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The rotational absorption frequencies of 65 new lines in the millimeter and submillimeter
region of the spectrum have been measured for the CN radical in its ground electronic state.
These measurements were made in a low pressure glow discharge of methane and nitrogen and
include 25 lines from the v = 2 and v = 3 vibrational states, in addition to 40 lines from
v =0 and v = 1. The Dunham constants, as well as the spin-rotation and hyperfine constants
of these four vibrational states, were calculated by means of a global nonlinear least squares fit
of these data.

I. INTRODUCTION

The CN radical is one of the most extensively studied spectroscopic species (/).
However, the extreme chemical reactivity of CN has made observation of'its rotational
spectra by microwave absorption techniques difficult. In fact, the first detection of
the pure rotation spectrum of CN was via the radio astronomical observations of
Penzias et al. (2). They measured the seven strongest lines due to the fine and hyperfine
splitting of the N = 0 — [ transitions in the ground vibrational and electronic state.
The first laboratory detection was subsequently made by Dixon and Woods (3) in
which they measured the same seven lines of the N = 0 — 1 transitions in both the
v = 0 and v = 1 vibrational states. These were observed with several hours of inte-
gration in a glow discharge of cyanogen and nitrogen. The increase in the absorption
coefficient with frequency (~»*) and the use of sensitive millimeter and submillimeter
spectroscopic techniques made possible our measurements of 65 new rotational ab-
sorption lines. These transitions, ranging in frequency from 220 to 453 GHz, include
25 from the v = 2 and v = 3 vibrational states in addition to 40 from v = 0 and
v = 1. In the conditions of our experiments, we found the population of each suc-
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cessive vibrational state to decrease by about a factor of three. A global nonlinear
least squares fit of these data was used to calculate the Dunham constants Yo, Y1,
Y>,, Y02, and Y, and the fine and hyperfine constants for each of the vibrational
states.

II. EXPERIMENTAL

Our original observation of CN was in a diagnostic study of the FIR HCN laser
discharge plasma. CN is of interest in this system due to the conjecture that it is the
chemical precursor of the lasing HCN. The laser glow discharge contained a 1:1
mixture of N, and CH, at a pressure of 60 mTorr and discharge current of 200 mA.
The fraction of the power absorbed was used to calculate an approximate partial
pressure of .01 mTorr for CN in the ground vibrational and electronic state. The
relative ease with which this measurement was made on the laser diagnostic system
served as the impetus for the spectroscopic study of CN in a high sensitivity system.

We have previously described the details of our millimeter and submillimeter
spectroscopic technique (4). Briefly, the radiation was produced by a crystal harmonic
generator driven by a reflex klystron operating in the 55-GHz region, focused through
the cell via quasi-optical techniques, and detected by 1.5-K InSb detector. The kly-
stron was phase-locked to a known harmonic of a frequency synthesizer (referenced
to WWVB) capable of phase continuous frequency sweeps. The data was collected
in a digital signal averager and processed and measured in a computer.

The glow discharge absorption cell was a 5-ft length of 4-in.-diameter pyrex pipe
with hollow cylindrical electrodes at both ends. The cell was wrapped with a solenoid
which was used for sine wave Zeeman modulation at 2.6 kHz with detection at 5.2
kHz. The lock-in time constant was 100 msec and the frequency sweep time was 10
sec. The frequencies of forward-reverse frequency sweeps were averaged to cancel
the time-constant induced shift in the observed frequency. Because the modulation
of the index of refraction of a plasma by magnetic modulation is substantially smaller
at short millimeter and submillimeter wavelengths than it is at longer wavelengths
(5), we were able to signal average for arbitrary lengths of time without encountering
base line problems. The integration times ranged from 1 min (3 up-down sweeps)
for intense v = 0 lines to 40 min (120 up-down sweeps) for partially forbidden
v = 3 lines. Figures 1 and 2 show typical data. A number of lines were also mea-
sured with source modulation to check for frequency shifts from the Zeeman modu-
lation and no statistically significant shifts were found. Several transitions, particularly
AJ =0, AF = 0 lines, were broadened by the earth’s field to the extent they split
into resolvable doublets. The enclosure of the cell in a u-metal magnetic shield elim-
inated this problem.

N, and CH, were retained from the laser experiment as the precursor gases since
they gave a relatively strong spectrum and because of the convenience of working
with nontoxic gases. For the spectroscopic experiment, the mixture was optimized
at the N,:CH, ratio of 8:1 and at a pressure of approximately 40 mTorr. Unfortu-
nately, we were not able to make an absolute measurement of the flow rate, although
we did note that concentration of CN maximized at a flow rate significantly less than
that with the diffusion pumped unthrottled. Our power supply limited us to a 185-
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F1G. 1. The hyperfine structure components of the N = 2 — 3, J = 3/2 — 5/2 transition of CN in its
ground vibrational state.

mA (850 V) discharge, although this current was less than optimal. Since both of the
precursor gases have significant vapor pressure at liquid nitrogen temperature, it was
possible to cool the discharge cell. It was found that cooling initially increased the
signals by about a factor of two, but that further cooling to nitrogen temperature
reduced the observed signals by a factor of three. Although all of our measurements
were facilely made in an ambient cell, cooling to this optimum intermediate tem-
perature would, of course, be beneficial.
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FIG. 2. The hyperfine structure components of the N = 2 — 3, J = 3/2 — 5/2 transition of CN in its
v = 3 excited vibrational state.
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IIIl. THEORY

The ground electronic state of CN is *Z. Thus, each rotational energy level is split
into a doublet by the spin-rotation interaction. The nitrogen nucleus has spin one;
consequently each of these components is further split into a triplet by nuclear mag-
netic and quadrupole interactions. The basic theory of these systems is well estab-
lished. In CN, E, > E,, > E,;, so Hund’s case b is the most appropriate basis in
which to evaluate the matrix elements. This corresponds to the coupling scheme

N+S=1],
J+I1=F. (1)

The zero field Hamiltonian for the rotational energies may be written (3)

H:Hr+Hvr+Hhﬁ§ (2)
where

H, = Yo NN + 1)+ Y (v + 1/2)N(N + 1) + Yy (v + 1/2)°N(N + 1)

+ YouN* (N + 12 + Yio(v + 1/2)N¥(N + 1)

HYV = 7UN ‘ S
and
Hyi = b0+S + ¢, IS, + %Q” TG(I).

In these equations N is the angular momentum of the rotation of the molecular
frame, S is the electron spin, I is the nitrogen nuclear spin, z is the molecular axis,
and ng) (I) 1s the molecule fixed zeroth component of the quadrupole moment tensor.
Here we have identified the coeflicients of the power series in v and N with the
Dunham constants, Y,,, rather than with the mechanical equilibrium constants B.,
., etc. Even so, because CN is °Z these Y;,, should be viewed as effective constants
that may be contaminated by admixtures with other electronic states. The spin-
rotation fine structure constants v,, the magnetic hyperfine constants b, and ¢,, and
the electric quadrupole constants eqQ, are left as functions of vibrational state. We
have not included the nuclear spin-rotation interaction because the above terms are
sufficient for a fit to within experimental uncertainty. The extensive set of rotational
data that we have obtained for four vibrational states has allowed us to fit for the
five Dunham constants rather than the four individual sets of B, and D,, thereby
reducing the number of parameters by three.

There are a number of ways to evaluate the matrix elements of the fine and
hyperfine interactions. We have used the results of a derivation by Dixon and Woods
(3) in our calculations. The rotational matrix elements are diagonal in N and are
much larger than any other interaction; so, to an excellent approximation, elements
off diagonal in N can be neglected. The Hamiltonian matrix then factors into 2 X 2
F blocks that were diagonalized in our analysis.
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IV. ANALYSIS AND DISCUSSION

We have included the 14 v = 0 and v = 1 frequencies measured by Dixon and
Woods in our analysis. The observed frequencies, along with the residuals from this
nonlinear least squares fit, are listed in Table I. The variance of the fit 1s 40 kHz,
which is within the experimental uncertainty of the measurements. Somewhat better
fits and lower rms deviations can be obtained by fitting the vibrational states indi-
vidually, but the redundancy of these individual fits is smaller and these better fits
may be due to the statistics of small numbers. As indicated in the table, 17 of the
frequencies have been assigned a statistical weight of 1/2 relative to the rest of the
data. This was done because these lines had significantly smaller signal to noise ratios.
The derived constants and their uncertainties are listed in Table II. In some cases
the uncertainties for constants calculable from the N = 0 — 1 data are comparable
to or slightly larger than the uncertainties calculated in Ref. (3). This is not surprising
since the fits of seven data points to six adjustable parameters have limited statistical
significance. Figures (3)-(6) show the variation of the fine and hyperfine constants
with vibrational state. Although it would be possible to fit these to an expansion in
v similar to the Dunham expansion of B, we have fitted each vibrational state in-
dividually. Inspection of these figures shows a smooth monotonic progression at the
1o level for all except the quadrupole coupling constants.

Since accurate rest frequencies are of interest to the astronomical community, we
have calculated frequencies for all transitions in v = 0, 1, 2, and 3 below 400 GHz.
These frequencies and the relative intensities of the fine and hyperfine transitions are
tabulated in Table III. The relative intensities were computed from (6)

(N'SJTF'|uV|NSJIF )

o [(2J + DQRJ' + DQ2F + DQ2F + 1)]'/? {]Jvl ']]\; f}{‘; 5/ II} (3)

TABLE 11
Spectral Constants (MHz) of X2Z* CN for v = 0, 1, 2, and 3

Value o Value ¢
YO] 56954.0231 0.0053 Yy 212.316 0.029
Y” -520.7118 0.0057 b2 -32.489 0.042
Y21 -0.8230 0.0013 <y 60.93 0.11
Y02 -0.19137 0.00021 qu2 -1.010 0.048
Y]2 -0.00061 0.00018 Y3 209.388 0.037
Yo 217.4993 0.0068 b3 -31.869 0.066
b0 -33.987 0.016 <y 61.18 0.13
<o 60.390 0.046 qu3 -1.195 0.092
quO -1.270 0.039
Y 215.070 0.012
b] -33.185 0.022
o 60.598 0.049
qu] -1.170 0.039
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FI1G. 3. The spin-rotation constant v, as a function of vibrational state. The error bars are too small to
show on the resolution of this figure.

The slight mixing associated with the off diagonal J elements is not included in this
equation. Recently, Wootten et al. have observed N = 2 — | transitions in the shell
of IRC + 10216 (7). Because these transitions had not been directly observed in
the laboratory previous to this work, they calculated these frequencies from the
N = 0 — 1 microwave observations of Dixon and Woods and the optical work of
Poletto and Rigutti (8). These calculated frequencies differ from ours in large part
due to an apparent sign reversal in their use of the nuclear electric quadrupole
constant.
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FIG. 4. The magnetic coupling constant b, as a function of vibrational state. The error bars shown
are lo.
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FIG. 5. The magnetic coupling constant ¢, as a function of vibrational state. The error bars shown

are lo.

In addition to the microwave work discussed above, Cenry et al. (9) have published
a detailed analysis of the red system of the CN molecule. For this work they used
high resolution Fourier spectroscopy between 4000 and 11 000 cm™'. They observed
very high rotational excitation in a number of vibrational states, and were able to
calculate a large set of rotation—vibration constants.

Table IV shows a comparison between the calculated B, and v, of their work and
the same quantities calculated from our data. For both of the optical constants, it
can be seen that the differences between adjacent vibrational states are calculated

-.85

-1.05 -

eq@, (MHz)

-1.25 -

-1.45

1 1

1 2
Vibrational Quantum Number

F1G. 6. The electric quadrupole coupling constant eqQ, as a function of vibrational state. The error bars

shown are lo.
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TABLE 1V

Comparison of Microwave and Optical Results (MHz)

Constant Microwave Optical Difference
B0 56693.461(3) 56693.256(129) 0.205
B] 56171.110(5) 56170.910(132) 0.200
82 55647.106(5) 55646.905(132) 0.201
B3 55121.435(15) 55121.183(141) 0.252
Yo 217.500(5) 222.36(99) -4.86
Y 215.071(12) 220.86(99) -5.76
Y, 212.332(18) 218.01(138) -5.68
Yq 209.386(57) 215.55(135) -6.16

much more accurately than the absolute values. The major disagreement between
the microwave and optical v, has been previously noted in Ref. (9). Since the mi-
crowave values are calculated very directly from a substantially redundant and highly
accurate data set, we assume them to be correct. It should be noted that the com-
parison shown in Ref. (9) between the optical and the microwave B, is in fact a
comparison between the microwave By = B, — 2D, and an optical B,. B} is the
microwave constant available from the previous microwave work which included
only N = | « O transitions.

The optical data set was fit to a somewhat different model, so a direct comparison
of their derived “equilibrium” constants and our “Dunham” constants is not possible.
This is not because we identify the coefficients of the power series as Dunham con-
stants and they identify them as equilibrium constants, but rather because we retain
different constants and use different fitting procedures. Even though a direct com-
parison between our Yy, and the B, of Ref. (9) is not strictly appropriate, the large
disagreement between the optical B, (56 953.816(7) MHz) and our Y, (56 954.023(5)
MHz) is probably due to a misprint in the place value of the uncertainty in Table
V of Ref. (9). This would increase their uncertainty by an order of magnitude and
place the disagreement at the 3¢ rather than 30¢ level.
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