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Abstract

Chlorine nitrate has two low-lying vibrational modes that lead to a series of Fermi resonances in the 9y9 7y7 family of levels that include the

92 , 71 and 93 , 7191 dyads and the 94 , 9271 , 72 and 95 , 9371 , 9172 triads. These states, along with the ground and 91 vibrational

states, have been previously analyzed with millimeter and submillimeter wave spectroscopy and provide a substantial body of data for the

investigation of these resonances and their impact on calculated spectroscopic constants and structural parameters. Due to fitting

indeterminacies, these previous analyses did not include the main Fermi resonance interaction term. Consequently, the fitted rotational

constants are linear combinations of the unmixed rotational constants of the basis vibrational states. In this paper, we have calculated the

contributions of the Fermi resonances to the observed rotational constants in a model that determines the vibrational–rotational constants,

the Fermi term and the mixing between interacting vibrational states, the cubic potential constant ðf997Þ that connects interacting levels

through a Fermi resonance, and the inertial defects. These results agree with predictions from ab initio and harmonic force field calculations

and provide further experimental information for the determination of the fundamental molecular properties of chlorine nitrate.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Infrared and microwave spectroscopy began as rather

separate disciplines, each with its own science: the infrared

studying vibrational physics and the microwave the

rotational degrees of freedom. However, there is now

considerable overlap in the information content due to the

growth in resolution of infrared techniques and in

sensitivity, spectral coverage, and speed of microwave

techniques. These experimental advances provide the

spectroscopic community with significant opportunities

for the development of a unified understanding of the

ro-vibrational structure of molecules. Additionally, with the

increased speed, power, and availability of ab initio

calculations, the quantum chemistry and spectroscopy

communities can support each other in the determination

of fundamental molecular properties.

1.1. Diatomics—fundamental Hamiltonians

Ro-vibrational spectroscopy was an early focus of

molecular spectroscopy, but in the context of exploring

the new subject of quantum mechanics, with molecular

structure at the core. This was especially true for diatomic

molecules, which were especially amenable to detailed

calculation [1–4]. For example, in the context of an

expansion of the intermolecular potential

UðjÞ ¼ a0j
2ð1 þ a1jþ a2j

2 þ a3j
3 þ · · ·Þ

Dunham obtained an explicit relation for the ro-vibrational

energy levels

EyJ

h
¼

X
l;m

Yl;m y þ
1

2

� �l

JmðJ þ 1Þm ð1Þ

and relationships among the potential constants, the Yl;m;

and the parameters, such as Be; which described the

molecular structure. Additionally, these relations were
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widely exploited to obtain the best molecular description

from weighted least squares fit of data taken from both

vibrational and rotational spectroscopy [5,6].

1.2. More complex molecules—effective Hamitonians

The construction of the more general asymmetric rotor

Hamiltonian also started from structural considerations

[7,8] and evolved to the general form of the vibration-

rotational Hamiltonian derived by Watson [9].

Through contact transformations and perturbation theory,

a reduced form of the effective rotational Hamiltonian

can be determined which provides detailed expressions

for the centrifugal distortion constants and the vibrational

dependence of the principle rotational constants for

asymmetric rotors [10,11]. This treatment provides a

basic relationship for the dependence of the effective

rotational constants on the vibrational quantum numbers

and is given by

by ¼be 2
X

i

a
b
i ðy i þ1=2Þþ

X
j$i

g
b
ijðy i þ1=2Þðy j þ1=2Þþ…

ð2Þ

where by ¼Ay ;By ;Cy is a rotational constant for vibrational

state y;be is the equilibrium rotational constant, a
b
i and g

b
ij

are the linear and second-order vibration–rotation inter-

action constants, y i and y j are the vibrational quantum

numbers and the summation indices i and j are over the

normal modes of the molecule. This expression applied to the

9y9 7y7 family of levels can be written as

by9y7
¼b0 2 y9a

b
9 þ y9ðy9 þ1Þg

b
99 2 y7a

b
7 ð3Þ

where b0 is the ground state rotational constant and we have

only included constants that were fit for in this work.

While these expressions are of the same form as the

leading terms of Eq. (1), the additional complexity of the

problem precluded the development of the relations

between the ‘rotational’ and ‘vibrational’ terms to sufficient

accuracy for combined fits to fundamental parameters.

These complexities are due to the large number of normal

modes, resonances between states, and differing effective

Hamiltonian models that include the consideration of the

Watson reduction and centrifugal distortion [11]. The net

result has been the highly successful fitting of massive

amounts of accurate data to effective Hamiltonians with

large numbers of adjustable parameters, many of which only

have a passing acquaintance with any fundamental molecu-

lar property.

1.3. Mixing and perturbations

It is often possible to accurately account even for highly

mixed and perturbed spectra without explicit consideration

of the perturbation. Often the effects of weak perturbations,

especially those whose energy level crossings are at

relatively high J; are absorbed into the rotational and

distortional constants. Two states that interact via a Fermi

resonance are particularly difficult to model with physical

meaning due to the fitting indeterminacy between the

unperturbed band origin difference and the Fermi

interaction constant.

However, this indeterminacy can be lifted with explicit

spectroscopic information about the mixing of the two

states. A primary example is the 92 , 51 Fermi resonance in

nitric acid. In this case, the torsional splitting in the pure

rotational spectrum of the 92 state is induced onto the 51

state through a Fermi resonance, allowing a

direct determination of the mixing between the two states

[12,13]. An additional measurement of the infrared intensity

ratios between the n5 2 n0 and 2n9 2 n0 bands reveals the

same mixing ratio since the overtone band borrows intensity

from the fundamental band through the same mixing

mechanism [12].

However, in the case of chlorine nitrate, the torsional

splitting is too small to be observed, even in the pure

rotational spectra. Additionally, no detailed information on

the infrared band intensities in this spectral region

(200–300 cm21) has been published that might be used to

calculate the Fermi mixing.

Fortunately, another method of removing the fitting

indeterminacy is available through a global analysis of the

rotational constants. This includes the model of Eq. (3) of

the vibration–rotation interaction, constrained by the

interaction terms that model the mixing due to the Fermi

resonances. This method is similar to those found in Townes

and Schawlow [14] and Blanco et al. [15].

This paper will focus on the impact of Fermi

resonances on spectroscopically determined rotational

constants in the context of a series of Fermi resonances

in the 9y 9 7y 7 family of levels in chlorine nitrate. A model

is presented that uses the perturbed rotational constants

determined from the several separate spectroscopic

analyses and Eq. (3) to calculate the unperturbed

rotational constants, the vibration–rotation parameters,

and the Fermi interaction constants. From these fitted

parameters and the fitted band origin differences,

the cubic potential constant and the inertial defects of

each state are also calculated. These results compare

favorably with harmonic force field analyses and ab

initio calculations.

2. Methods

The results of previous millimeter and submillimeter

wave analyses of the ground state, 91, 92 , 71 and

93 , 7191 dyads and the 94 , 9271 , 72 and

95 , 9371 , 9172 triads used in the work can be found in

Refs. [16–21] for the 35Cl isotope. Details of each analysis

can be found in the literature and the relevant aspects are

summarized here. Each analysis used a Watson S-reduced
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Hamiltonian in the Ir representation. The ground and 91

states were found not to be perturbed while the remaining

dyads and triads included higher order anharmonic

resonances and, in some cases, higher order Coriolis

interaction terms. Each dyad/triad was fit with the

philosophy of using a minimal number of spectroscopic

constants while reproducing the millimeter and

submillimeter wave spectrum to experimental accuracy.

A fundamental fitting indeterminacy (100% correlation)

between the band origin difference and the Fermi resonance

term prevented the simultaneous determination of both

parameters in the case of chlorine nitrate. Because of this

indeterminacy and without a priori knowledge of the

unperturbed band origins or the Fermi interaction constant

(the cubic potential constant), only the difference in the

perturbed band origins was fit in each analysis. Higher order

anharmonic resonance interactions included in the analyses,

i.e. those with J and K dependence or localized resonances,

allowed the determination of the perturbed band origin

differences in all cases but the 95 level, where an insufficient

number of locally perturbed rotational levels were

measured. Exclusion of the Fermi resonance term

significantly affects the rotational and distortional constants

for each state with the rotational constants being a linear

combination of the unperturbed constants. Similar

correlations with the rotational constants prevent the

determination of the first order Coriolis interaction terms;

however, neglecting this interaction term does not

significantly affect the rotational constants.

To model the perturbed rotational constants, we used a

method similar to the one described in Townes and

Schawlow [14] and Blanco et al. [15], in which the

perturbed rotational constants were corrected by fitting for

a Fermi resonance constant between interacting states and

modeling the vibrational dependence of the rotational

constants by Eq. (3). In this model, each rotational constant

by ¼ Ay ,By ,Cy of two interacting states has the same

mixing parameter, as shown in the Hamiltonian block

matrix of Fig. 1. The on-diagonal terms are the unperturbed

rotational constants and the off-diagonal terms depend on

the Fermi resonance. This mixing results in the observed

rotational constants.

The effect of the Fermi resonance on the rotational

constants can be derived by considering two interacting

states in a 2 £ 2 matrix that results in the mixing of the

vibrational wavefuctions given by

c1 ¼ ac0
1 þ bc0

2

c2 ¼ bc0
1 2 ac0

2

where ci and c0
i are the perturbed and unperturbed

vibrational wave functions and a and b are the wavefuction

coefficients describing the mixing and are related by the

expression a2 þ b2 ¼ 1: This leads to an averaging of

the unperturbed rotational constants given by

b0
y 9y 7

¼ a2by 9y 7
þ b2by 0

9
y 0

7

b0
y 0

9
y 0

7
¼ b2by 9y 7

þ a2by 0
9
y 0

7

where b0 and b are the perturbed and unperturbed rotational

constants. This mixing can be parameterized as a shift in the

rotational constants expressed as

D
b

y 0
9
y 0

7
$y 9y 7

¼ ðby 0
9
y 0

7
2 by 9y 7

Þða2
y 0

9
y 0

7
$y 9y7

2 1Þ ð4Þ

where ðby 0
9
y 0

7
2 by9y 7

Þ is the difference in the unpertubed

rotational constants and a2
y 0

9
y 0

7
$y 9y 7

is the fractional mixing

between the two states. The fractional mixing is given by

a2
y 0

9
y 0

7
$y 9y 7

¼
1

2
1 þ 1 þ

4W2
y 0

9
y 0

7
$y 9y 7

DE2
y 0

9
y 0

7
$y 9y 7;0

0
@

1
A

2
1
2

2
664

3
775 ð5Þ

where DEy 0
9
y 0

7
$y 9y 7;0

is the unperturbed band origin differ-

ence and Wy 0
9
y 0

7
$y 9y 7

is the Fermi resonance term. In the

limit of a large Fermi resonance, a2
y 0

9
y 0

7
$y 9y 7

! 1=2 indicating

a 50/50 mixing and the rotational constants of the two

interacting states are averaged together to identical values.

The least squares fit of the perturbed rotational constants

was made by constructing a design matrix for each

rotational constant that was a function of the vibration–

rotation interaction constants of Eq. (3) and the shifts in the

rotational constants due to the Fermi interactions given by

Eq. (4). The general expression for the perturbed rotational

constant is

b0
y 9y 7

¼ b0 2 y 9a
b
9 þ y 9ðy 9 þ 1Þg

b
99 2 y 7a

b
7 ^ D

b

y 0
9
y 0

7
$y 9y 7

ð6Þ

Fig. 1. Block matrix Hamiltonian of the rotational constants due to the

systematic structural f997 Fermi resonances in chlorine nitrate.

The on-diagonal terms are the rotational constants, b ¼ A;B;C; for each

respective state given by Eq. (3), and the off-diagonal Di terms represent

the shift in the rotational levels due to the Fermi resonances given by

Eq. (4). These Fermi terms were not fit for in the original spectral analyses

in Refs. [19–21].
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As an example, the equations corresponding to the 92 , 71

dyad used in constructing the design matrix are

b0
20 ¼ b0 2 2a

b
9 þ 6g

b
99 þ D20$01

and

b0
01 ¼ b0 2 a

b
7 2 D20$01

where

D
b
02210 ¼ ðb20 2 b01Þða

2
20$01 2 1Þ:

The Fermi resonance is given by the vibrational matrix

element

W ¼ y 7; y 9l
1

2
f799q2

9q7ly 7 2 1; y 9 þ 2

� �

¼
f799

4
ffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y 7ðy 9 þ 1Þðy 9 þ 2Þ

p
ð7Þ

where f799 is the cubic potential constant. While each Fermi

resonance depends on the same cubic potential constant,

each interaction was treated as a free parameter resulting in

the index i for the above Fermi interaction parameters Di,

included in Fig. 1. The reason for the extra degrees of

freedom is this fit relates back to the effective Hamiltonian

models used in the previously published analyses. Due to

large correlations with rotational and distortional constants,

most on-diagonal Fermi resonance terms (i.e. those with

DKa ¼ 0) were not included in the analyses. These terms

also affect the rotational constants preventing a more

accurate determination of the cubic potential constant in

this study.

3. Results

Table 1 shows the spectroscopically observed rotational

constants, residuals of the least squares fit to equations of

the form of Eq. (6) and the contribution, D
b

y 0
9
y 0

7
$y 9y 7

; to each

rotational constant due to the mixing. Note that for each

dyad or triad, the D
b

y 0
9
y 0

7
$y 9y7

contributions sum to a value

close to zero. The vibration–rotation interaction and Fermi

interaction parameters determined by the least squares fit to

the rotational constants are given in Table 2. The linear

vibration–rotational constants were determined both for

the y 9 and y 7 modes for each rotational constant while the

only non-linear term used was for the A rotational constant

for the y 9 series of levels. Figs. 2–4 show these results

graphically. It is noteworthy that at the scale of the graph

the difference between the spectroscopically observed

constants and those calculated by the model are very

small, while in contrast, the differences between the

unperturbed case represented by the line and these points

are significant. Obvious residuals persist that cannot be

improved upon by the inclusion of higher-order non-linear

vibration–rotation interaction constant, i.e. gB
9 or gC

9 :

This may be a result of the step- wise analysis procedure

used here. In Section 4 we will discuss a more global fitting

approach.

Table 3 shows the band origin differences (which were

calculated in our earlier analyses of the several dyads and

triads) and the mixing coefficients calculated in this work.

The table also shows the Fermi matrix element coupling the

vibrational levels calculated from them, and finally,

the cubic potential constant determined via Eq. (7).

The good agreement among these separately determined

values for the cubic potential constant is gratifying.

Table 1

The rotational constants used in the least squares fit to determine the

vibration–rotation and Fermi interaction constants

State Constant Obs.–Calc. Di
a

A rotational constant

gs 12105.78446(768) 20.1378 20.1378

91 12004.63991(1438) 20.1024 20.1024

71 12116.8725(164) 0.1479 28.2066

92 11932.9734(175) 0.0655 227.9930

7191 11998.2681(138) 0.0921 245.4175

93 11851.6172(41) 0.1119 45.6217

94 11772.9283(37) 0.0034 64.4998

7192 11959.46541(253) 20.0057 15.7553

72 12103.60378(35) 0.0523 280.2050

95 11693.9923(203) 20.0172 81.9265

7193 11867.0666(301) 20.0811 22.1272

7291 11978.3477(289) 20.1290 2104.2812

B rotational constant

gs 2777.000984(1235) 0.1346 0.1346

91 2776.814837(1824) 20.2907 20.2907

71 2771.27229(73) 0.4760 1.3454

92 2776.26133(67) 20.2140 21.0834

7191 2771.22763(43) 20.3587 1.0615

93 2776.03342(301) 20.1303 21.5505

94 2775.884392(47) 0.0946 21.9388

7192 2769.996541(50) 0.0374 20.4087

72 2766.01697(49) 0.5500 3.0296

95 2775.83434(35) 0.3821 22.2280

7193 2769.89706(61) 20.1072 20.7474

7291 2765.90321(49) 20.5737 2.6766

C rotational constant

gs 2258.151052(1286) 0.2176 0.2176

91 2262.133054(181) 20.3201 20.3201

71 2251.95469(52) 0.5362 2.6014

92 2264.61104(50) 20.2967 22.3618

7191 2256.86549(33) 20.3811 2.9924

93 2267.908567(252) 20.2105 23.5840

94 2271.275128(41) 0.0927 24.7372

7192 2257.327026(44) 20.0060 21.0657

72 2247.233155(43) 0.5703 6.4600

95 2274.83991(34) 0.5078 25.6922

7193 2261.26121(15) 20.1306 21.6512

7291 2252.43393(44) 20.5795 7.1410

The rotational constants for the 35Cl isotope are from the analyses

Refs. [18–21] with the number in parentheses the standard deviation of the

constant reported in the reference.
a Departure from the unperturbed vibration–rotation model due to the

Fermi Resonance given by Eq. (4). Note that the sum of the differences

within each dyad or triad is close to zero.
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From these five values we calculated the cubic potential

constant to be f997 ¼ 20:5 ^ 1:4 cm21:

A second order perturbative anharmonic analysis using

GAUSSIAN 03 [22] was performed at the B3LYP level with

a 6-31G(d) basis set to calculate both the cubic potential

and vibration–rotation interaction constants. The results of

this calculation compare favourably with results from the

above analysis with a direct comparison provided in

Table 4. Additionally, we compared our results with

predictions from two experimentally determined harmonic

force field analyses. The inertial defects were calculated

from the fitted rotational and vibration–rotation interaction

constants and are in agreement with those calculated

by Muller, et al. [18]. Orphal, el al. [23] predicted

the vibration–rotation interaction constant for y 9; which

is also in agreement with our fit. Both of these comparisons

are also provided in Table 4.

4. Discussion

In Section 1 we noted that for diatomic molecules not only

has it been common to directly combine infrared and

microwave data but to do so in the context of a unified and

Fig. 4. The C rotational constants used in this analysis. The £ are the

rotational constants from the analyses in Refs. [18–21], the open circles (W)

are the fitted 9y 9 series, the open squares (A) are the 719y 9 series of states,

and the open triangles (K) are the 729y 9 series of states. The solid lines

represent the behaviour of the unperturbed rotational constants (without

Fermi resonances) as a function of vibrational state (or the vibrational–

rotational constants). The residuals are on an expanded scale.

Fig. 3. The B rotational constants used in this analysis. The £ are the

rotational constants from the analyses in Refs. [18–21], the open circles (W)

are the fitted 9y 9 series, the open squares (A) are the 719y 9 series of states,

and the open triangles (K) are the 729y 9 series of states. The solid lines

represent the behaviour of the unperturbed rotational constants (without

Fermi resonances) as a function of vibrational state (or the vibrational–

rotational constants). The residuals are on an expanded scale.

Fig. 2. The A rotational constants used in this analysis. The £ are the

rotational constants from the analyses in Refs. [18–21], the open circles (W)

are the fitted 9y9 series, the open squares (A) are the 719y 9 series of states,

and the open triangles (K) are the 729y 9 series of states. The solid lines

represent the behaviour of the unperturbed rotational constants (without

Fermi resonances) as a function of vibrational state (or the vibrational-

rotational constants). The residuals are on an expanded scale.

Table 2

Fitted vibration–rotation interaction constants and mixing coefficients

Parameter Value (MHz)

A0 12105.92(36)

aA
9 102.38(59)

gA
9 0.60(12)

aA
7 239.94(59)

B0 2776.87(26)

aB
9 20.239(82)

aB
7 6.94(14)

C0 2257.93(26)

aC
9 24.520(84)

aC
7 8.58(18)

a2
20$01 0.8828(23)

a2
30$11 0.8085(24)

a2
40$21 0.7259(47)

a2
21$02 0.6657(42)

a2
50$31 0.6481(58)

a2
31$11 0.5618(49)

Numbers in parentheses are one standard deviation as obtained by the

least squares fit; the subscripts for the mixing coefficient represent

y 09y
0
7 $ y 9y 7:
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coupled Hamiltonian, that these relations reduced the number

of parameters required to describe the data, and that in

general more reliable and stable analyses resulted. We have

also noted the difficulty of developing equations analogous to

the Dunham relations for more complicated molecules.

However, we have shown above that if the perturbations

are properly accounted for in the Hamiltonians of interact-

ing states, a related reduction in the number of parameters

results. We have also shown that the resulting parameters

are in much better agreement with the results of ab initio

theory that are related to molecular structure and other more

fundamental molecular properties but in a more numerical

way than in the analytical Dunham relations. The agreement

with ab initio calculations also provides support for the

method of supplementing experimental rotational constants

with vibration–rotation interaction constants calculated

from ab initio force fields to determine the equilibrium

structures as demonstrated by Groner and Warren [24] and

Pawlowski, et al. [25].

A better model might be a global analysis that is

inclusive of all pure rotational and ro-vibrational spectral

data with the constraints of Eq. (6) placed on spectroscopic

constants. For the 12 vibrational states 9y 9 7y7 below 9172;

this would be equivalent to fitting for the 16 parameters of

Table 2 in place of 36 individual rotational constants.

Furthermore, if one makes the plausible argument that the

fractional change in constants at all orders should be related

to the fractional structural changes, consideration of

Figs. 1–3 places these changes at a few percent for the

rotational constants. Although strong arguments can be made

against setting undeterminable high order parameters at the

ground state constants in individual fits, if the perturbations

which cause large variations among observed spectroscopic

parameters are accounted for in the fit, then expansions of the

form of Eq. (2) can be used to reduce the degrees of freedom

in the fits due to centrifugal distortion as well. Indeed, since

the fractional uncertainty in distortion constants is typically

orders of magnitude larger for distortion constants, in many

cases these expansions will have no terms.

While such reductions might a first blush seem of minor

academic interest, in many real spectroscopic problems the

assignment of the rotational structure in high lying states is

difficult for both microwave and infrared spectroscopists.

Typically, as an assignment tool one uses information from

lower lying states to project the location of lines in as yet

unassigned states. Although strategies vary, many are

equivalent to using only the linear a
b
i terms of Eq. (2).

Table 4

Comparison between fitted vibration–rotation interaction constants and

inertial defects with ab initio and harmonic force field calculations

Constant Observeda ab initiob Predictedc

f997 ^20.5(1.4) 218.42 –

aA
9 102.38(59) 132.36 91.1

aB
9 20.239(82) 20.779 0.00

aC
9 24.520(84) 23.268 24.71d

aA
7 239.94(59) 235.14 –

aB
7 6.94(14) 2.85 –

aC
7 8.58(18) 6.92 –

D9 20.702(32) – 20.692384

D7 0.613(37) – 0.566828

a Determined by the least squares fit with the inertial defects calculated

using the results of Table 2; numbers in parentheses are the estimated

uncertainties; f997 was determined statistically from the results in Table 3

and the sign is not determinable.
b Using GAUSSIAN 03 and the B3LYP/6-31(d) method with the

anharmonic force field calculation included.
c The inertial defect, D, predictions are from Ref [18] and the a

predictions are from Ref. [23].
d The sign of aC

9 from the latter reference has been changed to account for

different sign conventions used in that study [26].

Table 3

Vibrational energy band differences, mixing coefficients, the calculated

Fermi interaction parameters and the calculated cubic potential constant

States DE (cm21)a a2 (mixing) W (cm21)b f997 (cm21)c

92 , 71 16.805128(26) 0.8828(23) 5.402(46) 21.61(19)

93 , 7191 24.338505(18) 0.8085(24) 9.570(46) 22.10(11)

94 , 9271 28.1460(12) 0.7259(47) 12.555(67) 20.50(11)

9271 , 72 14.5727166(14) 0.6657(42) 6.874(22) 19.444(61)

95 , 9371 – 0.6481(58) – –

9371 , 9172 23.2405(24) 0.5618(49) 11.531(14) 18.830(23)

a FromRefs. [19–21] with onestandard deviationuncertainties in all cases.
b Calculated from a2 and DE using Eq. (5).
c Calculated from Eq. (7).

Fig. 5. Stick spectra with arrows showing the shifts induced by perturbations from the unperturbed positions (bold lines) to the observed positions (lighter lines).
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Consider for example Fig. 5. The right side of the figure

shows a progression of lines in the 9y9 family of transitions.

The arrows show the shifts from the positions calculated

from the unperturbed model to the observed positions that

include the effects from the Fermi resonances. These shifts

are both significant and irregular. Similar shifts are shown

for the 9y9 7y 7 families. Thus, an understanding of the impact

of these perturbations on the observed spectra is an

important tool in the assignment of weak spectra in highly

excited states.

5. Summary

We have used the extensive mm/submm data set of

ClONO2, which extends over a large number of vibrational

states, to show that many of the state-to-state variations

among the spectroscopically observed spectral constants

arise not from fundamental structural differences, but rather

from mixings induced by perturbations. We have also

shown with the removal of these perturbation induced

changes that reasonably ‘normal’ variations result and that a

significant reduction in the number of parameters which

describe these states is possible. Additionally, the removal

of the perturbation contribution to the spectroscopic

parameters substantially increases their agreement with

spectroscopic parameters calculated by numerical methods

from molecular structure.
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