the two formulas
(Venkateswarlu, Baker, and Gordy (8) and Grenier-Besson and Amat (12)
we write them as follows: '

Grenier-Besson and Amat (12) Venkateswarlu et al. (8)
2B,(J + 1) . 2B,(J + 1)
—4D ;(J + 1)3 —4D,;(J + 1)3
—2D,;g(J + 1) — 2D;x(J + 1)K? —2D ;x(J + 1)K?

+ 4D ;x(J + 1KI
—2D;x(J + 1) — 4D ,;k(J + DKI
+ 4D,/ + 1)
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25 + 1) + 2905 + 1KI 42D ; + Dyr)(J + 1)KIs [which bases
— 2msJ + 1) on a false equation (11)]
24 r? 741 (In this formula there is no term corre-
B, — Cy—2C¢s ( + ) Sponding to ’r2)
16 r? (In this formula there is no term corre-
B, — C, — 20,3 (Kl =D+ D sponding to r2)
44 @ + D[J + 1) — (Kl — 1)?]
+ — J+ DK -1 —
Bv - Cv +Cv§-8 ( )( ) (B’b - Cv + C?S)(Kl - 1)
1o W + 18
(Bv - Cv + C«ui's) (Kl - 1)
(for Kl = +1)
No correction term needed. Correction term: +4etsKI(J + 1)

Result: The comparison of these two formulas shows (apart from many terms
which are identical for both) :

(a) Terms which are not included at all in Venkateswarlu, Baker, and Gordy,
but in Grenier-Besson -and Amat (those with ) (12).

(b) Terms which are comparable only to some approximation (7.s).

(¢) On the other hand, we have from Venkateswarlu, Baker, and Gordy (8)
a correction term which allows us to predict the experimental frequencies:

4efsKI(J + 1).

We shall deal with this correction term in more detail in Part 111 in the case of
CH;CN.

As has been shown by Maes (§) the expression 4(2D; + D;x)(J + 1)Kls
can only be compared to a very limited extent with the expression containing
the factor 7., . Furthermore, it can be shown that there are other differences
between the comparable terms. These differences may be partly explained by
the fact that the following commutators have been neglected in Nielsen’s theory

(5).
[PaPa, ¢l and  [ps, @Pal,
where

hPaPe » @) = PaPals — GPaPa # 0

by the well-known definition of the Poisson-brackets (13). p, is an internal
(vibrational) angular momentum and p., its projection on an axis « of the mole-
cule. ¢, can be regarded as a conjugate coordinate. This suggests that relatively
important operators are still neglected. We shall see that from a quite different
viewpoint in Part III, namely, in the drastic correction term for CH;CN, not
to mention the (K | K & 3) elements.
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To make the application of the formula of Grenier-Besson and Amat (12)
more obvious, we state the splitting which can be calculated by that formula:

K l Kl—1 Av =y —p”

i(z) :1 _i 2(J 4+ Dp* X 2 -%—m
wom
2=
L0 s

III. APPLICATION OF PART II TO SOME MOLECULES

In this part we shall apply the formalism of Part II for the interpretation of
microwave absorption spectra. We confine the calculations to vibrations with
v=1,1= =+1. '

Let us take methyl cyanide (CH;CN) as our first example. We shall first
calculate the spectrum for J = 1 — 2. Kessler et al. (6) who measured this
transition for the first time, have reported three lines (compared to four in the
transition of CH;NC and other similar molecules). However, it is not difficult
to show that these measurements can be explained very well by the third-
order perturbation based on the following equations (5):

(K =1= =+1)
n = 4B, + 2P — 32D, — 4D;x + [48F*/(B, — C, — 2¢C)] + 4ns.,, (15a)
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(K =1= Z£1)
Ve &= 4:B,, - 2P - 32DJ - 4DJK (15b)
4+ [48F%/(B, — C, — 2¢C)] + 43,7,
(K = —1= =%x1) '
vy — 4Bv - 32DJ - 4:DJK (150)

— [16F*/(B, — C» — 2¢C)] + 4ms.s,
(K =0,1==£1)

Vs — 4:B1, - 32DJ‘
+ BPY2(B, — C, + {O)] + [16F*/(B, — C, — 2C)].  (15d)

Now it even seems that for »; = 4 (for CH,CN) the interpretation is simplified
because, compared with CH;NGC, it is easier to make an assignment.

For CH,NC two possibilities remain. On the other hand, it may be questioned
whether there are really only three lines. This was indeed the question which
was put forward first by Amat (14). We reason as follows:

A transition (J — J + 1) has two extreme lines (corresponding to KI — 1 =
0), and the lines of the central group [consisting of J — 1 =0 doublets

(Kl —1#0)

and two singlets KI — 1 = —J, Kl — 1 = —(J 4+ 1)]. This has been proved
by Amat (12). This means for J = 1 — 2 that the central group just consists
of two singlets. It does not seem probable to find only one instead of two singlets,
as might have been the case with a not resolved doublet.

Now the point is that Sheridan (14), following Amat’s consideration (14)
found the second line of the central group, which had been missing so far. Now
it is possible to make a self-consistent interpretation of the four lines. The values
do not differ very much from Maes’ calculation with three lines (5). But then
we shall also make calculations with the other possible assignment of the singlets.
Which assignment is to be preferred, however, will be seen only after inspecting
the higher transitions. .

The calculation differs from Maes’ calculation (5) only insofar as we have
different values. The frequencies measured are [v, vs, v: Kessler et al. (6),
v, Sheridan only (14)], divided into a doublet (v, ») and two singlets (s,

NE

Kl _ 1=0 » = 36 942.00 Mc/sec,

Ki—1=0 v = 36 870.85 Mec/sec,

Singlet 3 = 36 905.50 Mc/sec (K = —1 = +1),
Singlet ye = 36 903.31 Mc/sec (K = 0,1 = =*1).
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Kessler et al. (6) and Sheridan (14) report values which are equal in the limits
of experimental error (except »;). The following constants will be used:
By = 9198.70 & 0.2 Mc/sec (6),
as = —22.5 4 10 Mec/sec (6)
B, = 9221.2 4 10 Mec/sec (6)
D;x = 0.178 4= 001 Mc/sec (6)

Another value has been reported also but we shall not use it. From the struc-
ture of CH;CN we get C = 158 400 Mc/sec, where C, = C & 1%, which is
entirely within the limits of error. Therefore it makes no difference whether we
use C, or C. In addition to that, we shall use the difference

C, — B, = 149 179 Mc/sec. (16a)
From Eqgs. (15a and b) it is obvious that
(v — ») = P = 17.79 Mc/sec. (16b)

Moreover, we get ]
va — vs = 4D;x + [3P?/(2B, — 20, + 2¢0)]
+ [32F°/(B, — C, — 2%C)] + 4n5,; = —2.19 & 0.01 Mc/sec

from Eqgs. (15¢ and d). Here we get for the first time a difference from the cal-
culation with », = v;. This difference, however, has only a small influence on
the results. We get from Eqs. (15b and ¢)

v3 — vo = 2P — [64F°/(B, — C, — 2¢C)] — 8ns.s

(17)

= 34.65 £ 0.02 Mc/sec (18)
and
L5(vy — v2) = 17.325 Me/sec,
which, in connection with
15(vs + v2) = 36 888.175 Mec/sec,
leads to the following equation:
v — Y5(vs + m) = P + 4D,x + 3P*/(2B, — 20, + 2(C) (19)

= 15.135 Mec/sec + 0.02 Mec/sec.

Taking into account that P = 17.79 Mc/sec and 4D,x = 0.712 Mc/sec, we

get from Eqgs. (15d) and (19) the following result:
475.025/3.377 = C, — B, — {C. (20a)
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Remembering the value for C, — B, (8) this is
C, — B, — {C = 140.6 Mc/sec. (20b)
Therefore,
¢s = 0.9409, (20c)
which is in good agreement with the values from the infrared (8). Moreover,
B, — C, — 2¢tC = —447.129 Mc/sec.
From Eq. (17) we get
dng; = 1.57 + 32F"/447 121. (21)
As F* is not known, this gives only a limit for 5,
nss > 0.393.

Now we take into account the absolute frequencies:
vs = 4B, — 32D, + [3P*/(2B, — 2C, + 2¢:0)] (22)
+ [16F*/(B, — C, — 2¢5C)].

As Dy is small compared with all other quantities, we may neglect it. If we take
the value for B, mentioned above we shall have the difficulty that 16F°/447 121
turns out to be —20.88 Mc/sec. Therefore we take the value B, = 9226.44
Me/sec (8) which is more reliable. With these values we get

4B, = 36 905.76 Mc/sec,
—vy = —36 903.31 Mc/sec.
The difference, together with Eq. (17) results in the following equation:
16F/447 121 = —1.12 Me/sec. (23)

This is no longer an incompatible result compared with —20.88 Mec/sec. It
rather speaks for the precision of the value B, of Venkateswarlu et al. (8).
This value is also compatible with

ag < —27.7,
namely, '

ag = —27.5,
based on

B, = By — Z as(vs + 149.).

8
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Although one cannot give very precise values for as , it nevertheless fits remark-
ably well into our assumptions.
Now it remains to test whether the order of magnitude is reasonable.

B,> P> D;x = P°/(4C, — 4B, + 40C)
= 15, + 8F'/(B, — C, — 2¢C), (24a)
9.226.44 > 17.79 > 0.178 =< 0.33 = 0.39. (24b)
As Maes (5) has shown, the elements
(K|®hs' |l = 2, K F 1)
are of the same order of magnitude as the elements
(K| “hy |K)

in the range J = K =~ 1 (third-order contribution). They are even equal in
the limits of experimental error, so that it is impossible to separate their influ-
ence. On the other hand, for very high J and K(=230) this is no longer neces-
sarily true.

This is not the only assignment which is possible. It will be remembered
that the singlets can also be assigned in another way whereas the l-type doublets
(Kl — 1 = 0) remain. Therefore, our next calculation is based on the follow-
ing assumptions:'

Ki—1=0 n = 36 942.00 Mc/sec,
Ki—1=0 vy = 36 870.85 Mc/sec,

Singlet vs = 36 903.31 Mc/sec (K = —1 = +1),
Singlet ve = 36 905.50 Mc/sec (K = 0,1 = +1).
The constants By, s, B,, D;x, C = C, are the same as before,
Y4(m — ) = P = 17.79 Me/sec (as before), (25)
vi — vy = 4Dyx + [3P*/(2B, — 2C, + 2¢C)] (26)
+ [32F*/(B, — C, — 2¢0)] + 4ns,; = +2.19 Me/sec.
For the other differences we get the following values:
v — v = 2P — [64F"/(B, — C, — 2(C)] — 8., (27
= 32.46 Mc/sec,
15(vs + v2) = 36 887.08 Mc/sec, (28)
vy — Y5(vs + ) = 18.420 Mec/sec. (29)

1 The process of calculating is exactly the same as for the other assignment.
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If we take into account the values P = 17.79 and 4D,;x = 0.712 we get with
the relation

PZ

C, — B, — ¢C =
P+4DJK'_(V4_

[\ V]

vs + V2> (30)
2

the following result:
474.725/0.082 = 5789.3 Mc/sec = C, — B, — {C. (31)

We shall come back to this result later. If we refer to the values of B, and C, ,
this result now contains also a value for {s :

¢s = 0.905.

" This value is not so good compared with ¢ = 0.9409. But the values for the
higher transitions imply strongly that this value is nevertheless to be preferred.
From

4ns; = 1.56 + 32F*/435 883, (32)
we can give the limit 73, > 0.39 as well as the relation
0.18 = 16F*/447 121. (33)

Now we shall deal with some aspects of the higher transitions. The transitions
from J = 4 — 5 to J = 11 — 12 have been measured by Venkateswarlu et al.
(8). We make some preliminary remarks:

(a) The correction term of Eq. (10): 8¢K(J + 1) is of the same order of
magnitude as the splitting. For example, for J/ = 5 — 6 and K = 1 the splitting
is

Avg ko = 3.97 Me/sec.
The correction term for these quantum numbers is

8ecK(J + 1) = 1.43 Me/sec.

For higher K the correction term even becomes larger than the splitting itself.

(b) It sometimes occurs that it is no longer possible to divide the lines into an
l-type doublet with extreme frequency values and the central group on the other
hand. For example, for J = 10 — 11 the frequency observed for K = 10 is
202 655.71 Mc/sec. On the other hand, the frequency for KI — 1 = 0 is
202 769.94 Mc/sec. Although the latter frequency is supposed to be the lowest
of that group, this is evidently not the case.

(¢) As is well known the center of gravity of the doublets should be a func-
tion of K? if we take the center of the KI — 1 = 0 lines as origin. But if the
centers of these lines vary with K’ the first differences should be linear functions
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of K and the second differences should be constant. A brief look at these second
differences shows that they are evidently not constant. For J = 5 — 6 we have,
for example, the following second differences:

4.20 Mc/sec 3.50 Mc/sec' 5.42 Mec/sec.

Remarks (b) and (¢) have the immediately evident consequence that some
values of the measured frequencies (8) should not get the same treatment as
the majority of the values. For example: for J = 11 — 12 the first of a series
of second differences is 7.890, whereas the other values are 8.655, 8.555, 8.470,
and 8.300 (Mc/sec). The frequencies connected with the first of these differ-
ences will evidently not give the same results as frequencies connected with
8.655, etc. Therefore we shall drop these values, and also the ones in connection
with (b).

The l-type doubling constant P from seven transitions is P = 17.782 Mec/sec
which is in excellent agreement with P = 17.79 Mc/sec from J = 1 — 2.

Now it is possible to calculate the constant p* [see Grenier-Besson and Amat
(12)], and B, — C, + ¢C. Instead of using the latter constant it is more con-
venient to use 1/(B, — C, + {C), which we call y. We shall explain the method
to calculate these constants for two transitions. The splitting for J = 8 — 9K =
5 and 3 gives the following value:

Ay = 7.12 Mec/sec.
On the other hand
712 = 2(J + 1)p* X 8 — 4¢°(J + 1)* X 2/(B, — C, + C¢) X 4.
If we take the appropriate numerical values, this leads to the equation
Ay = 7.12 = 144p" — 28 807y. (34)
In the same way we get for J/ = 9 — 10, K = 6 and 4 the following equation:
8.92 = 2(J + 1)p* X 10 — 4¢°(J + 1)®* X 2/(B, — C, + C¢) X 5.
The numerical values give for this equation _
8.92 = 200p" — 31 612.8 4. (35)
From these two equations we get as results
—y = 0.0001154 (which corresponds to 1/y = 8665 Mc/sec)

and p* = 0.024 Mc/sec. If we take many transitions into account we eventually
get the following values:

y = —0.000118 (which corresponds to 1/y = 8475 Mec/sec) and
* | " p* = 0.023 Mc/sec.
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In conclusion, these results show that it is much more consistent to make for
J = 1 — 2 the second assignment. y is for J = 1 — 2 as well as for the higher
transitions of the same order of magnitude if we make for J = 1 — 2 the second
assignment. Even if the value of {5 is not so good at first sight, it should be re-
membered that 0.905 may still be within the limits of ¢ used by Venkateswarlu
et al. (8), namely, from 0.92 to 0.97. It should also be remembered that nothing
is known precisely of the elements (K | K & 3).

Our second example is methyl acetylene. J = 1 — 2 and 2 — 3 transitions have
been recorded by Trambarulo and Gordy (9). First we shall deal with the rota-
tion-vibration interaction when the molecule makes a C=C—H bending
vibration (v; = 1). It has been recorded (9) that no reasonable assignment of
the lines was possible. It can be shown, however, that such an assignment is
possible. 2(J + 1) = 6 lines have been reported which shows that the transition

is complete. We tentatively assign the following frequencies to the KI — 1 = 0
group:

y = 51 280.45 Mc/sec and » = 51 334.81 Me/sec.
In the same way we assign the following four frequencies to the central group
(Kl — 1 # 0):
y = 51 296.33 Mc/sec
» = 51 304.05 Mec/sec
v — 51 305.93 Me/sec

this may be a doublet.
vy = 51 307.47 Mec/sec

these may be singlets;

It will be shown that these assignments allow a consistent interpretation. The
difference and half-sum of the frequencies of the lines KI — 1 = 0 immediately
give

qs = 2.265 Mc/sec (I-type doubling constant),

B* = 8551.22 Mc/sec.

With regard to the 2J(=4) lines of the central group we have two singlets
correlated to
Kil—1=—2 and KI—1= —3

and J — 1 doublets, i.e., one doublet, corresponding to | KI — 1| = 1. The fre-
quencies of the two singlets and the difference of the doublet give three equations,
namely : "

singlet:
y = 2B*(J + 1) — 4D,(J + 1)* — 2D,x(J + 1)4 — 20%(J 4 1)2

36)
+ 4¢*(J + 1)°/(B, — C, + C.0)2,
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singlet:
=2B*(J + 1) — 4D,(J + 1)* — 2D,x(J + 1)9 — 20*(J + 1)3

) ; (37)

separation
of doublet: Ay = 4p*(J + 1) + 8¢*(J + 1)*/(B, — C, + C.f). (38)

These equations are simultaneously consistent if we take the following values:
{9 = 0947, (C, — B, — Cty) = 32.77 Mc/sec,  p* = 1.17 Mc/sec. (39)

With these values it is possible to explain the six frequencies with the above-
mentioned assignment consistently. Moreover, the difference between the
Kl — 1 = 0 doublet and the | KI — 1| = 1 doublet should be equal to 6D,x .
This difference is 0.860 Mec/sec, whereas 6D,k is 0.918 Mc/sec. It is true that
there remains still a difference. But this difference falls entirely into the experi-
mental uncertainty and therefore we shall not deal with it. This completes the
proof that our tentative assignment is correct.

Methyl acetylene gives also another excited vibrational state: v,y = 1. This
is due to the C—C=C-bond bending vibration. J = 2 — 3 gives 2(J 4+ 1) = 6
lines which have been reported by Trambarulo and Gordy (9). The following
two frequencies are the KI — 1 = 0 group [and are not, as has been reported

(9), related with {Kl -_== ii} which evidently could not give KI — 1 = 0].

v = 51 369.12 Me/sec,
v = 51 469.85 Mc/sec (9).
The central group is the Kl — 1 # 1-group:

v = 51 410.51 _
singlets,
ve = 51 415.35
vy = 51 418.23
doublet.
ve = 51 418.75
Now we have again one doublet (| Kl — 1| =1 = J — 1) and two singlets in

the central group. It will be shown that this is a consistent assumption. It can
be seen immediately that

Av = 24q, = 100.73 Mc/sec
gives the I-type doubling constant ¢, :
qs = 4.197 Me¢/sec.
From »’ = 51 419.485 Mc/sec, taking into account the value of D, = 0.003
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Me/sec,
4D,(J + 1)* = 0.324 Mc/sec,
we get
2B*(J + 1) = 51 419.161 Mec/sec

and therefore

Il

B* = 8569.86 Mc/sec.

This may be compared with B, = 8569.764 Mc/sec, as reported by Trambarulo

and Gordy (9).
Moreover, we may regard as centers of the doublets the frequencies

ve’ = 51 419.485 Me/sec,
Lo (vs + vy) = 51 418.490 Mec/sec.
This leads to the following difference:
v — Y5(v; + v) = 0.995 Mec/sec = 6D,x .
This is a value which agéin fits in the range of experimental error compared with
6D,;x = 0.918 Mc/sec

from measurements in the ground state (9). It may be stressed that no other
assignment of the lines of this group fits even to a rough approximation into
these theoretical relations. Thus it is quite clear that | KI — 1| = 1 is the cor-
rect assignment for the doublet »;, »s. The two singlets (Kl — 1 = —2 and
Kl — 1 = —3) give in this case the following equations:

for KI— 1= —2
n— n = —1.224 — 12z + 95.121y = —8.975 Mec/sec, (40a)
for KI — 1 = —3
ve — v’ = —4.135 Mc/sec = —2.754 — 18z + 634.13y. | (40b)
(Note that z = pfandy = 1/(B, — C, + Cpf10.) From these equations we get
y = 0.020846.

This corresponds to

C, — B, — Ctp = 47.971 Mc/sec.

This constant is in the order of magnitude comparable with the corresponding
value for nly = 0.0249 Eq. (39)]. On the other hand, we have B, = 8569.8
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Me/sec and C, =2 C = 160 572 Mec/sec (from the structure). We get
Cio = 152 050/160 572 = 0.947.

That {0 is rather near to {s may be due to a great extent to C, B, which are the
same for both cases. Having eliminated y we now get z:

—7.751 = —12z + 1.9829,
. (42)
z = 08112 = p*,

The same result for z we can also get from another equation (corresponding to
another line).

To examine the constants we found we shall calculate on the established as-
signment the four lines for the transition J = 1 — 2 again. (We could do the
same for v, = 1, but there we have no experimental results, so it would be useless
in this case.) For J = 1 — 2 we have one doublet and two singlets

(Kl— 1= —1, and Kl —1= =2).
If we take the following values (9):
B*-= 8569.86 Mc/sec [Eq. (13a)],
D; = 0.003 Me/sec,
D;x = 0.153 Mc/sec,
and the following frequencies (9) (excited vib. state vio = 1):
v = 34 246.30 Mc/sec,
vy = 34 277.05 Mec/sec,
vy = 34 278.98 Me/sec,
vy = 34 313.21 Mec/sec,

then we can calculate from » and »g, (the I-type doubling constant) :
gs = 4.1818 Mc/sec (from J = 1 — 2),
q; = 4.197 Mc/sec  (from J = 2 — 3).

Moreover, we assume that p* = 0.8112 [from Eq. (42)], and that y = 0.020846
[from Eq. (41)]. To find y, we may either use B* from the transition J = 2 — 3
(B* = 8569.86 Mc/sec) or B* from the transition J = 1 — 2(B* = 8569.83
Mc/sec). That the B* values are equally applicable speaks for the quality of the
measurements. The value ¢ mainly depends on B, , C,, C and little on the fre-
quencies ». Therefore, what practically remains to test is p*. We do this in the
following equations, which are based on differences of frequencies between the
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singlets and the middle on the I-type doublet (»’ = 34,279.34 Mc/sec) re-
spectively, taking into account D, .

To Kl — 1 = —2 corresponds the following equation (»,” — #,):
—2.58 = —2.448 — 8p* + 5.875. (43)
Here we get p* = 0.751 Me/sec. This value is in good agreement with 0.811
Mec/sec from J = 2 — 3. Now the only alternative is to correlate Kl — 1 = —1
Wlth Vo
—2.58 = —0.612 — 4p" + 11.75. (44)

Here we get p* = 3.43 Mec/sec. If we compare the results
p" = 3.43 Mc/sec Eq. (44),

fromJ =1—>2 . '
p = 0.751 Mc/sec Eq. (43) (This value also confirms

- our assignment for J = 2 — 3)
from J = 2 >3 p" = 0.811 Mc/sec Eq. (42),

1t is immediately clear which assighment is the right one, namely, the assignment
with the correlation

vo—=Kl— 1= —2, and (v;,v) — Kl — 1= 0.
V3'—?'Kl— 1= —1,

This concludes the study of the vibration-rotation interactions of methyl acet-
ylene.

l-type doubling as a means to assign unidentified lines

For (CH;);C—C=CH it has been reported (15, 10) that the lines I,(+)
corresponding to I,(—) and lg(—) corresponding to lg(+) could not be resolved.
The values

e = 21 453.5 Me/seec and [,(—) = 21 446.0 Mc/sec

are excited vibrational satellites of (CH;);C—C=CH. Now we propose to find
the not yet identified vibrational satellite [,(+), using the symmetry of the
l-type doubling. The line

I,(+) = 21 461.2 Mc/sec

has been measured by Winnewisser (16). The same applies to the I-type doublet
lg(+) and lg(—). The values are ,

B = 21 486.4 Mec/sec,
Ig(+) = 21 499.7 Mc/sec,
lg(—) = 21 473.0 Mc/sec.

The line ls( —) has been measured by Winnewisser (16).

«©
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In these two cases we can only make tentative assignments which have to be
confirmed by further investigations. But nevertheless it seems possible to use
the symmetry properties of the I-type doubling which was shown very clearly
for the J = 1 — 2 transition of the same molecule (16).
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