New Measurements on the Frequency Doubling in the First Excited S–S Stretching State of HSSH PETRA MITTLER, GISBERT WINNEWISSER, AND KOICHI M. T. YAMADA I. Physikalisches Institut, Universität zu Köln, Zulpicher Strasse 77, D-5000 Köln 41, Federal Republic of Germany #### AND ## **ERIC HERBST** Department of Physics, Duke University, Durham, North Carolina 27706 More than 300 rotational transitions in the first excited S-S stretching state ($v_s = 1$) of the internal rotor disulfane (HSSH), occurring at frequencies up to 420 GHz, have been measured, most for the first time. The frequency doubling due to torsion in the rQ_0 branch of transitions has been studied through J = 75 and has been found to have a small dependence on the rotational quantum number, which was not apparent in older data. In a previous paper it was shown that the size of the frequency doubling in the $v_s = 1$ state could be explained by a Fermi-type coupling with the manifold of torsionally excited states. Here we show that this mechanism is also capable of explaining the rotational dependence of the frequency doubling. © 1990 Academic Press, Inc. ## I. INTRODUCTION The rotational and torsional-rotational spectra of the nearly perfect accidentally prolate symmetric top disulfane (HSSH) have proved to be of considerable interest and have led to an understanding of the potential for torsional motion (1, 2). The c-type rotational spectra for a variety of vibrational states show a frequency doubling, which is very small in the ground state (0.150 MHz) but is more pronounced in states that are torsionally excited and are characterized by torsional quantum number $v_t > 0$. The frequency doubling derives from the sum of two nearly identical splittings in torsional energy sublevels, which we have discussed previously (1, 2). These energy splittings are labelled Δ ($\tau = 4-1$) and Δ ($\tau = 3-2$), where the quantum number τ characterizes the four torsional sublevels associated with each value of v_t in ascending order, only two of which ($\tau = 1, 4$) exist for even values of the prolate quantum number K and two of which ($\tau = 2, 3$) exist for odd values of this quantum number (1, 2). The torsional selection rules are $\tau = 3 \leftrightarrow 1$ and $2 \leftrightarrow 4$ (1). Recently, we undertook a theoretical investigation to explain the large size of the frequency doubling seen in the rotational spectrum of the first excited S-S stretching state $(v_s = 1)(3)$. We showed that the frequency doubling can derive from a potential (Fermi-type) coupling between the $v_s = 1$ state and the manifold of torsionally excited states $(v_t > 0)$ in which the torsional sublevel energy splitting is much larger than in All rights of reproduction in any form reserved. $v_s = 1$ (3). Specifically, we demonstrated that to second order, $\Delta \nu$, the frequency doubling in the $v_s = 1$ state, is given approximately by the equation $$\Delta \nu \approx \Delta \nu^{(0)} + \sum_{v_{t}} \frac{\left\{ \Delta \nu_{v_{t}}^{(0)} - \Delta \nu^{(0)} \right\} |\langle v_{t} | \mathcal{H}' | v_{s} = 1 \rangle|^{2}}{\left[E^{(0)} \left(v_{s} = 1 \right) - E^{(0)} (v_{t}) \right]^{2}}, \tag{1}$$ where the superscript (0) indicates zeroth order, $\Delta \nu_{v_t}$ is the frequency doubling in the rotational spectrum of the torsional state characterized by v_t , $E^{(0)}$ is the zeroth-order energy of a vibrational state, \mathcal{H} is the perturbation operator that couples the $v_s = 1$ state and the torsional states (see Eq. (2) in Ref. (3)), and the sum is over all excited torsional states ($v_t \ge 1$). Equation (1) pertains if the perturbation matrix elements and energy denominators for the separate expressions for $\Delta(4-1)$ and $\Delta(3-2)$ are approximately the same (3). Since the $v_s = 1$ state involves no torsional excitation in zeroth order, $\Delta \nu^{(0)}$ is equal to the small observed frequency doubling in the ground state (0.150 MHz). The matrix elements of \mathscr{H} have been calculated with the aid of quantum chemical techniques (3). It was found that the coupling element was by far strongest for the v_t = 2 state, lying 808 cm⁻¹ above the ground vibrational state and ≈ 300 cm⁻¹ above the v_s = 1 state. With the use of calculated matrix elements of \mathscr{H} and experimental values for the other parameters, Eq. (1) was utilized to calculate a value for Δv of 2.2 MHz, which is approximately double the measured value of ≈ 1.00 MHz, obtained over 20 years ago (4). Although the calculated value for the frequency doubling is not in quantitative agreement with the measured value, the uncertainties in the theoretical procedure are large and it was felt that the plausibility of the coupling mechanism was demonstrated by the calculation (3). The experimental data used for comparison with the theoretical work were taken before more modern techniques in millimeter-wave spectroscopy had been developed and it was thought that a reinvestigation of the millimeter-wave spectrum of the $v_s=1$ state of HSSH would be profitable. In this paper, we report the results of this reinvestigation, in which, in addition to new measurements of assorted P and R branches as well as the $^\prime Q_1$ branch, the previously studied $^\prime Q_0$ branch of transitions at 138–140 GHz has been measured up to a much higher J of 75. In the new investigation, a small, mainly quadratic dependence of the frequency doubling on J in the $^\prime Q_0$ transitions has become apparent and we have attempted to ascertain whether this dependence is consistent with the perturbation mechanism of Eq. (1). As discussed below, it appears that our perturbation relation is indeed capable of explaining this weak J dependence. The remainder of this paper is organized as follows. In Section II, we discuss our experimental techniques and the spectral assignment and analysis, whereas in Section III, we first modify Eq. (1) to include rotational effects and then compare the deduced rotational dependence of $\Delta \nu$ for the $'Q_0$ -branch transitions with that measured in the laboratory. # II. EXPERIMENTAL DETAILS The ${}^{\prime}Q_0$ -branch rotational transitions of HSSH in its first excited S-S stretching state ($v_s = 1$) were recorded and assigned through J = 43 at the time when the rotational spectrum of disulfane was first studied (4). However, the greater sensitivity of a present-day digitized millimeter-wave spectrometer permits a more facile recording of the v_s = 1 state P- and R-branch transitions needed for a full rotational analysis. The digitized spectrometer used in this work has been discussed previously (5, 6). Table I contains our newly measured data which consist of rQ_0 - and rQ_1 -branch transitions, as well as transitions from the rP_0 , rR_0 , rP_1 , and rP_2 branches. All transitions are c-type (1). An overview of the newly measured transitions as well as the rQ_0 -branch lines is given in the Fortrat diagram in Fig. 1. The measurement accuracy is estimated to be 10 kHz for unblended lines. A small but relatively uncongested region of the rQ_1 branch near 420 GHz is shown in Fig. 2. Comparison of this digitally obtained spectrum with the analogous grand-state spectrum obtained with a lock-in amplifier 20 years ago (see Fig. 1 of Ref. (7)) serves as a good test of present day sensitivity. In addition, the rotational spectral lines of the v_s = 1 state show the 3:1 intensity alteration seen previously. The samples of HSSH were kindly provided by Dr. Hahn from the Institute for Inorganic Chemistry at the University of Cologne. The 1 MHz frequency doubling caused by torsional motion is apparent in all of the $v_s = 1$ data (see Fig. 2). However, only in the large J range of the ${}^{\prime}Q_0$ -branch series of transitions is there any evidence for a small rotational dependence to the doubling. The rotational dependence of the frequency doubling in the ${}^{\prime}Q_0$ branch is shown in Fig. 3, where it can be seen to have mainly a quadratic dependence on J, which, from theoretical considerations (see Section III), we take to be a J(J+1) dependence. The data in Table I were analyzed by the following procedure. The torsional doubling the ${}^{\prime}Q_0$ -branch series of lines was fit to a power series expression in J(J+1), $$\Delta\nu(J) = 0.8798 \text{ MHz} + 0.0408 \text{ kHz } J(J+1) + 0.00204 \text{ Hz } [J(J+1)]^2$$ $$= 0.8798 \text{ MHz } \{1 + (4.64 \times 10^{-5})J(J+1) + (2.32 \times 10^{-9})[J(J+1)]^2\}, \quad (2b)$$ and the term independent of J, 0.8798 MHz, divided by two to obtain the rotationless splitting of the torsional energy sublevels ($\Delta(4-1)\approx\Delta(3-2)$). The small rotational dependence of the torsional splitting was treated by utilizing two differing sets of Watson S-reduced rotational parameters, one for the upper torsional levels ($\tau=3,4$) and one for the lower levels ($\tau=1,2$). The rotational parameters determined by this effective analysis are listed in Table II. As can be seen from the residuals in Table I, the spectrum is fit well by this approach. An alternative method for analysis of the spectrum would be to utilize only one set of rotational parameters and treat the torsional-rotational Hamiltonian via the internal axis approach (IAM) of Hunt et al. (1,8). ## III. THEORY AND ANALYSIS OF THE 'Q0-BRANCH FREQUENCY DOUBLING Here we discuss whether the perturbation approach to torsional doubling in the v_s = 1 state can account for the rotational dependence seen in the ${}^\prime Q_0$ -branch transitions (Fig. 3). To incorporate rotational effects into Eq. (1), the rotational dependence of terms in both numerator and denominator must be investigated. Since the dominant TABLE I Measured Frequencies for Rotational Transitions in the First Excited S–S Stretching State of HSSH | J K _a K _c <- J K _a K _c | OBSERVE
LOWER | D (MHZ)
UPPER | RESIDUAL
LOWER | (MHZ) a
UPPER | |---|--|--|---|--| | rP ₀ -branch | | | | | | 2 1 1 < 3 0 3
4 1 3 < 5 0 5
15 0 15 < 14 1 13
20 0 20 < 19 1 18
21 0 21 < 20 1 19
22 0 22 < 21 1 20
25 0 25 < 24 1 23
27 0 27 < 26 1 25
28 0 28 < 27 1 26 | 98305.864
70602.995
67805.050
136914.397
150726.592
164535.155
205938.317
233520.230
247304.603 | 70603.869
67804.170
233519.334 | -0.0101
0.0215
-0.0567
-0.0763
-0.0414
-0.0862
-0.0772
-0.0137
-0.0800 | 0.0099
-0.0710
-0.0444 | | rQ ₀ -branch | | | | | | 1 1 1 <- 1 0 1
2 1 2 <- 2 0 2
3 1 3 <- 3 0 3
4 1 4 <- 4 0 4
5 1 5 <- 5 0 5
7 1 7 <- 7 0 7
8 1 8 <- 8 0 8
9 1 9 <- 9 0 9
10 1 10 <- 10 0 10 | 139867.503
139865.349
139862.104
139857.775
139852.369
139838.311
139829.609
139819.873
139809.048 | 139868.391
139866.224
139858.651
139853.243
139839.185
139820.766
139809.928 | -0.0233
-0.0158
-0.0181
-0.0224
-0.0208
-0.0105
-0.0489
-0.0327
-0.0149 | -0.0241
-0.0297
-0.0352
-0.0357
-0.0256
-0.0290
-0.0243 | | 11 1 11 <- 11 0 11
13 1 13 <- 13 0 13
14 1 14 <- 14 0 14
15 1 15 <- 15 0 15
16 1 16 <- 16 0 16
17 1 17 <- 17 0 17 | 139797.113
139769.932
139754.729
139738.409
139702.312
139682.737 | 139798.020
139770.845
139755.614
139739.282
139721.841
139703.312
139683.604 | -0.0143
-0.0355
-0.0089
0.0046
-0.1000
-0.0089
-0.0202 | 0.0032
-0.0126
-0.0143
-0.0132
-0.0138
0.0082
-0.0343
-0.0143 | | 18 1 18 < - 18 0 18 19 1 19 < - 19 0 19 20 1 20 < - 20 0 20 21 1 21 < - 21 0 21 23 1 23 < - 23 0 23 24 1 24 < - 24 0 24 25 1 25 < - 25 0 25 26 1 26 < - 26 0 26 27 1 27 < - 27 0 27 28 1 28 < - 28 0 28 29 1 29 < - 29 0 29 | 139661.941
139640.086
139617.031
139567.518
139541.079
139513.507
139484.761
139454.869 | 139662.840
139640.942
139617.924
139568.426
139541.993
139514.426
139485.685
139455.787
139424.716 | 0.0322
0.0312
0.0119
-0.0314
-0.0253
-0.0051
-0.0061 | -0.0056
0.0101
-0.0203
-0.0095
0.0144
0.0168
0.0206
0.0156 | | 29 1 29 < 29 0 29
30 1 30 < 30 0 30
31 1 31 < 31 0 31
32 1 32 < 32 0 32
33 1 33 < 33 0 33
34 1 34 < 34 0 34
35 1 35 < 35 0 35
36 1 36 < 36 0 36
37 1 37 < 37 0 37
38 1 38 < 38 0 38
39 1 39 < 39 0 39 | 139391.552
139358.134
139323.544
139287.767
139250.766
139212.561
139173.161
139132.545
139090.693
139047.576 | 139392.469
139359.051
139324.465
139288.691
139251.712
139213.487
139174.095
139133.482
139091.637
139048.514 | -0.0051
-0.0073
0.0022
0.0154
0.0023
-0.0096
-0.0040
0.0061
0.0086
-0.0173
0.0049 | 0.0052
0.0008
0.0119
0.0255
0.0317
-0.0032
0.0073
0.0170
0.0229
-0.0128
0.0224 | | 41 141 <- 41 041 42 142 <- 42 042 43 143 <- 43 043 44 144 <- 44 044 45 145 <- 45 045 46 146 <- 46 046 | 138862.670
138813.300
138762.609
138710.595
138657.320 | 138911.799
138863.623
138814.276
138763.484
138711.556
138658.302 | -0.0206
0.0147
0.0196
0.0019
0.0335 | 0.0381
-0.0183
0.0350
-0.0662
-0.0032
0.0440
0.0026 | | 47 1 47 <- 47 0 47
48 1 48 <- 48 0 48
49 1 49 <- 49 0 49
50 1 50 <- 50 0 50
51 1 51 <- 51 0 51
52 1 52 <- 52 0 52
53 1 53 <- 53 0 53
54 1 54 <- 54 0 54 | 138602.666
138546.700
138489.400
138430.749
138370.727
138309.329
138246.555
138182.379 | 138603.639
138547.692
138490.398
138431.751
138310.342
138247.574 | 0.0068
-0.0008
-0.0006
0.0012
-0.0042
-0.0104
-0.0059
-0.0048 | 0.0026
0.0081
0.0081
0.0077
-0.0059
-0.0020 | | 55 1 55 < 55 0 55
56 1 56 < 56 0 56
57 1 57 < 57 0 57
58 1 58 < 58 0 58
59 1 59 < 59 0 59
60 1 60 < 60 0 60
61 1 61 < 61 0 61 | 138116.783
138049.786
137981.326
137911.432
137840.082
137767.247 | 138117.814
138050.820
137982.369
137912.484
137841.138
137768.305
137693.997 | -0.0131
0.0005
-0.0136
-0.0136
-0.0086
-0.0144 | -0.0110
-0.0016
-0.0138
-0.0120
-0.0103
-0.0214
-0.0199 | | 63 1 63 < 63 0 63
64 1 64 < 64 0 64
66 1 66 < 66 0 66
67 1 67 < 67 0 67
68 1 68 < 68 0 68
69 1 69 < 69 0 69
70 1 70 < 70 0 70 | 137539.772
137460.942
137298.545
137215.106
137129.873
137043.156 | 137540.856
137462.003
137299.655
137216.139
137131.099
137044.283
136955.944 | -0.0213
0.0111
-0.0159
0.0821
-0.0260
-0.0149 | -0.0242
-0.0221
-0.0143
-0.0003
0.0777
-0.0169
-0.0156 | | 70 1 70 <- 70 0 70
71 1 71 <- 71 0 71
72 1 72 <- 72 0 72
73 1 73 <- 73 0 73 | 136864.832
136773.211
136679.889 | 136865.991
136774.354
136681.074 | -0.0109
-0.0002
-0.0240 | 0.0062
-0.0054
0.0069 | a Residual = Measured - Calculated Frequency TABLE I—Continued | $JK_aK_c \leftarrow JK_aK_c$ | OBSERVI
LOWER | ED (MHZ)
UPPER | RESIDUAL
LOWER | (MHZ) ²
UPPER | |---|--|--|---|--| | 74 174 <- 74 074
75 175 <- 75 075
76 176 <- 76 076
77 177 <- 77 077
78 178 <- 78 078
79 179 <- 79 079 | 136584.924
136488.260
136389.842
136289.724
136187.852
136084.201 | 136586.100 | -0.0077
0.0094
-0.0109
0.0027
0.0134
0.0141 | 0.0084 | | R ₀ -branch | | | | | | 2 1 1 <- 1 0 1
5 1 4 <- 4 0 4
8 1 7 <- 7 0 7
14 1 13 <- 13 0 13 | 167581.191
209153.458
250727.002
333863.506 | 167582.079
209154.336
250727.884 | 0.0260
-0.0578
0.0118
0.0212 | 0.0259
-0.0647
0.0140 | | rP ₁ -branch | | | | | | 6 2 5 <- 7 1 7
12 2 10 <- 13 1 12
12 2 11 <- 13 1 13
14 2 12 <- 15 1 14
14 2 13 <- 15 1 15
15 2 13 <- 16 1 15
15 2 14 <- 16 1 16 | 211663.397
211888.952
197801.666
198057.896 | 322616.785
239388.977
239559.327
211664.279
211889.838
197802.564
198058.765 | -0.0077
-0.0132
-0.0249
-0.0083 | -0.0220
-0.0597
-0.0885
-0.0472
-0.0769
-0.0468
-0.0902 | | 16 2 14 <- 17 1 16
16 2 15 <- 17 1 17
18 2 16 <- 19 1 18
18 2 17 <- 19 1 19
19 2 17 <- 20 1 19
19 2 18 <- 20 1 20
24 2 22 <- 25 1 24
24 2 23 <- 25 1 25 | 183940.597
184229.548
156220.540
156581.274
142361.804
142761.613
73086.212
73715.200 | 184230.436
156221.435
156582.169
142362.689
142762.508
73087.105
73716.099 | 0.0376
0.0533
0.0331
0.0656
-0.0112
-0.0103
-0.0019
0.0071 | -0.0109
0.0114
0.0054
-0.0423
-0.0721
-0.0282
-0.0612 | | 35 1 34 <- 34 2 32
35 1 35 <- 34 2 33
40 1 39 <- 39 2 37
40 1 40 <- 39 2 38 | 65332.053
64059.412
134448.550
132748.362 | 65331.152
64058.483 | -0.0182
0.0045
-0.0080
-0.0243 | 0.0409
0.0726 | | 41 1 40 <- 40 2 38
41 1 41 <- 40 2 39
45 1 44 <- 44 2 42
45 1 45 <- 44 2 2 43
46 1 45 <- 45 2 2 43
46 1 46 <- 45 2 243
47 1 47 <- 46 2 45
48 1 47 <- 47 2 45
48 1 48 <- 47 2 46 | 146467.727
203486.627
201278.061
217283.759
214963.010
228640.675
244866.857
242310.618 | 148261.803
146466.771
203485.701
201277.091
217282.823
214962.037
228639.678
244865.923
242309.633 | -0.0038
-0.0172
-0.0032
-0.0421
-0.0324
0.0371
-0.0523
-0.0604 | -0.0361
0.0548
0.0624
0.0470
0.0266
0.0148
0.0590
0.0101
-0.0276 | | rQ ₁ -branch | | • | | | | 9 2 8 <- 9 1 8
9 2 7 <- 9 1 9
10 2 9 <- 10 1 9
11 2 9 <- 11 1 1
12 2 11 <- 12 1 11
13 2 12 <- 13 1 12
14 2 13 <- 14 1 13
16 2 15 <- 16 1 15 | 419598.174
419501.412
419607.770
419469.669
419451.706
419432.523
419389.993 | 419516.157
419599.230
419502.368
419608.757
419470.609
419452.768
419390.922 | -0.0540
0.0239
-0.0110
0.0117
-0.0489
0.0216
0.0280 | 0.0178
0.0578
0.0492
0.0308
0.0242
0.0872 | | 17 2 15 <- 17 1 17
18 2 17 <- 18 1 17
19 2 18 <- 19 1 18
20 2 19 <- 20 1 19
20 2 18 <- 20 1 20 | 419646.746
419342.080
419316.165
419671.770
419260.511 | 419647.643
419343.027
419317.166
419289.931
419672.735
419261.371 | 0.0045
-0.0193
-0.0208
0.0397
0.0742 | -0.0479
0.0063
0.0588
0.0469
0.0520
0.0113 | | 21 2 20 <- 21 1 20
21 2 19 <- 21 1 21
22 2 21 <- 22 1 21
22 2 20 <- 22 1 22
23 2 21 <- 23 1 23
24 2 23 <- 24 1 23
24 2 22 <- 24 1 24 | 419680.859
419230.606
419690.321
419700.135
419167.122 | 419681.826
419231.565
419691.283
419701.113
419168.116
419711.328 | 0.0293
-0.0121
0.0202
0.0000
-0.0160 | 0.0432
0.0227
0.028
0.0223
0.0493
0.048 | | 25 2 23 <- 25 1 25
26 2 25 <- 26 1 25
27 2 26 <- 27 1 26
27 2 25 <- 27 1 27
28 2 27 <- 28 1 27
29 2 28 <- 29 1 28 | 419098.567
419062.423
419742.916
419025.001
418986.456 | 419721.853
419099.565
419063.410
419743.905
418987.431 | -0.0322
-0.0358
-0.0026
-0.0848
-0.0356 | 0.039
0.030
0.012
0.026 | | 29 2 28 <- 29 1 28
29 2 27 <- 29 1 29
30 2 29 <- 30 1 29
31 2 30 <- 31 1 30
32 2 31 <- 32 1 31
34 2 33 <- 34 1 33
36 2 35 <- 36 1 35 | 419766.247
418946.655
418905.646
418863.501
418775.692
418683.220 | 419767.249
418947.662
418906.664
418864.459
418776.612
418684.215 | 0.0077
-0.0331
-0.0417
-0.0021
0.0579
0.0294 | 0.046
0.019
0.016
-0.010
-0.001
0.031 | | 36 2 35 <- 36 1 35
36 2 34 <- 36 1 36
37 2 36 <- 37 1 36
37 2 35 <- 37 1 37 | 419856.443
418635.319
419870.249 | 419857.430
419871.273 | -0.0159
0.0294
-0.0240 | -0.006 | TABLE I-Continued | $J K_a K_c \leftarrow J K_a K_c$ | OBSERV
LOWER | ED (MHZ)
UPPER | RESIDUA
LOWER | L (MHZ) a
UPPER | |----------------------------------|-----------------|-------------------|------------------|--------------------| | 38 2 37 <- 38 1 37 | | 418587.277 | | -0.0162 | | 38 2 36 <- 38 1 38 | 419884,282 | 419885.246 | 0.0037 | -0.0164 | | 39 2 37 <- 39 1 39 | 419898.429 | 419899,436 | -0.0315 | -0.0123 | | 40 2 39 <- 40 1 39 | 418485.037 | 418486,030 | -0.0144 | -0.0341 | | 41 2 40 <- 41 1 40 | 418432.830 | | -0.0166 | | | 42 241 <- 42 141 | 418379.561 | 418380.600 | -0.0456 | -0.0224 | | 43 2 42 <- 43 1 42 | 418325,373 | 418326,359 | 0.0245 | -0.0040 | | 43 241 <- 43 143 | 419956.606 | 419957.661 | -0.0561 | -0.0080 | | 44 2 43 <- 44 1 43 | 418270.054 | 418271.136 | -0.0357 | 0.0355 | | 44 2 42 <- 44 1 44 | 419971.475 | 419972.468 | -0.0287 | -0.0486 | | 45 2 44 <- 45 1 44 | 418213.789 | 418214.883 | -0.0591 | 0.0307 | | 45 2 43 <- 45 1 45 | | 419987.465 | | 0.0155 | | 46 2 45 <- 46 1 45 | 418156.670 | 418157.681 | 0.0282 | 0.0448 | | 46 2 44 <- 46 1 46 | 420001.459 | 420002.434 | 0.0350 | -0.0171 | | 47 246 <- 47 146 | 418098.479 | 418099.440 | -0.0106 | -0.0303 | | 48 2 47 <- 48 1 47 | 418039.432 | 418040.465 | 0.0215 | 0.0919 | | 48 2 46 <- 48 1 48 | 420031.464 | 420032.648 | -0.0850 | 0.0544 | | 49 2 47 <- 49 1 49 | 420046.586 | 420047.673 | -0.0594 | -0.0271 | | 51 2 49 <- 51 1 51 | 420076.829 | 420077.912 | 0.0116 | 0.0165 | | 53 2 51 <- 53 1 53 | 420106.847 | 420107.991 | 0.0063 | 0.0440 | | P2-branch | | | | | | 32 3 29 <- 33 2 31 | 242404.700 | 242405.623 | -0.0349 | -0.0378 | | 32 3 30 <- 33 2 32 | 242337.755 | 242338.704 | -0.0349 | -0.0189 | | 33 3 30 <- 34 2 32 | 228602.026 | 228602.956 | 0.0510 | 0.0530 | | 33 3 31 <- 34 2 33 | 228526.728 | 228527.662 | 0.0485 | 0.0498 | | 34 3 31 <- 35 2 33 | 214803.224 | 214804.141 | -0.0243 | -0.0374 | | 34 3 32 <- 35 2 34 | 214718.846 | 214719.741 | -0.0004 | -0.0372 | | 35 3 32 <- 36 2 34 | 201008.681 | 201009.681 | -0.0262 | 0.0413 | | 35 3 33 <- 36 2 35 | 200914.398 | 200915.292 | -0.0010 | -0.0372 | | 38 3 35 <- 39 2 37 | 159651.766 | 159652.698 | 0.0355 | 0.0270 | | 38 3 36 <- 39 2 38 | 159522.486 | 159523.402 | 0.0390 | 0.0358 | | 39 3 36 <- 40 2 38 | 145875.457 | 145876.389 | -0.0111 | -0.0225 | | 39 3 37 <- 40 2 39 | 145732.576 | 145733.515 | -0.0395 | -0.0134 | | 40 3 37 <- 41 2 39 | 132104.161 | | -0.0018 | | | 56 2 54 <- 55 3 52 | 73762.947 | 73761.944 | 0.0506 | 0.0026 | coupling with the $v_s=1$ state involves the $v_t=2$ state, the rotational effects discussed below are all based on this torsional state. To incorporate rotational dependence into the denominator of Eq. (1), one must simply include the rotational energies of the coupled states. Because the perturbation operator \mathcal{H}' only connects the same rotational levels in the $v_s=1$ and $v_t=2$ vibrational states (3), the denominator becomes $E^{(0)}$ ($v_s=1$) $-E^{(0)}_{J,K}(v_t=2)+E^{(0)}_{J,K}(v_s=1)-E^{(0)}_{J,K}(v_t=2)$, where $E^{(0)}_{J,K}$ is the rotational energy of either the upper state (J,K=1) or the lower state (J,K=0) of the $^{\prime}Q_0$ -branch transitions, depending upon whether the torsional sublevel splitting $\Delta(3-2)$ (K=1) or $\Delta(4-1)$ (K=0) is being calculated. When rotational energy is included, the vibrational-rotational energy denominator is slightly different in the $\Delta(4-1)$ term from what it is in the $\Delta(3-2)$ term due to the difference in K quantum number. The rotational energy contribution in the denominators is given accurately for the near prolate top HSSH by the formula (9) $$E_{J,K}^{(0)}(v_{s}=1) - E_{J,K}^{(0)}(v_{t}=2) \approx \left[\left\{ (B+C)/2 \right\}_{v_{s}=1} - \left\{ (B+C)/2 \right\}_{v_{t}=2} \right] \times J(J+1) + \left[(A-(B+C)/2)_{v_{s}=1} - (A-(B+C)/2)_{v_{s}=2} \right] \times \left\{ K^{2} + 0.5b_{p}C_{1} \right\}, \quad (3)$$ where A, B, and C are the well-known rotation constants, b_p is the (very small) prolate asymmetry parameter, and C_1 is zero for K = 0 and J(J + 1)/2 for the (lower) K = 1 state accessible in c-type Q_0 transitions. The J-independent terms of Eq. (3) can be neglected in our analysis because they are far smaller than the vibrational energy Fig. 1. A Fortrat diagram of the measured rotational transitions of the $v_s = 1$ state of HSSH. difference and do not contribute to the measured J dependence of $\Delta \nu$. Higher-order rotational terms (centrifugal distortion) are relatively unimportant through J=75 in this context. The rotational constants A, B, and C for the $v_s=1$ state have been determined in this work (Table II), although the method of analysis utilized was to fit the rotational dependence of the frequency doublings with slightly different effective rotational constants for the upper ($\tau=3$, 4) and lower ($\tau=1$, 2) torsional states. FIG. 2. A portion of the ${}'Q_1$ branch of transitions of the $v_s = 1$ state of HSSH at 420 GHz. The actual transitions shown are the high frequency components of the K doublets and have the quantum numbers $J_{2J-2} \leftarrow J_{1J}$. Fig. 3. The frequency doubling in the $v_s = 1$ state of HSSH measured in the $'Q_0$ -branch of rotational lines is plotted against J. The experimental points are given by the open circles while the theoretical prediction (see text) is given by the solid line. Averaging these rotational constants and those obtained previously for $v_t = 2$ in a similar analysis (1), we obtain the rotational energy differences in Eq. (3) for K = 0 and K = 1 as functions of J(J+1). Because these differences are small compared with the vibrational energy difference between the $v_s = 1$ and $v_t = 2$ states, the denominators containing both vibrational and rotational energy terms can be expanded, leading to the previous results obtained for $\Delta(3-2)$ and $\Delta(4-1)$ with the exclusion of rotational energy multiplied by factors in the numerator of the second-order part of the expression for Δv of $[1 + 4.75 \times 10^{-6} J(J+1) + \cdots]$ for K = 0 and $[1 + 6.94 \times 10^{-6} J(J+1) + \cdots]$ for K = 1. The average of these two factors will appear in the modified Eq. (1) because $\Delta(4-1) \approx \Delta(3-2)$ in the absence of rotation. This average factor— $1 + 5.85 \times 10^{-6} J(J+1)$ —is insufficient by itself to explain the measured rotational dependence of Δv shown in Fig. 3, although it contains the measured "quadratic" rotational dependence which dominates the experimental measurement through J = 75 (see Eq. 2) and does increase with increasing J. In addition to the rotational energy dependence of the denominator, one must consider the dependence in the numerator of Eq. (1). This will be dominated by the rotational dependence of $\Delta \nu_{v_1=2}^{(0)}$ since it is much larger than $\Delta v^{(0)}$ ($\Delta \nu_{v_1=2}^{(0)} \approx 750$ MHz, see below) and since the coupling matrix element will contain little if any rotational dependence since in the current theory the perturbation operator is a vibrational-torsional one only. The J dependence of $\Delta \nu_{v_1=2}^{(0)}$ has been determined experimentally from the $^{\prime}Q_0$ -branch series of lines up to J=23 (1) and can be fit to the following expansion in J(J+1): $$\Delta \nu_{\nu_t=2}^{(0)}(J) = 751.419 \text{ MHz} + 31.71 \text{ kHz } J(J+1) + 1.31 \text{ Hz } [J(J+1)]^2$$ $$= 751.419 \text{ MHz } \{1 + 4.22 \times 10^{-5} J(J+1) + 1.74 \times 10^{-9} \times [J(J+1)]^2 \}. \quad (4)$$ | TABLE II | |--| | Effective Spectroscopic Parameters a,b | | Parameter | Unit | Lower Torsional | Upper Torsional | | |----------------|------|-----------------------|-------------------------|--| | | | Levels $(\tau = 1,2)$ | Levels ($\tau = 3,4$) | | | Α | MHz | 146799.077(11) | 146799.082(12) | | | В | MHz | 6928.53044(34) | 6928.53025(34) | | | С | MHz | 6926.67937(34) | 6926.67948(34) | | | Dj | kHz | 5.41191(30) | 5.41186(30) | | | DJK | kHz | 77.6510(92) | 77.6408(84) | | | DK | MHz | 2.4241(45) | 2.4201(47) | | | d ₁ | Hz | 9.766(19) | 9.853(20) | | | d ₂ | Hz | -27.0985(88) | -27.119(10) | | | HJ | mHz | -1.435(73) | -1.449(74) | | | HJK | mHz | 6.8(3.2) | 3.7(3.0) | | | HKJ | Hz | 85.0(1.1) | 84.0(1.0) | | | HK | kHz | -0.66(38) | -1.18(40) | | | h ₁ | mHz | 0.0169(62) | -0.0083(63) | | | h ₂ | mHz | 0.0430(41) | 0.0531(47) | | | hз | mHz | -0.0002(46) | 0.0066(33) | | | Δν (J=0) | kHz | 879.836 ^C | | | a These are obtained by incorporating the rotational dependence of the torsional doubling into the rotational and centrifugal distortion parameters. The physical basis for the dominant dependence on J(J+1) can be seen in the IAM (internal axis method) approach of Hunt $et\ al.$ (8) in which there is a coupling with the correct J(J+1) dependence between rotational-torsional levels differing in rotational quantum number K by 1 and torsional quantum number τ . The J dependence in Eq. (4) can now be placed into the numerator of the modified Eq. (1). When coupled with the rotational dependence already determined from the energy denominator, we obtain a total dependence for the second-order term as a multiplicative factor $1 + (4.81 \times 10^{-5})J(J+1) + (1.99 \times 10^{-9})[J(J+1)]^2$. Thus $$\Delta \nu^{(2)}(J) = \Delta \nu^{(2)} (J = 0) \{ 1 + (4.81 \times 10^{-5}) J (J+1) + (1.99 \times 10^{-9}) [J (J+1)]^2 \}, \quad (5)$$ where the calculated value of $\Delta \nu^{(2)}$ (J=0) is 1.90 MHz if only the $v_{\rm t}=2$ state is included in the perturbation calculation (3). Note that the lowest member of the split ${}^{\prime}Q_0$ -branch series occurs for J=1 and that $\Delta \nu^{(2)}$ (J=0) refers strictly to the second-order doubling calculated in the absence of rotation. The absolute size of the zeroth-order contribution to $\Delta \nu$ is small (0.15 MHz) and we ignore any rotational dependence that it possesses. Including this term, we obtain our final result that $$\Delta\nu(J) = \Delta\nu (J = 0) \{ 1 + (4.46 \times 10^{-5}) J(J+1) + (1.84 \times 10^{-9}) [J(J+1)]^2 \}, (6)$$ where $\Delta\nu (J=0)$ is 2.05 MHz. b The figures in parenthesis represent one standard deviation and refer to the last digits of the parameters. ^c This number is determined from the fit to the ^rQ₀ torsional doublings and is not varied here The theoretical result is superimposed on the experimental plot of the doubling vs J shown in Fig. 3 with $\Delta \nu$ (J = 0) set to the newly determined experimental result of 0.8798 MHz. It can be seen that the rotational dependence obtained via the perturbation treatment is perfectly adequate to explain the measured rotational dependence. This result is also noticeable in a comparison of the theoretically determined Eq. (6) with the experimental results in Eq. (2). Another, more accurate, manner of stating our results is that the experimental value of $\Delta \nu(J)$ divided by the theoretical value is pretty much independent of J and equal to a factor of $\approx \frac{1}{2}$. This, in turn, shows that the probable error in the perturbation treatment lies in the J-independent matrix elements of the coupling operator (3). In any event, it would appear that the perturbation treatment given in Eq. (1) can be modified simply to explain the rotational dependence of the ${}^{\prime}Q_0$ -branch frequency doubling caused by torsion in the $v_s = 1$ state over wide ranges of the rotational quantum number J. In addition, this paper and our previous one on the $v_s = 1$ state frequency doubling (3) show that spectroscopists should use caution in interpreting varying torsional splittings in different vibrational states in terms of different effective torsional potentials rather than in terms of coupling between vibrational states. ## **ACKNOWLEDGMENTS** E.H. acknowledges the support of the N.S.F. via Grant CHEM-8905617. G.W. acknowledges the support of the Deutsche Forschungsgemeinschaft (Federal Republic of Germany) via Special Research Grant SFB-301. RECEIVED: December 1, 1989 ### REFERENCES - S. Urban, E. Herbst, P. Mittler, G. Winnewisser, K. M. T. Yamada, and M. Winnewisser, J. Mol. Spectrosc. 137, 327-353 (1989). These authors have a complete list of previous references. - 2. E. HERBST AND G. WINNEWISSER, Chem. Phys. Lett. 155, 572-575 (1989). - E. HERBST, G. WINNEWISSER, K. M. T. YAMADA, D. J. DEFREES, AND A. D. MCLEAN, J. Chem. Phys. 91, 5905-5909 (1989). - 4. G. WINNEWISSER, M. WINNEWISSER, AND W. GORDY, J. Chem. Phys. 49, 3465-3478 (1968). - M. BESTER, M. TANIMOTO, B. VOHWINKEL, G. WINNEWISSER, AND K. M. T. YAMADA, Z. Naturforsch. A 38, 64-67 (1983). - 6. D. MAUER, G. WINNEWISSER, AND K. M. T. YAMADA, J. Mol. Struct. 190, 457-464 (1988). - 7. G. WINNEWISSER AND P. HELMINGER, J. Chem. Phys. 56, 2967–2979 (1972). - 8. R. H. HUNT, R. A. LEACOCK, C. W. PETERS, AND K. T. HECHT, J. Chem. Phys. 42, 1931-1946 (1965). - W. GORDY AND R. L. COOK, "Microwave Molecular Spectra," Techniques of Chemistry, Vol. XVIII, Wiley, New York, 1984.