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Summary. — The g-shifts of conduction electrons in pure and impure
alkali metals have been calculated by taking the average over the Fermi
surface along the [100], [110] and [111] directions. The conduection-
electron wave functions are approximated by taking orthogonalized
plane waves orthogonal to the core states and are the irreducible
representations in the double group. The calculated g-shift for Li is
—6.7-10-% which is in satisfactory agreement with the experimental
result (—6.1 4-0.2)-10-5. The temperature dependence of the g-shift is
obtained when the integration over the K-vector involves the Fermi-Dirac
distribution. The g value for Li shifts only about 0.39; from a tempera-
ture of 4 °K to 500 °K. The wave functions for the impure alkali metals
are obtained by Bardeen expansion to second order around the center
of the Brillouin zone.

1. — Introduction.

In the observation of ESR the energies of the paramagnetic species are
discrete, and the external magnetic field splits the Kramers degeneracies to give
discrete Zeeman levels. By a study of the transitions induced by r.f. fields
between these Zeeman levels, one can obtain information about the crystal

(*) This work was supported by the U.S. Army Research Office (Durham), Grant
DA-ARO-D-31-124-72-G69, and by the Chinese National Sciences Council.
(**) Present address.
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field, hyperfine interactions, spin-orbit interaction and various other quantities of
the substance. For the magnetic resonance of conduction electrons, the situation
becomes more complicated. The energy levels of conduction electrons are quasi-
continuous, and the wave functions are not localized but extend through the
crystal. In magnetic field, the Zeeman states are not well defined, the phase
factors of the wave funetions depend on the particular gauge which can give
the physically sensible Aharnov-Bohm effect ('). Also, the orbital motions
through the crystals are quantized. In contrast, the orbital momentum in
paramagnetic salts are usually quenched.

YAFET (%) gave the first theoretical {reatment of g-shifts of metals and
semi-conductors. He used the Bardeen method to find the wave function
including spin-orbit effects. The Bardeen-expansion method is valid only for
small wave vectors and inapplicable to alkali metals where the radius of Fermi
surfaces is large. The most complete calculation has been reported by
BIENENSTOCK and BROOXS (%), who used the quantum defect method. Their
results are in satisfactory agreement with experiment, but their theory is
extremely complex, and its real physical meaning is difficult to comprehend.
There is no apparent reason why, for good agreement with experiment, the
« polarized correction » should be neglected and the « Hatree term » should
be included. Recently OVERHAUSER and DE GRAFF (%) proposed a single pro-
cedure for estimating the g-shift in alkali metals. The wave functions are ap-
proximated by single orthogonalized plane waves (SOPW), and the g¢-shifts
are integrated over the Fermi surface which is assumed to be spherical.

In our theory the Fermi surface is not necessarily spherical. The different
wave funections at different symmetry points in the Brillouin zone are derived.
The wave functions are the irreducible representations in the double group
when spin-orbit interaction is presented. The corresponding g-shift is the
Fermi-surface average along the [100], [110] and [111] directions. The tem-
perature dependence of the g-shift is obtained when the integration over the
k-vector involves the Fermi-Dirac distribution.

2. — Theory of the g-factor.

2'1. The matriz element of the g-shift. — In paramagnetic salts the g-factor
may be defined as

(1) q—= 2 /jq)n(".) XZ(S)‘LZ ’4.“ 2Sz|(pn(fr) xb('S);) ’

Yy J. J. Saxural: Advanced Quantum Mechanics (Cambridge, Mass., 1967), p. 16.
(3) Y. YAFET: Phys. Rev., 85, 478 (1952); Solid State Phys., 14, 1 (1963).

(®) A. Brexexsrtock aud II. BrRooks: I’hys. Rev., 136, A 784 (1964).

(Y A. W. OveErHAUSER and A. M. pr GRAFF: Phys. Rev. Lett., 22, 127 (1969); Phys.
Rev., 180, 701 (1969); Phys. Rev. B, 2, 1437 (1970).
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where ¢,(r) and g.(s) are the orbital and spin wave functions, respectively.
For conduction electrons the calculation of the g value is not so straightforward,
since there are no well-defined wave functions ¢,(r) and the levels that participate
in the resonance are a quasi-continuous series of levels (°). The energies of the
levels split by an external magnetic field need not all be the same, particularly
when a large fraction of the Brillouin zone is occupied.

The g-factor as measured experimentally is determined by the position
of the static magnetic field H, at which the maximum of power absorption of
the r.f. field (perpendicular to H,) occurs. Theoretically, the quantity calculated
is the mean of the energy in the absorption spectrum. The difference between
these two quantities can be negligible since the exchange interaction between
conduction electrons and lattice scattering will tend to peak the line at the
average absorption energy (¢).

The g-factor therefore can be determined by the ratio of the first moment
to the zeroth moment of the Hamiltonian in the absorption spectrum (7).
Utilizing the trace method (8), YAFET (°) has shown that the g¢-shift is given
by the average of the orbital momentum induced by the spin-orbit interaction
at the top of the Fermi distribution, or

where the subscript mn indicates that these are expectation values for n-th
conduction band state, m is the velocity operator p -+ (1/202)6><VIA’, and X
is the co-ordinate operator, and the matrix elements are

(3) K= [k, )i < (e, ) dor |
ok,

unit
cell

Equation (2) ean be evaluated to second order in the Bloch vectors; it gives

1 a 1 oV ovi.,, .
e _ % (4 W q3p L * ¢ 3p
(4) Ag(l)2f¥/ (Fx V), ¥ s T()mczf@p [A T ay]wm S,

where S is the surface term and is equal to

~

a  Ou ou ¢ ou ©
— | u*(F X V) —— = 2iku*(r X V), % — =— — ou* + — — yu* |dS —
ﬂ (FXVa) g, T 2thott(r X Va)ou — e ST o™+ 5, v |4

(5) J. M. Ziman: Electrons and Phonons (London, 1968), p. 521.

(6) P. W. AxpERsonN: Journ. Phys. Soc. Japan, 9, 316 (1954).

("y K. KamsE and T. Usvi: Progr. Theor. Phys. Japan, 8, 302 (1952).
(®) G. E. PARE: Paramagnetic Resonance (New York, N.Y., 1962), p. 85.
(°) Y. Yarer: Phys. Rev., 106, 679 (1957).
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The integral is over the cellular polyhedron (or the equivalent sphere), and v
is the outward direction normal to it.

The meanings of the terms of eq. (4) are: the first is a volume integral of
the Z-component (parallel to H,) of the orbit magnetic moment; the second
term arises from the spin-orbit interaction; and in the third, the surface integral
term is proportional to the normal component of the velocity evaluated over
the wave function and certain combinations of its first derivatives with re-
spect to k,.

In addition to Yafet’s term in eq. (4) there is another contribution to the
g-shift which arises from the fact that the spin precession frequency of a moving
electron is smaller than that of one at rest by the relativistic factor
(1 —v2fer)t &~ 1 — v?[2¢%, as discussed by OVERHOUSER (*). This leads to a neg-
ative shift

(5) (Ag)'= — (mch)—lf!lf*pzyf dor .
Q

29, Pure alkali metals. — The alkali metals have just one electron outside
the completely closed shells. At ordinary temperatures they are all erystallized
in body-centered cubic structures. The form of the Brillouin zone together
with the symbols showing the symmetry points and the Fermi surface is given
in Fig. 1. There is no direct experimental measure of the anisotropy of the
Fermi surface in any of the alkali metals. However, the Fermi radii at the

Fig. 1. — The Brillouin zone together with the symbols showing the symmetry points
and the Fermi surface of the body-centered cubic structure.
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[100], [110] and [111] directions are available in the literature (*°-11)., The
Fermi surface seems to be pulled out in the direction /', and pushed in along
the cubic axes I';. An indirect evidence suggests that only in Na the Fermi
surface is nearly spherical; in K it probably bulges about half-way towards the
zone boundary; in Rb and Cs even further; and in Li it is quite contrary to
a sphere. The previous calculation (¢) of the g-shift with the Fermi surface
assumed to be spherical is not quite acceptable. We shall calculate the g-shift
along the [100], [110] and [111] directions, respectively, and then take the
average value over the Fermi surface.

The k-vectors can be anywhere along the [100], [110] and [111] directions.
The symmetry types of the wave vectors are A, X' and A. The classification
of the atomic states and the basic functions are given in Table T (*2).

TaBLE 1. — Atomic states and basic functions at the degenerate points of the Brillowin zone.

Symmetry points A4 Ay 2 DI z, 4, Ay
Atomic states 8 P s P P s P
Basis functions 1 {x, v} 1 z {x—y} 1 {x—z2,y—=z}

The free-electron wave functions at the degenerate points can be found
by use of the method given by JoONES (13). They are given in eq. (6). Since
the free-electron wave-function eannot give the eorrect g-shift, it is convenient
to use the othogonalized plane waves (OPW). These are

( 2 27
Dy, = N, {exp [ike2] (cos T 4 cos — 1) zBmRnng} ,
27 Y — Yl
@3, = Ny {exp [ike2] sSin — & — zAnuRm( \/2 — )} ,
WY+ Y]
(6) %, = {e [ike?] Sm— Y — ZAnmR,,1 u 1\/2 1)},
27 27 0
Dy = exp [ik,(x + y)] cos—zcos—-(m— )——ZBMRMY“},
27 27 Lo
= N jexp [ik,(z + y)] sm—; 2 008 —~ (@—y)— > AR Y1,

(1) J. M. Zimax: Electrons and Phonons (London, 1968), p. 111.

(1Y) F. S. Ham: Phys. Rev., 128, 82 (1962).

(12) H. Joxus: The Theory of Brillowin Zones and Flectronic States in Crystals (Amster-
dam, 1960), p. 106.

(33) H. JonEs: The Theory of Brillowin Zones and Electronic States in Crystals Amster-
dam, 19€0), Sect. 30.
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‘ 2
Dy, = Ny, {exp [tky(x + y)] cos —25—[ 2 sin 776 (x —y)—

S AR [(1+i)YII+(1—73)Yi]}
n224Ltnl ’

v2i
. 27 27
&4 = N, {exp [Phe(x + y + z)][cos—J (x—1y) + €08 — (y —2) +
27 0
+ COS—; (g—a){— Z B3Ry Yo
27
D4 = Na {eXp [ike(w 4+ y + &)] sin— (v —2) —
.._EA R _L (17—1___171)_Y0
“ n314Vnl »\/Q 1 1 1 9

D}

D4 = Na {eXp [ike(x + y + #)] sin %Z (y —2) —

ZAnssz[ i (Y7t + Y1) — Yi’]}.

In the absence of spin the representation at a general point of the Brillouin
zone is singly degenerate. It becomes Kramers degenerate when we introduce
the spin. The energy change in the band due to the spin is small compared to
the band energy if the spin-orbit interaction is small. The wave functions at
points of high symmetry in the zone will be split because of the spin. The
direct product of the above irreducible representations in the space group
with the spin wave function (S-!) can be found with the method given by
TINKHAM (14). The results are shown in Table II.

TasLE I1. — Direct products of the irreducible representation in the space group and the
spin wave function.

s-state 81 A, = A, S-1x A, = Ag RPN )

p-state S-1x A, =24, S-1xA;= A4+ A5+ A S-ix 2= 24 24
§-1x Xy = Xy 412,

The s-state wave function in the double group can be readily obtained
by multiplication of the wave function in the space group by the spin states.
The basis functions, or symmetry types, of the p-state are a bit more difficult

(1) M. TiNkHAM: Group Theory and Quantum Mechanics, Sect. 310, 4'7 (New York,
N.Y., 1964).
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to find. These can be obtained by following the method given by JONES (1%).
For example, the symmetry type of A, will be of the form

- y aPz—z+be—z
@ ¥= (cPH + dPy_z) :

The constants a, b, ¢, d are determined by applying the operations of the O,
group and making the results agree with the characteristic table of 4,. To
illustrate this process one operation will be given in detail. Consider the op-
erator which belongs to the class C, which transforms (z, ¥, 2) - (y,2, ). In
matrix form this can be written as

010
(8) Q = [ 001
100

Compare eq. (8) with the matrix of a proper rotation

(9) Q=

cos xcosfcosy —sinasiny  sinocoseosy 4 cosasiny — sinfcosy
= | —cosacosfsiny —sinacosy —sinecosfsiny + cosacosy  sinfsiny |,
cos a sin 8 sin o sin f cos

We find that o« =0, f =+ =m/2. The spin operator

R (B]2) exp [— ¢[2(x+ )] —sin (B[2) exp [— ¢/2(cx — )]
sin (B/2) exp [¢/2(a— )] cos (B[2) exp [i[2(a+ p)]

will therefore be

ot
|
S
—
+
SN

Lo
Lo

Lo
&

1+ 147

1—¢ 1—2

2 2

(*) H. Joxes: The Theory of Brillowin Zones and Electronic States in Crystals (Amster-
dam, 1960), Chap. 7.
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The operation of S—1¢ on the wave function ¥ will give ¥ multiplied by
the character of the operation of A,. In this case

(12) SQY =,

This equation can provide us two independent equations of a, b, ¢, d. Com-
bined with other equations obtained by additional operations, we can solve
for the values of a, b, ¢, d. The irreducible representations in the double group
with spin up are

1
qjlz WA“T: @AI(O): @Al o,

Vo= ¥Ya, = \/2 (@3, + iD4,) e
W3: TEMT: @21 o,
(13) V=V = D5, «,

SU — WZ@T @2 o,
Vo=¥y 1= Dy,

Q5 —1(WV2+1+14) DY
yj7 = TAW? =|1—

e —ivEei—) o

The spin-down counter-parts of eq. (13) can be obtained by application
of the operator C (*%) to eq. (13), where

(14) C=—io,K,J,

in which K, denotes complex conjugation, J is the inversion operator, and
o, the y component of the spinor.
The g-shift averaged over the Fermi distribution is given as

mew ) Ag,(k) d2k
;ymmkd% ’

(15) Ag=

where Ag,(k) are the integrals of eq. (4), and f,. (k) is the equilibrium Fermi-
Dirac distribution.

(**) C. KirTeL: Quantum Theory of Solids, Chap. 9 (New York, N.Y., 1963).
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2'3. Alkali metals doped with impurities. — If the alkali metals are doped
with impurities, the Fermi surface will be changed. According to COHEN and
HEINE (%), the distortion of the Fermi surface depends on the values of s-like
and p-like electronic states on the zone face and on the density of the states
of solute and solvent. For example, the Fermi surface in pure Cu touches the
zone boundary, but it may shrink and become more spherical when impurities
are added. We can ean successfully use the wave functions at the center of
the Brillouin zone with the k-p perturbation method to find the wave function
near the center of the zone. To b.c.c. structures, the state wave functions which
correspond to the k=0 are I, Iy, I, I'y; and F;5. The wave functions of
the type I'; have the full symmetry of the point group. It is the lowest state
of the conduction band and usually corresponds to the atomic s-state in cubic
metals. The next lower state of the type I';, is a threefold degenerate state
and is related to the atomic p-state, whereas the F;E and I, states are equivalent
to the atomic d-state.

The above basis functions in free-electron approximation can be constructed
in the same manner as discussed in the previous Section. If they are normalized
in the unit cell, we have

Iy 10> = (2/3a)} (cos bx cos by -+ cos by cos bz +- ¢o8 bz cos br) ,
I'is: x> = (2/a®)} sin bx (cos by + cos bz) ,

(16) I'yy:|AY = (2/a*)}[cos bz (cos b -+ cos by) — 2 cos bx cos byl,

|B) = (2/2%)} cos bz (cos bo — cos by) ,

Iys 2 lwy) = (4/a®)? sin b sin by ,

where a is the lattice constant and b= 2x/a.
In order to evaluate eq. (4) we need to know the core wave functions. Let
us use the SOPW method which states that

an 1) = G117 = 33 D IpaulrD)

where |[7) is the j-th component of the i-th irreducible representation of the
plane wave function, qoau(r) denotes the u-th impurity core states (perhaps dif-
ferent from the free atomic states) with quantum numbers A and transformed
like the I”. The normalization factor is

-1
?

(18) R P P XATHCI

(*y M. H. Conex and V. HEINE: Adv. in Phys., 7, 395 (1958).
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where C, denotes the atomic concentration of ions of type u, and N is the total
number of ions contained in the volume.
The core states which transform like the I irreducible representations are

It =R, 7Y,

. 1 _
Fls - \_/'éRnl(Yi - Yll) ’
wfs \/Q Rnl(yi _IL’ Yl_l) 9

2 0
15 :Rn1Y1’
4 0
Ilz :an—Y27

19
4o Ih = s Rl ¥4 ¥,
Iy 1 2 -2
Fzs - Wéan(yz + Yz ) ’
= s Rl Vit V7)
1w —1 1 -1
Fzs = \/Qan(Yz—‘ Yz ) -

With the Bardeen method the periodic part of the wave function of the
Schrodinger equation at a point k may be expanded in terms of the complete
set of functions associated with the point k = 0, i.e. the center of the zone. The
Bardeen expansion to second order is

0ty ry= o)+ 20 3 DEET g fi ERShIBIE SO

(k- Vi0)(0)k- Vo) 1 10)<01k-V|l)(uk-V|o)}
(B, — H,)* 2 (E,— E))* )

Direct calculation shows that the k-V perturbation mixes only I, and I7;.
If we consider the higher-order terms, k-p will mix I';; and I,,, I’;E. If eqs. (16),
(17), (19) are substituted into (20) we find, to second order in k and with neglect
of the small terms due to the integration of the core states, that

(21)  uok,r)=|0) — [kal®) + Eyly) + k.|2)] -+

\/31)

+ 5?/?;‘,2 [202 — 12— 2)|A) + (K2 — ) [B)] —

-2

_{/_sz [koky\2y) -+ kyk.lyz) + k. k.|ez) —% 0).
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For monovalent impurities the core wave functions g, ,(r) in eq. (17) can be
the free-atom core states of the impurity atoms. When the valence of the
impurity differs from that of the host, the excess or deficiency of ionic charge
must be screened; the screening results from a change in the amplitude of the
impurity core states. According to ASIK et al. () the impurity potential V,(r)
can be represented as

Z,e*
(22) Vi(r) = — — &P [—ar],

where Z, is the difference in the valence of the impurity atom and that of the
host. The screening parameter « in each case is adjusted so that the s.p.d., ...
phase shifts 7y, 715 92, ..., and thus satisfies the Friedel sum rule (**)

D o©

(23) Z,=Z% 21+ 1)y

1=0

The optimum-screening parameter and phase shifts for a screened Coulomb
potential in Li and Na are tabulated in ref. (*¢).

The I-th radial wave functions R,(r) of the impurity atom in the screened
potential, by assuming the unit m =% =1, is

de

1) LI gy i+ 1)

oar| B, — — R,=0,

where a, is the Bohr radius. Equation (24) can be numerically integrated by
computer by the Milne method (2¢). The numerical calculation of the g-shift
is like that for pure alkali metals and will not be presented here.

2'4. Calculation of the g-shift. — First let us consider the term
(25) Agi(k) fsv* « )., dsr,

which is effectively given by the expectation value of the Z-component of the
angular momentum (times 2/%) in the unit cell. The expectation value of the
angular momentum of the s-state electron is zero. The explicit forms of eq. (25)

() J. R. Asik, M. A. Bart and C. P. SLicHTER: Phys. Rev., 181, 645 (1968).
(*) J. FriepeL: Phil. Mag., 43, 153 (1952).
(29) K. 8. Kunz: Numerical Analysis (New York, N. Y., 1957), p. 202.
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are given as follows:

[ f‘f’;‘ 2 (X V), B —

= NHNM{ :I:.I) sm%nmcosggy + smgzg/ cosg;ﬁm] -

3
-+ 1 ; A1 A BT an} d?*r 4 c.c.

D]

2 2 2
f?: F (rx V), W, d3r = 2fN§1kﬂ(w — ) sin? Zz cos? —g (x — y) d3r + c.c.

2 2 2
f‘.P; = (rxX V), Vs d3r = 2N§2f{cos k(x4 v) cos—'c%IE 2 sin—g (x—y)—

475 Z An22 T J Rnl}{ (x—‘?/) co8s ki](x + 3/) -

()
-—7 (w+J) sin k,(x 4 y) cos—;—tzcos%r(w— )}d3r+ c.c.,

(26) 2 27
J“PI? (rx V), ¥, d> = 4| N3, {cos ke(x + vy + 2) sin-a— (x—2)—

2
z An31 —_— Rm} {k;(w—y) cos kg(x -+ y + 2) sin —az (x—2)—
——27"7 y sin kg(z + y + 2) cosgg (w—z)} d3r -
_ 2n
2(2 + \/2)fN§2 {cos ke(x + y + 2) sin—zl— (y—=2)—

3 —z
- VZ;L’ g An32 yT Rnl} -

-{kg(w—y) cos kg(w + y + 2) Sin% (y—2)+

2 2
+-ga:sinke(w+y+z) cosg(y—z)}d‘“'rJr c.C.,

where c.c. is the complex conjugate.
The second term is

r~ 2 o 1 1 @_K d;z
(27) Ag,(m_-—rczfﬂ[wa“ v |,

where m’: is the cyclotron effective mass in the r-th band. Equation (27) comes
from the spin-orbit coupling energy

f -G [ Vxp].

(28) Amic?
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This term calculated by OVERHAUSER et al. (*) is smaller than that calculated
by YAFET (3) and in subsequent works (®) by a factor of 2. We can agssume
the potential to be of the form

SN L A ] Loy
(29) vin——[2+ 3 (2) —3]5 5 exp i

The first term represents the potential of n nuclear charges screened by an
electronic charge distributed uniformly throughout the Wigner-Seitz sphere
of radius »,. The second term represents crudely the potential of n nuclear
charges by the ion core. The operator is

8V oV 2[ (1 72

(30) T +yaJ n ———)—}—,u( +}l)exp [—r/l]]sinzﬁ.

r

Equation (27) can then be easily evaluated by use of eq. (30).
The third term is

(31) Agy(k) =

fSP W d3r.

*202

Since p2¥ = — 72 AV =2m(E — V)Y, eq. (31) can be readily evaluated, and
we find that

( 2
Y O [ )
1 ) 27r\?
Age=— Smie {hz(Nfl + Niz)(ki + (—a—) )
02 - 2my z (Apu N3, -+ AnIZN:zlz)f(Enp — V)R, dr,
2 27\ 2
Age= ?? ; {}ﬁ (2kf, +3 (—a— ).Q + 2m3; ZBizf(Ens— V) Eny d37‘} :
N; 2 2m\?
(32) Agzz _;n—;izz—t}z {%2 (2]&% + 3 (% ).Q =} 27)?/2 ZAnZI E V)Rf,ldsr} y
N; T\ *
Ag:: Rz?zzgz {%2 2"?7 +3 (27%) ) Q + 2m%, z Anzz —V) ild:s/,-} y
N; 2
Ags= — mﬁa {h2 3ke + 2 (%;1 ) Q-+ 2my EB:Sf(Ens — V) Ry, d%‘} ,
Agt= — 2 723k 42 2wy (N3 + (2+4/2)N3,) -
7 my e & a 31 L 32
{ £ 4 2my Z (A:SIN?I + (24+14/2) Nngisz)f(Em — V)R, d37‘} ’

where (2 is the volume of the Wigner-Seitz sphere.



256 JUH-TZENG LUE

The last term S, which was the contribution of the surface integral over the
cellular polyhedron, can be neglected since the amplitude of the wave functions
calculated by the tight-binding method at the boundary is negligibly small.

The g-shift contributions from electrons with their momenta extend from
k=0 to k= k;. The most effective contribution comes from the electrons
with their wave vectors near the Fermi surface. The mean value of the g-shift
over the [100], [110], [111] directions is

[I> Forlk)a g-(k) d A, dk,
A= (12 forB) VIV, A A, Ak, A3’

(33)

where f,,(k) is the equilibrium Fermi-Dirac distribution of the form
(34) for(k) = 1/[exp [(E, — Cp) [ K T]+ 1] .

Here H,=#%2k/2m), and (, is the Fermi potential at the r-th band. The
Fermi potential is related to the Fermi energy by the following formula (21):

nz

(35) L= Be—T

(KBT)z[ 77777 _In N(E) +

where N(F) is the density of states. For metals at ordinary temperature we
have K T < E_ (as an example, for lithium,

K. =9.45-10"erg, K, T=41-10""erg),

so that {,~ K. The temperature dependence of the g-shift is apparent from
examination of the following formula:

N 1 37 __ 1 ’ 37, m* 2 —a— =
(36) Q= e foo(Ek) A3k = A3 fQ d#k + 6 (HpT) [aE Q]E-EF -

Ep
1 7 J1 2
= rnand bt g W) [VkE aTQ]
0

As an application to lithium, the calculations were carried out on an
IBM 1130 digital computer. The radial-wave functions are from the work of
HERMAN and SKILLMAN (22), and the structure constants and other parameters
of Li and Na are given in Table III.

(*Y) J. M. Zimax: Principle of the Theory of Solids (Cambridge, Mass., 1965), p. 119.
(22) F. HErMAN and 8. SKiLLMAN: Atomic Structure Calculations (Englewood Cliffs,
N.J., 1963).
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TABLE II1. — The structure constants and parameters for caleulating the g-shift of conduction
electrons in lithium and sodium.

Description Symbol Li Na
Lattice constant a (atomic units)  6.651 8.109 (%)
Radius of Wigner-Seitz sphere 7s (atomic units)  3.96 3.97
Ratio of cyclotron effective mass to free- Myye/m, 1.48 1.00 (9)
electron mass mh o m, 1.65 1.00
M m, 1.82 1.00
Ratio of the extreme area of cross-section A4 A0/ 4, 0.976 1.00 (9
of the Fermi. surface to area of the free. Ago/ A, 0.993 1.00
electron Fermi sphere
Ay1,/4, 1.011 1.00
Ratio of the wave vector on the Fermi surface E1y0/kp 1.023 1.00 (9)
In the [nyn,n,] direction to the free-electron Fro0/lep 0.973 1.00
wave vector
Fypa /oy 0.983  1.00
Fermi energy of free electron in alkali metals i (eV) 4.76 3.20 (b
Ratio of energy at Fermi surface to free. B/ By 0.754 1.065 (?)
electron energy Byoo/ By 0.750 1.240
Eyy/Ey 0.760  1.070
Screen radius (atomic units) 0.763 0.294 (¢
Eftfective charge 2 0.12
(a) Ref. (1),
(b) Ref. (5).
(c) Ref. (%).

3. — Experimental details.

We have measured the temperature dependence of the g-shift of conduction
electrons in sodium. The sample preparation is the same as in our other
works (23), Resistivity measurements of the material by eddy-current decay
method (24) gave a resistivity ratio 300 °x/ 04 5 o A 6000,

At temperature above 100 °K the measurements were performed by use of
a Varian X-band homodyne reflection Spectrometer. The sodium samples
surrounded by a quartz Dewar were mounted in g multipurpose rectangular
cavity of mode THy,. A 100 kHz modulation field is used for improvement
of the signal-to-noise ratio. Use of highly attenuated microwave power prevents
the saturation effect. In our measurements the microwave power is attenuated

(*) J. T. LUE: The spin-lattice relaxation time of conduction electrons in alkali metals:
sodiwm (to be published).
(*%) C.P. BEAN, P. W. DEBLOIS and C. B. NEsBIT: Journ. Appl. Phys., 30, 1976 (1959).
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25 db down from a 400 MW klystron. Since the relaxation time is short enough
above 100 °K, there is no saturation problem when this power level is used
with a homodyne detector. Increasing the modulation field greatly distorts
the line shape. In our system we took the 100 kHz modulation field at a.c.
13 G so that there was no sacrifice of the signal-to-noise ratio to avoid the line
broadening. The temperature variation arrangement was similar to that of
WALSH, JEENER and BLOEMBERGEN (??). Signals proportional to the derivative
of the real part of the surface impedance of the sample were obtained by the
locking of the microwave klystron to the cavity resonance frequency.

At low temperatures the CESR (conduction electron spin resonance) signals
were measured by a two-klystron superheterodyne ESR spectrometer operating
at X-band, a design very similar to that described by FEHER (2¢). The microwave
cavity was surrounded by two concentric pyrex-glass Dewars filled with
liquid nitrogen and liquid helium. For operation at a temperature intermediate
between 4.2 °K and 50 °K, the inner Dewar was filled with activated charcoal (27)
which then surrounded the microwave cavity. The charcoal can absorb cold
helium gas and can provide a large thermal reservoir. With this installation
we can measure the CESR at an elevated temperature after waiting for equi-
librium to be established. The inside of the cavity and the wave guide dipped
in the Dewar were filled with styrofoam to prevent the bubbling of liquid helium.

Precise measurement of g values requires careful determination of the mag-
netic field and the microwave frequency at which resonance occurs. The best
accuracy in the determination of the absolute magnitude of a magnetic field is
obtained with an NMR fluxmeter. Our home-made fluxmeter (2¢) has the
stability of the frequency of the protons of one part in 108. The gyromagnetic
ratio of the proton is known only te one part in 105 resulting in an absolute
accuracy in measurement of the field of two parts in 10%. To measure the micro-
wave frequency, a Hewlett-Packard 5257A transfer oscillator accompanied
with a 5245M electronic counter was used. The frequency measured can have
accuracies of 1 part in 105,

4. — The experimental and theoretical results and discussions.

4'1. The determination of the g value from the experimental line shape. —
Dyson (2?) has solved the line shapes of the power absorbed by a flat metal plate

W. M. WaLsH jr., J. JEENER and N. BLOEMBERGEN : Phys. Rev., 139, A 1338 (1965).
G. FEngr: Bell System Tech. Journ., 36, 449 (1957).

G. Wurtk: Ewxperimental Techniques in Low Temperature Physics (Oxford, 1959),
p. 213.
(28) J. T. LUuE: A simple circuit of crystal oscillator and its application to a high resolu-
tion NMR spectrometer (to be published).
(3*) F. J. Dyson: Phys. Rev., 98, 349 (1955).

[
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of arbitrary thickness with the external d.c. field perpendicular to the face
and a linear polarized r.f. field H, parallel to it. In our case the sample is a
cylindrical rod with H, arbitrarily oriented with respect to the rod axis and a
coaxial r.f. field around it. Since the skin depth is small compared to the radius
of the cylinder, we can approximately replace the cylinder with a flat plate.
Furthermore, since it is experimentally observed that the line shape does not
depend on the orientation of H,, we can take H, perpendicular to the plate.
Thus Dyson’s result would apply except that the boundary conditions are differ-
ent. In this theory he assumes the r.f. field is the same on both faces of the plate.
For the cylindrical rod the r.f. fields on the two sides are opposite in sign.

From Dyson’s calculation the line shape of CESR is a function of skin
depth 6 and spin diffusion depth in one relaxation time J,. The electronic
thermal scattering would greatly reduce the value of ¢, and increase the value
of 0; therefore the line shape is also a function of temperature. The true res-
onance center of the spectrumline (the point from which we calculate the g value)
does not coincide with the point of maximum abserption (the zero of the de-
rivative curve). The theoretical curve is fitted once the ratio of the relative
heights of the low-field and high-field peaks is experimentally determined.
The dependence of the shift of the true resonance center from the point of
maximum absorption as a function of the peak-to-peak ratio is given by
Pressley (39).

4°2. Theoretical prediction of the g-shift of conduction electrons. — We have
used the wave functions in the first excited band to calculate the g-shift, since
the wave functions in the first occupied band (I-states) are valid only for the
wave vector k near zero, which are inapplicable to alkali metals where the
Fermi surface almost touch the Brillouin zone. The contributions of the g-shift
from the I-states have been included automatically in the integration of eq. (33),
because of the A, X, A states in the first band are compatible to the I-states
as k—0. In metals the energy levels are quasi-continuous, the resonance
spectrum can be contributed from different bands which may have a wide range
of g values. The spectrum line is not come from any specific band. But the
majority of the spin resonance experiments carried out so far show only one
narrow line. The simplicity comes from experimental conditions, 4.e. if the
spin-lattice relaxation time is larger than the electron scattering time (t,)
between two Landau levels without spin reversal, and if 7,8w, where dw is the
distribution of resonance linewidth from different bands. The center of the
line, therefore, is at the weighted average frequency and is very narrow.

In an application to the theory given in Sect. 2 we have calculated the
temperature dependence of the g¢g-shift of conduction electrons in lithium.

(3) K. J. PressLEY and H. L. BErRk: Phys. Rev., 140, A 1207 (1965).
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Our calculation shows that the contributions of the Margenau term Ag2+ Ag?
of lithium is 43.6 9%, along the [110] direction and is 15.79, along the [111]
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Fig. 2. — The calculated temperature dependence of the g-shift of conduction electrons
in lithium.

direction corresponding to the largest and smallest terms respectively, with
wave functions of Li stated by HERMAN and SKILLMAN do not permit us to
an average value of — 4.2-10-5 for the Margenau term. Since the s-state elec-
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Fig. 3. — The conduction-electron spin resonance line of sodium at room temperature
accompanied by two NMR marks.
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trons have no contribution to the first term Ag'=— (2/1'/)fo+(1‘*X@)z'f’,d%*, the
estimate the value of Agl. BIENENSTOCK and BROOK (*) using the quantum
defect method found that Agl= —2.5-10-5. This value combined with our
result — 4.2-10-5 would give — 6.7-10-5, which is in satisfactory agreement
with the experimental result (— 6.1 4 0.2)-107° (*!).

The caleulated temperature dependence of the g-shift for Li was shown
in Fig. 2. The shift from 4 °K to 500 °K is only about 0.3 %. The g-shift arising
from the atomiec spin-crbit interaction is less influenced by the temperature
change of the lattice constant. Since tbe Fermi temperature of alkali metals
may be as high as 4-10% °K, this is the reason why the effect on the g-shift
by the Fermi-Dirac distribution of the conduction electrons in the temperature
range from 4 °K to 500 °K is very small. An inspection of the theoretical result
would show that the g-shift decreases in magnitude as the temperature increases
and asymptotically approaches to a final value; the increase in tfemperature
causes the conduction electrons to behave more like free electrens.

% ok ok

The author would first express his gratitude to Dr. W. GORDY who spent
many tedious hours in reading this manuseript and provided many constructive
criticisms and continuous encouragement. He is alzo indebted to Dr. H. 8. WoxG
for his helpful discussion on the Fermi surface in alkali metals. Thanks are
also due to Mr. P.S. Yu for his help in the clectronic instrumentaticns, and
to Miss T. P. Prr for her help in writing the computer programs.

(3 N. 8. Vaxper VeN: Phys. Rev., 168, 787 (1968).

® RIASSUNTO ()

Si sono caleolati gli spostamenti g degli elettroni di conduzione nei metalli alcalini
puri e impuri facendo la media sulla superticie di Fermi lungo le direzioni [100], [110]
e [111]. Le funzioni d’onda degli elettroni di conduzione, che si sono approssimate eon
onde piane ortogonalizzate ortogonali agli stati interni, sono le rappresentazioni non
ridueibili nel gruppo doppio. Si ha per il Liil valore calcolato dello spostamento
g di —6.7-10-%, che coincide entro limiti soddisfacenti col valore sperimentale
(— 6.1 +0.2)-10-5. Si ottiene la dipendenza dalla temperatura dello spostamento ¢
quando ’integrazione operata sul vettore K coinvelge la distribuzione di Fermi-Dirac.
11 valore di g per il Li si sposta solo di circa lo 0.39, andando da una temperaturas
di 4°K a una di 500 °K. 8i ottengono le funzioni d’onda per i metalli alcalini impuri
per mezzo delle sviluppo di Bardeen del secondo ordine intorno al centro della zona
di Brillouin.

(*y  Traduzione a cura della Redazione.
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3aBHCHMOCThL OT TeMIEpaTyphl ¢ CABHMIOB [JIfl 3JEKTPOHOB NPOBOJAMMOCTH B YHCTBIX M
HEYHCTHIX IIETOYHBIX METANIAX.

Pesiome (*). — IIpoBomuTCsi BLIYKCIEHHE ¢ CHBUIOB IJIS1 3JICKTPOHOB IPOBOAUMOCTH B
YUCTHIX M HEYHMCTHIX IECJIOYHBIX METalliaXx C IMOMOINBI0 YCPEOHCHHUs IO IIOBEPXHOCTH
®epmu Brons HanpasieHuid [100], [110] u [111]. BonnoBble QyHKIMM 37IE€KTPOHOB IPO-
BOIMMOCTH AaMIIPOKCHMHPYIOTCA C IIOMOIIBI0 OPTOTOHAJIM30OBAHHBIX IUIOCKUX BOJIH,
OPTOrOHAJIBHBEIX COCTOSIHUSIM OCTOBa, M OOpa3ylOT HEMPUBOOUMEBIE IIPCACTABIICHUS B
IBOMHOM Tpynme. BeruucieHHbIN ¢ caBur miis Li cocTtaBuser — 6.7-1073, yTo yIOBIIETBO-
PMTENBHO COIIACYETCsl ¢ IKCIEPHMEHTANLHBIM pe3ysibTaToM (— 6.14-0.2)-1075, Temme-
paTypHasi 3aBUCHMOCTh ¢ CIOBHIa HOJYyYaeTCs IIOCIIE HHTETPUPOBaHWsS IO BCEM BEKTO-
paMm K, sxoasmuM B pacnpenencHiae ®epmu-dupaka. Beauunnaa ¢ o TUTHS U3MEHSIETCSA
TobkO Ha 0.39%, npu u3MeHeHuu Temmepatypsl oT 4 °K mo 500 °K. BosHoBBIE hyHKUINH
IS IIEJIOYHBIX METAJUIOB C IMPHUMECSAMH IOJIYYAIOTCsA C MOMOIIBIO pa3iioxkeHds bapanna
BTOPOTO MOpsaKa BOJH3H LEHTPa 30HLI BpHIIIIO3HA.

(*) Ilepesedeno pedaxyueii.
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