JOURNAL OF MOLECULAR SPECTROSCOPY 39, 94-97 (1971) ## Rotational Spectra of NH3 and ND3 in the 0.5-mm Wavelength Region¹ Paul Helminger, Frank C. De Lucia, and Walter Gordy Department of Physics, Duke University, Durham, North Carolina 27706 Rotational transitions of NH₃ and ND₃ in the 0.5-mm wavelength region have been observed and measured by microwave techniques. For ND₃ the two inversion components of the $J=1\to 2$ transitions of $^{14}{\rm ND_3}$ and $^{15}{\rm ND_3}$ at 0.49-mm wavelength have been measured, and for NH₃ the $J=0\to 1$ transitions of $^{14}{\rm NH_3}$ and $^{15}{\rm NH_3}$ at 0.52-mm wavelength have been remeasured with higher precision. With $J=0\to 1$ transition frequencies for ND₃ from previous microwave measurements and with the centrifugal stretching constant D_J for NH₃ measured in the infrared region, these frequencies yield the following spectral constants (in Mc/sec): for $^{14}{\rm ND_3}$, $B_0=154$ 173.38, $D_J=5.91$, $D_{JK}=-10.49$; for $^{15}{\rm ND_3}$, $B_0=153$ 600.97, $D_J=5.92$, $D_{JK}=-10.54$; for $^{14}{\rm NH_3}$, $B_0=298$ 115.37; and for $^{15}{\rm NH_3}$, $B_0=297$ 388.12. The effective ground-state structural dimensions for NH₃ are $d_{\rm NH}=1.0156$ Å and < HNH = 107°17′, and the corresponding values for ND₃ are $d_{\rm ND}=1.0143$ Å and < DND = 107°4′. Various substitution structures are also calculated. Rotational transitions of NH₃ and ND₃ in the 0.5-mm wavelength region have been observed and measured by microwave techniques. For ND₃ the two inversion components of the $J=1\rightarrow 2$ transition of both $^{14}{\rm ND_3}$ and $^{15}{\rm ND_3}$ at 0.49-mm wavelength have been measured. Figure 1 shows an oscilloscope tracing of the lower inversion component of the $J=1\rightarrow 2$ transition of $^{14}{\rm ND_3}$ at 615 Gc/sec. When combined with the previous measurements of the $J=0 \rightarrow 1$ transition (1), the present measurements on ND₃ provide the first microwave values of the stretching constants D_J and D_{JK} . The $J=0 \to 1$ transition of both $^{14}{ m NH_3}$ and $^{15}{ m NH_3}$ at 0.52-mm wavelength was earlier measured in this laboratory (1,2). Unfortunately, an error of ~ 60 Mc/sec was made in the $^{15}{ m NH_3}$ line because of an incorrect identification of the frequency marker. We are indebted to A. F. Krupnov of the Radiophysical Research Institute at Gorky (U.S.S.R.) for calling our attention to this error, which is corrected in the present measurement. The value obtained, 572 112.78 \pm 0.10 Mc/sec, is in satisfactory agreement with that of 572 111.44 Mc/sec which was obtained by Krupnov and his associates (3). In addition, the $J=0 \rightarrow 1$ transition of $^{14}{ m NH_3}$ has been remeasured to greater precision in the present work. $^{^{1}}$ This study was supported by the U. S. Air Force Office of Scientific Research Grant No. AF-AFOSR-66-0493C Fig. 1. Oscilloscope tracing of the lower inversion component of the $J=1 \rightarrow 2$ transition $^{13}{\rm ND}_2$ at 615 Ge/sec. $\begin{tabular}{ll} TABLE\ I \\ Measured\ Frequencies\ for\ NH_3\ and\ ND_3 \\ \end{tabular}$ | Transition | Lower inversion component (Mc/sec) | Upper inversion component (Mc/sec) | Center frequency (Mc/sec) | |------------------------------|---|--|---| | 14ND ₃ | as and the control of the Management of the Wallet of the Control | The second secon | AND THE RESIDENCE OF THE PARTY | | $J = 1 \rightarrow 2, K = 0$ | $614 933.46 \pm 0.20$ | $618\ 075.04\ \pm\ 0.25$ | $616 - 504 \cdot 25$ | | $J = 1 \rightarrow 2, K = 1$ | $614 967.54 \pm 0.20$ | $618\ 124.86\ \pm\ 0.20$ | $616 - 546 \cdot 20$ | | $^{15}\mathrm{ND}_{0}$ | | | | | $J = 1 \rightarrow 2, K = 0$ | $612\ 800.86\ \pm\ 0.15$ | $615 627.96 \pm 0.20$ | 614 214.41 | | $J = 1 \rightarrow 2, K = 1$ | $612 836.04 \pm 0.15$ | $615 \ 677.07 \ \pm \ 0.15$ | $614\ 256.56$ | | $^{14}{ m N}{ m H}_{3}$ | | | | | $J = 0 \rightarrow 1, K = 0$ | $572\ 498.15\ \pm\ 0.15$ | | $596\ 133.49^a$ | | 15NH ₃ | | | | | $J = 0 \rightarrow 1, K = 0$ | $572\ 112.78\ \pm\ 0.10$ | | $594^{\circ}680.92^{a}$ | ^{*} Obtained by the addition to the lower inversion component of half the sum of the inversion splittings of the states J=0, K=0 and J=1, K=0. See Ref. (1) and Schnabel, et al., Z. Physik 188, 167 (1965). The submillimeter microwave power for these observations was generated by a klystron-driven crystal harmonic multiplier of the type described previously (4). The measurements reported here were obtained with the 10th and 11th harmonics of an OKI 55V11 klystron. Detection was accomplished with a 1.6° K InSb photoconducting detector obtained from Mullard, Ltd. The sample cell consisted of a copper tube $^34''$ in diameter and 1 ft long equipped with teflon windows; the output of the cell matched the input light pipe of the detector. | Isotopic species | B_0 (Mc/sec) | D_J (Mc/sec) | D_{JK} (Mc/sec | |-------------------------------|----------------|-----------------|------------------| | ¹⁴ NH ₂ | 298 115.37 | 24.31a | -45.27^{a} | | $^{15}{ m NH_{3}}$ | $297\ 388.12$ | $23.83^{\rm b}$ | -46.62° | | $^{14}\mathrm{ND_3}$ | $154 \ 173.38$ | 5.91 | -10.49 | | $^{15}\mathrm{ND_3}$ | 153 600.97 | 5.92 | -10.54 | TABLE II SPECTRAL CONSTANTS OF NH₃ AND ND₃ ${\bf TABLE~III} \\ {\bf Molecular~Dimensions~of~Ammonia~from~Microwave~Values~of~} B_6$ | Isotopic species | Bond distance ^a | Bond angle | |---|----------------------------|------------| | Effective | e ground-state structure | | | $^{14}{ m NH_3}$, $^{15}{ m NH_3}$ | $1.0156~ ext{\AA}$ | 107°17′ | | $^{14}{\rm ND_3}$, $^{15}{\rm ND_3}$ | 1.0143 Å | 107°04′ | | Suk | ostitution Structure | | | $^{14}{ m ND_3}; ^{15}{ m ND_3}$, $^{14}{ m NH_3}$ | $1.0136~{ m \AA}$ | 107°04′ | | $^{15}{ m ND_3}$: $^{14}{ m ND_3}$, $^{15}{ m NH_3}$ | 1.0137 Å | 107°04′ | | ¹⁴ NH ₃ : ¹⁵ NH ₃ , ¹⁴ ND ₃ | 1.0138 Å | 107°14′ | | 15NH ₃ : 14NH ₃ , 15ND ₃ | 1.0138 Å | 107°14′ | ^{*} Calculated by use of B (Mc/sec) = $(5.05376 \times 10^5)/I_t$ (amu Ų). See Gordy and Cook, "Microwave Molecular Spectra," (Wiley, New York, 1970). Microwave power from the harmonic multiplier was directed through the sample cell by means of a metallic horn and a teflon lens. With this spectrometer, molecular rotational frequencies as high as 813 Gc/sec ($\lambda = 0.368 \text{ mm}$) have been measured (5). The experimental results for NH_3 and ND_3 are listed in Table I. The quadrupole hyperfine structure due to the ^{14}N nucleus contributes a broadening to the $J=1\rightarrow 2$ transition of $^{14}ND_3$ and to the $J=0\rightarrow 1$ transition of $^{14}NH_3$ but is unresolved because of the large Doppler width. As a result, the estimated errors in the line measurements for these isotopic forms are somewhat larger than those for the ^{15}N species. Rotational constants evaluated from these measurements are presented in Table II. Details of the calculation of B_0 for NH_3 from the single inversion component present for the $J=0\rightarrow 1$ transition are given elsewhere (1). The spectral constants including the distortion constants for ND_3 shown in Table II were calculated entirely from microwave measurements. The molecular structure of ammonia from microwave values of B_0 was evalu- ⁴ ¹⁴NH₃ infrared values of D_J and D_{JK} from H. M. Mould, et al., Spectrochim. Acta 15, 313 (1959), D_J is used in the evaluation of B_0 . $^{^{15}{}m NH_3}$ infrared values of D_J and D_{JK} from F. O. Shimizu and T. Shimizu, J. Mol. Spectrosc. **36**, 94 (1970). D_J is used in the evaulation of B_0 . ated in the previous work (t). However, correction of the error in the value of B_0 for $^{15}{\rm NH_3}$ and improvement of the accuracy of the constant for the other isotopic species here obtained justify a recalculation of the structure. The results are presented in Table III. Specific procedures for the evaluation of the effective ground-state structure and the substitution structure for ammonia were discussed in the previous work (t). Received: January 18, 1971 ## REFERENCES - 1. P. Helminger and W. Gordy, Phys. Rev. 188, 100 (1969). - 2. P. Helminger and W. Gordy, Bull. Amer. Phys. Soc. 12, 543 (1967). - 3. A. F. Krupnov, L. I. Gershtein, V. G. Shustrov, and V. V. Polyakov, *Radiofizika* U.S.S.R. 12, 1584 (1969). - 4. W. C. King and W. Gordy, Phys. Rev. 90, 319 (1953); 93, 407 (1954). - 5. P. Helminger, F. C. De Lucia, and W. Gordy, Phys. Rev. Let. 25, 1397 (1970).