Centrifugal Distortion Analysis of the Ground Vibrational States of $H_2^{\ 17}O$ and $H_2^{\ 18}O^{\ 1}$

PAUL HELMINGER²

Department of Physics, University of South Alabama, Mobile, Alabama 36688

AND

Frank C. De Lucia

Department of Physics, Duke University, Durham, North Carolina 27706

Centrifugal distortion analyses of combined infrared-microwave data sets for $\rm H_2^{17}O$ and $\rm H_2^{18}O$ have been performed. These analyses make possible critical evaluation of data points and results in substantially improved energy levels. The Fraley-Rao interpolation rule for the prediction of $\rm H_2^{17}O$ energy levels is examined and extended.

INTRODUCTION

Several years ago we published centrifugal distortion analyses for a number of isotopic species of water. Except for the $H_2^{16}O$ (1), $H_2^{17}O$ (2), and $H_2^{18}O$ (3) species these were based entirely upon microwave data. Because for these species it was not possible to measure enough microwave lines, it was necessary to include infrared data in our calculations. Although at the time of our analyses extensive $H_2^{16}O$ infrared data was available, only a modest amount of $H_2^{18}O$ data (4, 5) and virtually no $H_2^{17}O$ data had been published. In this paper we report new analyses of $H_2^{17}O$ and $H_2^{18}O$ that include substantial amounts of new infrared data in addition to our earlier microwave data.

Because a centrifugal distortion analysis has substantially fewer degrees of freedom than a purely algebraic combination difference analysis and because the former are more sensitive to "bad" data points which can be eliminated,³ more accurate and reliable energy levels can be obtained. In addition, the independent analyses of the three isotopic species make possible a critical evaluation and refinement of the Fraley-Rao interpolation rule for the prediction of $H_2^{17}O$ energy levels.

¹ This work is supported by the U.S. Army Research Office, Grant DAAG29-77-G-0007.

² Travel to Duke University supported by Southern Regional Educational Board.

³ For an enlightening discussion of a mathematician's view on the rejection of data, see F. J. Anscombe and J. W. Tukey, Technometrics 5, 141 (1963).

H₂¹⁷O ANALYSIS

We have combined 46 of the far-infrared lines reported by Winther (6), 31 combination differences calculated from the data of Toth et al. (8), 20 combination differences calculated from the data of Camy-Peyret et al. (9), and our seven microwave lines (2) in a weighted Watson analysis. The assigned weights were inversely proportional to the square of the expected uncertainty and ranged from 107 for the microwave lines to one for Winther's weakest lines. In order to carefully screen the data, each of the 104 data points was removed (in groups) from the analysis and predicted on the basis of the remaining data. With the exception of a few lines at high J_{τ} , the uncertainty in each of the predictions was $<\pm0.01~{\rm cm}^{-1}$ and most were much better. For all the lines contained in the data set, the agreement between the calculated uncertainty in the prediction and the expected experimental uncertainty was satisfactory except for the data points listed in Table I. While only one of these data points is dramatically bad (the rest are off by about 0.05 cm⁻¹), they are all substantially worse than the data retained in the analysis. The spectral constants which result from our analysis are shown in Table II and the energy levels calculated from them in Table III. Four places are retained in the energy levels because it has been found that the analyses successfully predict unanalyzed microwave lines to this accuracy.

H₂¹⁶O AND H₂¹⁸O ANALYSES

The $\rm H_2^{18}O$ energy levels shown in Table III result from an analysis very similar to the $\rm H_2^{17}O$ analysis discussed above except that each of the data subsets is larger and a total of 240 data points were analyzed. At the highest J_{τ} it was not possible to establish with certainty the reliability of the infrared data points because of the scattered nature of the data. However, at lower J_{τ} the deviations of several points from the fit were inconsistent with their assigned weights and they were eliminated from the fit. These are shown in Table IV.

The H₂¹⁶O energy levels listed in Table III are those which result from the original analysis (1) of 15 microwave lines and the infrared data available to us at that time.

Levels	Obs-Calc (cm-1)	Ref.
5 ₃₂ - 5 ₂₃	0.054	6
4 ₂₃ - 4 ₁₄	0.049	6
5 ₄₁ - 6 ₄₃	-0. 567	9 ^a

 $[^]a$ The reassignment by Winther (Ref. 6) of one of the transitions of Ref. 9 which leads to the 6_{16} - 8_{18} combination difference seems to be correct and is included in our analysis.

⁴ For a detailed discussion of our analysis technique, see Ref. (1)

 $TABLE\ II$ Rotation and Distortion Constants of the Ground Vibrational State of Water (MHz)

Constant	H ₂ ¹⁶ 0		$\mathrm{H_2}^{17}\mathrm{\odot}$		H ₂ ¹⁸ 0	
	Value ^a	σ	Value ^a	σ	Value ^a	σ
а у С	835 840. 288 435 351.717 278 138.700	0.50 0.45 0.45	830 282.791 435 357.289 277 505.735	1.6 2.6 2.6	825 366. 844 435 356. 685 276 948. 998	1.0 0.8 0.8
$\Delta_{ m J}$	37.59422	0.02	37.59414	0.09	37.54579	0.017
$\Delta_{ m JK}$	-172.9128	0.17	-171.8532	0.3	-171.1683	0.13
\triangle_{K}	973.29052	0.10	960.46634	0.5	949.88229	0.2
$\delta_{ m J}$	15.21040	0.010	15.34663	0.04	15.23181	0.011
δK	41.0502	0.15	41.4538	1.2	38.8850	0.2
H _J •(10 ²)	1.56556	0.020	1.82110	0.12	1. 53906	0.019
H _{JK} ·(10 ²)	- 4.2081	0.6			-3, 1738	0.4
H _{KJ} ·(10 ¹)	-5.09508	0.10	-6.42468	2.6	-5.21898	0.12
H _K (10 ⁰)	3.733028	0.008	3.745123	0.06	3.624767	0.017
$n_{J} \cdot (10^3)$	7.79579	0.09	10. 18803	0.6	8.04641	0.14
$n_{\rm JK} \cdot (10^2)$	-2.5165	0.11	3.7859	2.4	-2.4187	0.25
n _K ·(10 ⁰)	1.0971	0.03	1. 1495	0.13	1.0488	0.04
$L_{\rm JK} \cdot (10^3)$	-3.0647	0.46			-4.6449	0.6
$L_{KKJ} \cdot (10^2)$	1.02952	0.12			1.46700	0.16
L _K ·(10 ²)	-2.340138	0.08	-1.517327	0.17	-2.617359	0.11
' _J ·(10 ⁶)					-2.59	0.8
$I_{\rm JK} \cdot (10^4)$			-4.257	2.6		
' _K · (10 ²)	-1.3546	0.10	-0.326	0.2	-1.32008	0.13
K·(10 ⁵)	5, 19841	0.07	4.71660	1.5	5.72244	0.4
$p_{K} \cdot (10^5)$	3.7603	1.0				

^aThe large number of digits retained in the higher order constants is required in order to reproduce the energy levels to experimental uncertainty.

More recent energy levels (10), based upon the high resolution experimental data of Guelachvili (and apparently upon our microwave data, too), result in essentially the same energy levels over the J_{τ} range of the original analysis.

FRALEY-RAO INTERPOLATION RULE

The Fraley-Rao (4) interpolation rule can be stated as

$$\frac{\nu_{17} - \nu_{16}}{\nu_{18} - \nu_{16}} = k \tag{1}$$

Table V shows the result of the application of this rule to the observed microwave transitions of $H_2^{17}O$. It is obvious that large deviations exist. A similar effect has been observed for microwave transitions of D_2O (11). However, critical inspection of the

 $\label{thm:thm:thm:cond} TABLE\ III$ Energy Levels of the Ground Vibrational States of Water (cm^{-1})

	H ₂ ¹⁶ O	H ₂ ¹⁷ 0	H ₂ ¹⁸ O
101 111 110	23.7945 37.1372 42.3718	23.7735 36.9311 42.1870	23.7550 36.7487 42.0235
202 212 211 211 221 20	70. 0911 79. 4965 95. 1762 134. 9019 136. 1642	70.0047 79.2273 94.9706 134.1453 135.4312	69.9276 78.9887 94.7888 133.4759 134.7833
303 313 312 322 321 321 331 330	136, 7622 142, 2788 173, 3665 206, 3019 212, 1568 285, 2199 285, 4191	136.5378 141.9024 173.1102 205.4820 211.4359 283.5615 283.7677	136.3369 141.5682 172.8832 204.7561 210.7995 282.0950 282.3075
404 414 413 423 422 432 431 441 40	222. 0536 224. 8388 275. 4981 300. 3628 315. 7801 382. 5177 383. 8433 488. 1083 488. 1348	221, 6212 224, 3043 275, 1305 299, 4389 315, 0786 380, 8068 382, 1772 485, 2082 485, 2361	221. 2344 223. 8288 274. 8037 298. 6206 314. 4599 379. 2924 380. 7033 482. 6445 482. 6736
505 515 514 524 523 533 532 542 541 551	325. 3489 326. 6261 399. 4591 416. 2094 446. 5114 503. 9687 508. 8127 610. 1160 610. 3428 742. 0744 742. 0777	324.6613 325.8803 398.8787 415.1269 445.7931 502.1802 507.1764 607.1629 607.4014 737.6190 737.6225	324.0472 325.2161 398.3612 414.1689 445.1591 500.5973 505.7298 604.5461 604.7948 733.6817 733.6854
606 616 615 625 624 634 633 643 643 652 652 651 661	446. 6976 447. 2531 542. 9078 552. 9121 602. 7743 648. 9786 661. 5489 756. 7262 757. 7816 888. 6029 888. 6368 1045. 0623 1045. 0627	445. 7193 446. 2446 541. 9946 551. 6058 601. 9598 647. 0694 753. 7094 754. 8182 884. 0865 884. 1228 1038. 7644 1038. 7648	444.8467 445.3467 541.1810 550.4519 601.2382 645.3837 658.6111 751.0354 752.1899 880.0806 880.1189 1033.1986 1033.1991
707 717 716 726 725 735 734 744 743 753 752 762 761 771	586. 2446 586. 4800 704. 2166 709. 6092 782. 4110 816. 6931 842. 3560 927. 7438 931. 2371 1059. 6510 1059. 8398 1216. 1996 1216. 2043 1394. 8190 1394. 8191	584. 9403 585. 1610 702. 8811 708. 0092 781. 3750 814. 6007 840. 8691 924. 6402 928. 3024 1055. 0641 1055. 2667 1209. 8270 1209. 8322 1386. 4179 1386. 4179	583.7782 583.9869 701.6952 706.5992 780.4530 812.7628 839.5505 921.8983 925.7023 1050.9958 1051.2086 1204.1766 1204.1821 1378.9899

TABLE III—Continued

	H ₂ ¹⁶ 0	H ₂ ¹⁷ 0	H ₂ ¹⁸ 0
808 818 817 827 826 836 835 845 844 854 854 863 863	744.0648 744.1636 882.8934 885.6017 982.9139 1006.1139 1050.1580 1122.7063 1131.7742 1255.1689 1255.9137	742. 3976 742. 4895 881. 0929 883. 6428 981. 4921 1003. 7614 1048. 6671 1119. 4733 1128. 9465 1250. 4961 1251. 2943	740.9125 740.9989 879.4956 881.9156 980.2218 1001.7065 1047.3304 1116.6389 1126.4425 1246.3755 1247.2128
862 872 871 881 880	1411. 6520 1590. 7053 1590. 7059 1789. 0395 1789. 0395	1405.1877 1582.1979 1582.1986 1778.2960 1778.2960	1399. 4754 1574. 6833 1574. 6840 1768. 8142 1768. 8142

energy levels of Table III show that they obey the rule

$$\frac{E_{17} - E_{16}}{E_{18} - E_{16}} = k \tag{2}$$

where $k = 0.5307 \rightarrow 0.5275$. This results directly from

$$\frac{A_{17} - A_{16}}{A_{18} - A_{16}} = 0.5307 \quad \text{and} \quad \frac{C_{17} - C_{16}}{C_{18} - C_{16}} = 0.5275$$

with the change in rotational energy due to isotopic substitution given by

$$\Delta E = \frac{\partial E}{\partial A} \Delta A + \frac{\partial E}{\partial B} \Delta B + \frac{\partial E}{\partial C} \Delta C \tag{3}$$

and $\Delta B \approx 0$ for an on axis isotopic substitution. As a result at high K_{-1} where

Levels	Obs-Calc (cm-1)	Ref.
2 ₂₀ - 1 ₁₁	0.029	6
5 ₂₄ - 4 ₁₃	0.040	6
633 - 524	-0.049	6
7 ₄₄ - 7 ₃₅	0.040	6
8 ₅₄ - 7 ₂₅	-0.041	6
8 ₂₇ - 8 ₁₈	0.042	6
7 ₂₅ - 6 ₂₅	0.047	8
6 ₅₂ - 5 ₅₀	-0.021	9
7 ₂₅ - 6 ₂₅	-0.884	9
8 ₂₇ - 7 ₂₅	0.883	9

TABLE V
Values of the Fraley-Rao Constant for Observed Microwave Transitions

Transition	k
1 ₁₀ - 1 ₀₁	0. 530807
2 ₁₁ - 2 ₀₂	0. 532543
3 ₁₃ - 2 ₂₀	0.532021
4 ₁₄ - 3 ₂₁	0. 536887
4 ₂₃ - 3 ₃₀	0.531228
5 ₁₅ - 4 ₂₂	0.493528
6 ₁₆ - 5 ₂₃	0. 523757

 $\partial E/\partial A = \langle P_a^z \rangle$ is large and $\partial E/\partial C = \langle P_c^z \rangle$ is small, $k \approx 0.5307$. Conversely at low K_{-1} , $k \approx 0.5275$.

Equation (2) can be rewritten for transitions as

$$\frac{\nu_{17} - \nu_{16}}{\nu_{18} - \nu_{16}} = k^l + (k^u - k^l) \frac{E_{18}{}^u - E_{16}{}^u}{\nu_{18} - \nu_{16}}$$
(4)

where the superscripts refer to the upper and lower energy levels of the transition. The correction term is large in regions where the dominant terms of Eq. (3) are changing, especially for transitions whose frequency changes little upon isotopic substitution. The lines of Table V which show the greatest deviations from Eq. (1) are the same lines that Eq. (4) predicts to have these variations.

COMPARISON WITH OTHER ENERGY LEVELS AND CONCLUSIONS

Our original $H_2^{17}O$ analysis was based upon our measured microwave data and distortion constants calculated from the $H_2^{16}O$ and $H_2^{18}O$ analyses. A comparison between the energy levels which resulted from this and those of Table III show exceedingly close agreement (typically 0.002 cm⁻¹) up to the 5_{41} level. At higher J_{τ} the agreement is still good (typically 0.002 cm⁻¹ at low K_{-1} up to 0.02 cm⁻¹ at high K_{-1}) except for the 6_{61} and 6_{60} levels. These are lower by 0.17 cm⁻¹ in our latest analysis. This is because our earlier analysis of $H_2^{18}O$ was perturbed by infrared energy levels for 6_{60} and 6_{61} which were high by 0.30 cm⁻¹ compared to the $H_2^{18}O$

 $TABLE\ VI$ Comparison of Observed Energy Levels with those Calculated from Eq. (2) (cm⁻¹)

State	Observed	Calculated	Difference
110	42.1870	42.1870	0.0000
220	135.4312	135.4313	-0.0001
330	283.7677	283.7678	-0.0001
440	485.2361	485.2365	-0.0004
5 ₅₀	737.6225	737.6239	-0.0014
660	1038.7648	1038.7667	-0.0019
770	1386.4179	1386. 4186	-0.0007
880	1778. 2960	1778.3059	-0.0099

energy levels shown in Table III. For medium values of J_{τ} the energy levels of Refs. (6) and (8) differ from the levels of Table III by substantially more (typically $0.01~{\rm cm}^{-1}$) than do our earlier energy levels. The energy levels of Ref. (6), which extend to higher J_{τ} than those of Ref. (8), deteriorate somewhat relative to the values of Table III, but all agree to within $0.05~{\rm cm}^{-1}$ or better.

It is to be expected that our latest analysis is better than previous analyses because it contains the earlier data sets as subsets and because our analysis technique makes possible rather sensitive tests for bad data points and substantially reduces the degrees of freedom. It is perhaps somewhat surprising that our earlier analysis was so good.

Since all of the energy levels of the three isotopes were calculated independently, one check of their accuracy and also of the accuracy of Eq. (2) can be accomplished by the use of the $\rm H_2^{16}O$ and $\rm H_2^{18}O$ energy levels in this equation to calculate the energy levels of $\rm H_2^{17}O$. Since it is most difficult to get good energy levels at high K_{-1} and since the isotopic splittings of the energy levels are also greatest there, the most stringent test would be the J_{J0} levels. The close argument shown in Table VI between the energy levels calculated directly from the $\rm H_2^{17}O$ data and the levels calculated via Eq. (2) confirms both the accuracy of this relation and the quality of the energy levels for all three species.

RECEIVED: November 18, 1977

Note added in proof. The problems in our earlier analysis of $H_2^{18}O$ have recently been attributed (J.-M. Flaud, C. Camy-Peyret, and R. A. Toth, J. Mol. Spectrosc. 65, 219 (1977)) to the heavy weights assigned the microwave data in that analysis. In fact, as shown above, the errors in the literature of $0.30~\rm cm^{-1}$ in the infrared energies of 6_{60} and 6_{61} perturbed several of the higher order distortion constants and some of the energy levels closely associated with 6_{60} and 6_{61} . All analyses reported in this paper contain heavily weighted microwave data, and, as demonstrated above, excellent agreement among the isotopes result. All checks of isotopic agreement were performed after each isotopic analysis was final, and no adjustments at subjective points in the data analysis were carried out with isotopic agreement as an objective.

REFERENCES

- 1. F. C. DE LUCIA, P. HELMINGER, R. L. COOK, AND W. GORDY, Phys. Rev. A5, 487 (1972).
- 2. F. C. DE LUCIA AND P. HELMINGER, J. Mol. Spectrosc. 56, 138 (1975).
- 3. F. C. DE LUCIA, P. HELMINGER, R. L. COOK, AND W. GORDY, Phys. Rev. A6, 1324 (1972).
- 4. P. E. Fraley, K. Narahari Rao, and L. H. Jones, J. Mol. Spectrosc. 29, 312 (1969).
- 5. J. G. WILLIAMSON, K. NARAHARI RAO, AND L. H. JONES, J. Mol. Spectrosc. 40, 372 (1971).
- 6. F. WINTHER, J. Mol. Spectrosc. 65, 405 (1977).
- 7. F. J. Anscombe and W. Tukey, Technometrics 5, 141 (1963).
- 8. R. A. Toth, J. M. Flaud, and C. Camy-Peyret, J. Mol. Spectrosc. 67, 185 (1977).
- 9. C. Camy-Peyret, J. M. Flaud, G. Guelachvili, and C. Amiot, Mol. Physics 26, 825 (1973).
- 10. J. M. Flaud, C. Camy-Peyret, and J. P. Maillard, Mol. Physics 32, 499 (1976).
- 11. J. Bellet, W. J. Lafferty, and G. Steenbeckeliers, J. Mol. Spectrosc. 47, 388 (1973).