A Critical Analysis of THz Applications: The Intersection of Science and Technology

Frank C. De Lucia Department of Physics Ohio State University

We will consider the matching of technical approaches to applications in the THz spectral region. Particular attention will be paid to the physics of the interaction of the radiation and matter, how this physics leads to selection of technology, and, indeed, if the application is feasible. In many cases quantitative or semi-quantitative analyses are possible. Emphasis will be placed on using these analyses to identify especially attractive paths to applications that can be competitive for wide spread adoption. Specific results will be presented for both point and remote chemical sensors that are based on high resolution and brightness electronic sources. Sensitivity, specificity, and background clutter and interference will be considered quantitatively. Paths to low cost and compact THz electronic sensors will be described. Technical descriptions of the hardware implementations, analysis of the interactions of this hardware with the molecular signatures, and analysis methods will be presented.

DTRA May 29, 2012 Ft. Belvior, VA

Content

Physics: A Guide to Applications and Appropriate Technology

Examples

Point gas sensors Remote gas sensors Imaging special alignment and illumination requirements coherent effects (speckle) A few comments on bio

Implementation and Comparisons

R & D base for the THz vs IR, MS/GC, etc. 6.1 Research

Paths Forward

Near term based of well defined strengths (specificity, small sample, . .) What is possible with mature THz science and technology (broadening applicability)

The THz: A Useful Combination

Applications often based on combination of attributes:

Penetration Angular Resolution Spectroscopic Capability

<u>At what frequency</u> within the THz (0.1 – 10 THz) do we execute this compromise?

Attributes typically are <u>steep powers</u> of frequency

How do we choose an appropriate technology?

Figures of merit – especially power/dynamic range vs. brightness; orders of magnitude

Analysis needed to supplement qualitative concepts to choose useful paths forward.

"Whispered Excitement about the THz"

Graham Jordan

Opening Plenary Presentation SPIE Symposium: Optics/Photonics in Security and Defense Bruges, Belgium, 26 September, 2005

Goal today:

To sort through some of the hype and clutter so that we can better see the path forward in the THz (SMM, MM, FIR, NMM, ...)

Themes:

There is a diversity of applications with similar technical requirements Electronic technical approaches are very competitive Leveraging the mass market is fundamental to success

The Physics:

A Guide to Applications and Appropriate Technology

The THz has defined itself broadly and spans kT

Linewidths: Fundamental to both specificity and sensitivity

Doppler broadening is proportional to frequency: 0.1 – 10 MHz in THz : x 100 – x 1000 in IR Atmospheric pressure broadening: 10 GHz at all frequencies Sensors often purposefully pressure broadened to compensate for low spectrometer resolution Solids: 100's GHz – to continua (typically at high THz to IR frequencies), but crystals and ordered solids can be much narrower, especially at very low temperatures

Jumping the 'gap in the electromagnetic spectrum' is not the same as closing it.

Bandwidth matters

- 1 mW in 1 MHz is equivalent to 10¹⁴ K
- Must use appropriate figures of merit: total power (W) (dynamic range?) vs. brightness (W/Hz)

Peak interaction strength is molecule dependent

Sensors typically demonstrated on atypical, small, very favorable molecules (H_2O , NH_3 , CO, . . .)

Maximum strength occurs more typically at order of 300 GHz

Penetration is an <u>extremely</u> steep function of frequency

Can we see through clothes? Yes – in the <u>low THz</u>

Penetration is an <u>extremely</u> steep function of frequency

Can we see through walls? No – unless we live in straw or foam houses

System Design - I

IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, VOL. 1, NO. 1, SEPTEMBER 2011

Explosives Detection by Terahertz Spectroscopy—A Bridge Too Far?

Michael C. Kemp, Member; IEEE

Considerations

Transmission at frequencies of spectra?

Uniqueness of observable spectra?

Reflection spectra vs transmission?

Atmospheric transmission (even at 0.1 – 1 m standoff)?

A Few Comments on Bio

I am not an expert and it deserves a fair hearing from those that are

There is clear a lot of nonsense, but that doesn't mean that everything is nonsense

Sometimes even something that is wrong, leads to good things Gravity wave detection – Spectroscopy of skin cancer

- 1. Bio is very important
- 2. There have been many reports of THz bio sensors

3. To the best of my knowledge, no two laboratories have reported confirming THz results (except for the fact that water has a different contrast in bio systems), except perhaps at frequencies that are really IR.

4. If I were an ambitious PM, I would host a bio workshop with the theme of reproducible THz bio spectra. You may recall that a number of years ago a number of well know THz laboratories published THz spectra of explosives that were all different. It wasn't until Mike Kemp published his results that everyone converged on the right answer and even got the same results using THz-TDS and traditional FTFIR spectroscopy.

5. To put a positive twist on this, one might invite contributions on sample preparation and its impact on observed signatures.

System Design - II

THz Medical Imaging: *in vivo* Hydration Sensing

Zachary D. Taylor Member, IEEE, Rahul S. Singh Member, IEEE, David B. Bennett Member, IEEE, Priyamvada Tewari, Colin P. Kealey, Neha Bajwa, Martin O. Culjat Member, IEEE, Alexander Stojadinovic, Jean-Pierre Hubschman, Elliott R. Brown Fellow, IEEE, and Warren S. Grundfest, Fellow, IEEE

> IEEE Transactions on Terahertz Science and Technology Special Inaugural Issue: Vol. 1, No. 1, Sept. 2011, pp. 201-219.

Examples

(How the physics drives system choices)

Point Gas Sensors

Remote Gas Sensors

THz Imaging

Background and Status

Basic Submillimeter Spectroscopy Established: ARO, NSF, NASA, etc Basic Spectroscopy, Chemical Physics, Quantum Electronics, Astrophysics, Atmospheric Science

Sensor Parameters and Character laid out: Analytical Chemistry Nov 1998

Solid State Implementation: DARPA/MTO THz program (2000 – 2004)

Proof of Principle Seedlings (DARPA/STO) (2003 - 2006)

Mission Adaptable Chemical Sensor (MACS) (2006 – 2008) (With Battelle, Smart Transitions, and Enthalpy)

Breath Analysis (DARPA) (2009–2010) (With Battelle)

Large Molecule Limit Study (ARO) (2009 -

CMOS and miniaturization (SRC, Texas Instruments, IBM) (2009 –

The Current System (Phase I MACS)

Designed to meet DARPA's redone Phase I go/nogo in 12/18 months

Number of gases reduced to >30

(PFA < 10⁻⁴ required, << 10⁻¹⁰ demonstrated)

Only demonstrate 1 gas with sorbent system (< 100 ppt required, <2 ppt demonstrated)

R & D deferred (larger molecules/higher pressures)

1 cu ft packaging moved from Phase II to Phase I

=> Much of the research to generalize and demonstrate the technique was not done

Initial DARPA Clutter/Uniqueness Challenge: Correctly identify components of mixture of 20 gases blindly selected from set of 30

Clutter sensitivity limit ~ 1 ppt in polluted atmosphere Line width < 1 MHz (>10⁵) resolution elements CO₂ has no spectra, H₂O sparse (~1 line/10⁵ resolution elements) Electronic sources allow line subtraction at < 0.01 MHz resolution

Impact of atmospheric clutter on Doppler-limited gas sensors in the submillimeter/terahertz

Ivan R. Medvedev,¹ Christopher F. Neese,² Grant M. Plummer,³ and Frank C. De Lucia^{2,*}

APPLIED OPTICS / Vol. 50, No. 18 / 20 June 2011

Spectral Density

Impact of Molecular Size/Weight

The rapid rise of spectral density with molecular size is fundamental and underlies the limits to generality for spectroscopic sensors

Frequency Multiplication Technology [The technology choice matters]

A Packaged Sensor Overview

Enabled by:

(1) High brightness temperature of electronic sources (~1014 K)

(2) Frequency accuracy and agility of electronic synthesized sources

2 ppt sensitivity demonstrated on one gas

Townes noise is a many orders of magnitude effect in spectrometers that is not present in radar, etc.

System Numbers

For a receiver noise temperature $T_N = 3000$ K and $b = B = 10^6$ Hz, $P_N = 5 \times 10^{-14}$ W. $P_c = 10^{-3}$ W

 $\frac{P_c}{P_N}\sim 10^{10}$ If we have a carrier power of P_c = 1 mW, we must also consider the noise associated with the adding of the blackbody noise *voltage* with the carrier. For this case

$$P'_n \approx \sqrt{kT\Delta vP_c} = \sqrt{(5 \times 10^{-14})(10^{-3})} \approx 10^{-8} W$$
 Five
Orders of

This is about five orders of magnitude above the receiver noise.

For <u>1 μ sec integration</u> the system S/N is then

$$S/N = \frac{P_c}{P_N'} \sim \frac{10^{-3} W}{10^{-8} W} \sim 10^5$$

This is the impact of the so called 'Townes Noise'.

Impact is only large when we are looking to detect a small change in a large P_c

Magnitude

System scans six (selectable) snippets for each of 32 (selectable) chemicals Compares the resultant spectra with an intensity calibrated library Does LSQ to determine concentrations

Additional material: Testing procedure and additional detail are given in the report of the MACS Evaluation Team (MET) and the OSU report to that team.

System Design Space

How much space do you have? White Cells or equivalent?

How much power do you have? Saturation limit

How do you avoid spending photons on white space? many molecules/crowded spectra vs sparse spectra

How adaptable is the system architectures to varying requirements?

How scalable is the approach?

Market technology?

Broad Coverage of TIC Gases

USACHPPM Toxic Industrial Chemicals [27] Info Card - Updated last: hauschildvd PAGE 1 of 2 11/1/01

	Chemical	Rate of	Persists in	Toxicity Thresholds (ppm/hour)	BDO/	Odor	Related hazards/ Source/	Field De	etection	Symptoms	Decontamination and
	Chlonical	Onset	Environ ment	impairment fatality	Effective	Cuol	Use	Sensidyne tube (#)	205Aseries Miran SapphiRE	contact)	Treatment
+	Allyl alcohol (colorless liquid)	Immediate	Days- weeks, +	7.7	?	Mustard-like	Rapidly absorbed through skin highly flammmable with caustic fumes; used as contact pesticide, plastic/perfume manufacture	Not available (liquid)	Not available (liquid)	General Mild Health Effects: - Nausea, dizziness; headaches; chills; coughing, choking, throat irritation	Decontamination: - Flush (15 min) eyes & skin with water; - Soap optional after
-	Acrolein (colorless-yellow liq)	Immediate	Minutes to hour	0.1	Poor	1 ppm -sharp, acrid, sweet	Toxic and corrosive fumes; Herbicide	#93 (BUT high detection)	Not standard	Specific and More Severe Effects:	initial water rinse
-	Acrylonitrile (clear/pale yellow liq)	Immediate	Minutes to HOURS	35 75	Poor	17 ppm - unpleasant, sweet (peach)	Flammable gas; used in Plastics, coatings, adhesives industries; dyes; pharmaceuticals;	#191	Standard	Eyes: - Initation; tearing/watering; pain: intelegance to light (e.g.	procedures/ options:
-	Ammonia (colorless gas)	Immediate	Minutes	110	Poor	17 ppm - sharp,suffocati ng,dry urine	Explosives manufacture; pesticides; detergents industry	#3M	Standard	from Hydrogen Sulfide) Skin (particularly if liquid contact):	- Saline wash - Antibiotic ointments
-	Arsine (colorless gas)	Immediate to 24 hours	Minutes to hours	0.2	Good	0.5 ppm - garlic-like	Reacts with H20 (don't use H2O in fire); Used in electronics ind	#19L	Not standard	 Irritation; burning; blisters (eg with Hydrogen Fluoride); 	Skin burns/blisters/irritation
HCI	Chlorine (greenish-yellow gas)	Immediate to hours	Minutes to hours	3 22	Good	3.5 ppm- pungent (bleach), suffocating	Irritating corr fumes; heavier than air; Cleaner/disinfectant in many industries; water treatment; WWI war gas;	#80	Not standard	acid); dermatitis; and frostbite (e.g. Acryonitrile) Respiratory Tract/Lungs:	 topical corticosteroids and/or antihistamines Inject MgSO4 at affected site (Hydrogen
	Diborane (colorless gas)	Immediate	Minutes to hours	>1	Good	2.5 ppm -sickly sweet	Very flammable; Intermediate chemical manufacturing;	#22	Not standard	 Breathing difficulty.respiratory distress; 	fluoride) Breathing/respiratory distress:
-	Ethylene oxide (colorless gas/liq)	Immediate	Minutes to hours	45 200	Poor	425 ppm - sweet, ether- like	Very flammable; Rocket propellant; fumigant; sterilization in health care industry;	#163L	Standard	hydrogen chloride or hydrogen bromide); nulmonary erlema	Oxygen & ventilation Prophylactic antibiotics Xravs
-	Formaldehyde (clear- white gas/liq)	Immediate	Hours	10 25	Poor	1 ppm -pungt suffocating	Flammable, Disinfection/ germicide; fungicide; textile; health care (tissue fixing)	#91D (Dosi)	Standard	Chest/Heart: - chest pain; tachardia (rapid	- Pulse ox/blood gas
-	Hydrogen bromide (pale vellow lig)	Immediate	Minutes to hours	3 30	Good	2 ppm -sharp stinging	Chemical manufacturing industry; very corrosive	#15L	Not standard	heartbeat) Systemic; Blood	mouth to protect against cross contamination
-	Hydrogen chloride (hydrochloric acid) (pale yellow-colorless liq)	Immediate	Minutes to hours	22 104	Good	0.77 ppm - pungent, irritating	Corrosive liquid; Ore, other metal refining/ cleaning; food/pickling; petroleum;	#80	Not standard	 Cyanotic (blue skin from lack Oxy to blood) (e.g, from SO2, SO3, NO2, ethylene oxide): Convulsions/seizures 	Broncospasm/Pulm Edema - Inhale corticosteroids - Beta2 agonist
-	Hydrogen Cyanide (colorless-white-pale blue gas; liquid <75F)	Immediate	Minutes	7.0	Good	1-5 ppm- bitter/sweet almond-like	Weak acid except in water or mucous membranes – then corrosive/irritating; used as War gas, pesticide, Herbicide; other industries	#12L	Not Standard	Hemolytic anemia; kidney damage (Arsine) Additional Chemical Specific Symptoms:	Endotracheal intubation Hemolysis (e.g. Arsine): IV, transfusion
-	Hydrogen fluoride (colorless gas/fuming liq)	Immediate & Delayed	Minutes to hours	24 44	Good	0.4 ppm - strong irritating	Corrosive liq; Aluminum and other metal industries; insecticide manufacturing-	#17	Not standard	pink/froth sputum: Ammonia mucoid frothy sputum: SO2,SO3,	Seizures: - Diazepam
+	Hydrogen selenide (colorless gas)	Immediate	Minutes - Hour	0.2	Poor	0.3 ppm- decayed horseradish	Highly flammable/explosive; can cause burns/frostbite; decomposes rapidly to form elemental selenium Metals &semiconductor prep;	Not available	Not standard	peculiar taste: Ethylene oxide asphyxia: Acrylonitrile metal taste & or garlic breath:Hydrogen Selenide	
-	Hydrogen sulfide (colorless gas)	Immediate & Delayed	MINUTE S to hours	30	Good	0.1 ppm -rotten egg	Disinfectant lubricant/oils; interm for HC manufacture; deadens sense of smell	#44	Not standard		See page 2

Simultaneous Recovery with 'Absolute Specificity' in Mixture

		1	USACH	PPM Toxic	Indust	rial Chemic	als [27] Info Card - Upo	dated las	t: hausch	uldvd PAGE 2 of 2 11	1/1/01
	Chemical	Rate of Onset	Persists in Environ ment	Toxicity Thresholds (ppm/hour impairment fatality	BDO/ Mask Effective	Odor	Source/ Use/other hazard	Field D Sensidyne tube (#)	etection 205Aseries Miran SapphiRE	Symptoms (from inhalation and dermal contact	Decontamination and Treatment
+	Methyl hydrazine	Immediate & Delayed (LUNGS)	Hours - days	1.0 3.0	Poor?	1 –10 ppm- ammonia like	Irritating vapors; Flammable- Once ignited continues to burn; Used as solvent, rocket fuel;	#185	Not standard	General Mild Health Effects: - Nausea, dizziness; headaches; chills; coughing.	Decontamination:
+	Hydrazine Colorless, oil (fuming) liquid/waxy solid or crystals	Immediate & Delayed (LUNGS)	Hours - days	13 35	Poor?	3-4 ppm- Ammonia -like	Flammable- Once ignited continues to burn; irritating vapors; Used as solvent, rocket fuel;	#3D (Dosi)	Standard	choking, throat irritation Specific and More Severe Effects:	 Skin with water; Soap optional after initial water rinse
+	Methyl isocyanate (colorless liquid)	Immediate	Minutes to hours	0.5	Poor	2.1 ppm -sharp pungent	Intermediate in manufacturing; reacts with H20 (don't use in fire)	Not available (liquid)	Not standard (liquid)	 Irritation; tearing/watering; pain; intolerance to light (e.g. from Hydrogen Sulfide) 	Treatment & Diagnostic procedures/ options:
•	Methyl mercaptan (colorless gas; liquid <43F)	Immediate	Minutes to hours	5.0 23	Poor	0.002 ppm- rotten cabbage (1 ppm odor fatigue)	From decayed organic matter – pulp mills, oil refineries; highly flammable; liquid burns/frostbite	#71	Not standard	Skin (particularly if liquid contact): - Irritation; burning; blisters (eg with Hydrogen Fluoride); useindetise (richie & culturio	Eye injuries: - Saline wash - Antibiotic ointments
	Nitrogen dioxide (colorless gas/pale liq)	Delayed (24-72 hrs)	MINUTES to hours	12 20	Poor	1 ppm - ?	Intermediate for manuf of nitric acid & sulfuric acid; explosives/rocket propellant	#9D (Dosi)	Not standard	acid); dermatitis; and frostbite (e.g. Acryonitrile)	Skin burns/blisters/irritation - topical corticosteroids
+	Nitric Acid (colorless, yellow, or red fuming liquid)	Immediate	Hours- days +	4.0	Poor	~1 ppm- Choking, sweet – acrid	Used in many industries; Very corrosive to skin/mucous membranes as well as metals & other materials;	#80	Not standard	Respiratory Tract/Lungs: - Breathing difficulty.respiratory distress; laryngeal spasm (e.g., from beiden set beiden.	and/or antihistamines - Inject MgSO4 at affected site (<i>Hydrogen</i> <i>fluoride</i>)
	Parathion (pale yellow to brown liquid)	Immediate but often Delayed (weeks)	Days to weeks	0.2	Good	0.04 ppm	Organophosphate (insecticide); similar symptoms (and thus treatment) as nerve gases; penetrates leather/canvas and plastics/rubber coatings	Not Available (liquid)	Not Available (liquid)	hydrogen chioride o'r hydrogen bromide); pulmonary edema Chest/Heart: - chest pain; tachardia (rapid	Breathing/respiratory distress: - Oxygen & ventilation - Prophylactic antibiotics - Xrays - Pulse ox/blood gas
	Phosgene (colorless – light yellow gas)	Immediate & Delayed (LUNGS)	Minutes - HOURS	0.3	Good	0.5ppm- musty hay	Dye, pesticide, and other industries; history as war gas, corrosive/irritating	#16	Standard	heartbeat) Systemic; Blood - Cyanotic (blue skin from lack	NOTE: avoid mouth to mouth to protect against cros
+	Phosphine (colorless gas)	Immediate & Delayed (LUNGS)	Minutes- hours	0.3	Good?	0.9 ppm- rotten fish, garlic	Insecticide; used in manufacture of flame retardants and incendiaries;	#7LA	Not Standard	Oxy to blood) (e.g, from SO2, SO3, NO2, ethylene oxide): - Convulsions/seizures	Broncospasm/Pulm Edema
	Sulfuric Acid (clear colorless- brown oily liquid)	Immediate	Hours, days	2.5	Good	Odorless (acrid taste)	Toxic fumes when heated Battery/dyes/paper/glue/metal- industries; volcanic gas;	Not available (liquid)	Not Available (liquid)	Admorptic anemia; kidney damage (Arsine) (sulfuric acid, hyrdazine) Additional Chemical Specific	 Beta2 agonist Endotracheal intubation Hemolysis (e.g. Arsine):
+	Sulfur dioxide; sulfur trioxide; -form sulfuric acid (<i>colorless</i> gas)	Immediate & Delayed	MINUTES to hours	>3 15-100	Good (SO2); Marginal (SO3)	1 ppm; pungent; metallic taste	Disinfectant and preserving in breweries and food/canning; textile industry; batteries	# 5L	Standard	Symptoms: pink/froth sputum: Ammonia mucoid frothy sputum: SO2,SO3, NO2 paguiliar tasta: Ethylese guide	- IV, transfusion Seizures: - Diazepam
	Toluene diisocyanate (2,4) (water-white to pale yellow liquid, or crystals)	Immediate	Hours - weeks	0.08	Good	0.4-2 ppm- sharp pungent	Skin irritant Polyurethane (woo coatings , foam), nylon industries;	Not Available (liquid)	Not Available (liquid)	asphyria: Carlyneffe Odde asphyria: Acrylonitrile metal taste & or garlic breath:Hydrogen Selenide Miosis, sweating, U ACHe Parathion Coffee-ground vomit – sulfur acid	

MET Suggested 60 Gas List for Phase II

Hydrogen Cyanide Cyanogen Chloride Cyanogen Bromide Methyl Cyanide Carbonyl Sulfide Methyl Fluoride Methyl Chloride Acry lonitrile Sulfur dioxide Dichloromethane Methyl Iodide Methyl Bromide Difluoromethane Ethylene oxide Trifluoromethane Acrolein Propionitrile Pyridine 1,1 Difluoroethylene Vinyl Fluoride Vinyl Chloride Oxetane 1,1,1 Trifluroethane Propyne Carbonyl Fluoride Thietane Methanethiol Methyl isocyanate Methanol Thionyl fluoride vinyl bromide

1.2 dichloroethane Hydrogen Chloride Hydrogen Bromide **Carbon Monoxide** Nitric Oxide Ammonia Hydrogen Sulfide Hydrogen Selenide Nitrogen Dioxide Arsine Phosphorous Trichloride Phosphine Hypochlorous acid **Phosphorus Trichloride** Formaldehyde Nitric Acid Chloroform Phosgene Nitromethane Methy lamine Dimethyl Sulfate **Dimethyl Ether** GA (Tabun) GB (Sarin) GD (Soman) VX HD (sulfur mustard) L (Lewisite) HN (nitrogen mustard) GF (cyclosarin)

MACS Phase I molecules in black

Suggested Phase II additions in red

Stark and Cavities in Phase II to extend large molecule frontier

Requested Comparisons (w/o Sorbents)

	SMM	THz-TDS	DFG in	Optical
	1.5 m Cell	5 m White Cell	GaSe	Comb/Cavity
	10 mTorr	7.5 mTorr ²	600 Torr ³	100 Torr ¹
	[2]	[3]	[4]	[5, 6]
Number of gases	32	1	1 - 2	2 - 4
$\Delta v_{ m system}$	0.5 MHz	3000 MHz	5000 MHz	1600 MHz
$\Delta v_{ m instrument}$	0.001 MHz	3000 MHz	5000 MHz	800 MHz
NH ₃	52 ppb 2.7 x10 ⁻¹⁴ mole			18 ppb 9.6x10 ⁻¹¹ mole
СО	280 ppb 1.5 x10 ⁻¹³ mole			900 ppb 4.8x10 ⁻⁹ mole
HCN	10 ppb 5.3 x10 ⁻¹⁵ mole			
CH ₃ CN	$\frac{50 \text{ ppb}}{2.7 \text{ x}10^{-14} \text{ mole}}$			
CH ₃ Cl	($\begin{array}{c} 10^{9}/10^{4} \text{ ppb}^{3} \\ 4 \text{ x } 10^{-7}/10^{-12} \\ \text{mole} \end{array}$		
HBr		(HBr 150 000 ppm $\sim 10^{-4}$ mole)

Optical Comb/Cavity:

- Similar ppx sensitivity
- requires 10⁴ more sample sorbent difficult
- has >10⁴ lower resolution
- orders of magnitude more atmospheric clutter
- much larger and more complex

THz Photomixer:

- has >10⁴ less ppx sensitivity
- requires 10⁸ more sample sorbent difficult
- demonstrates > 1000 less resolution
- orders of magnitude more atmospheric clutter
- somewhat larger and more complex (8 cu ft)

How can this be?

- source brightness (W/Hz)
- Doppler and Pressure broadening resolution
- source agility and frequency calibration

• Noise: the spectrometer problem is different from network analyzer problem (Agilent example)

Just because you have considered a 'THz' solution for your application and found it lacking does not mean that there is not a good SMM solution. Among THz technologies published in the 'best' journals there are orders of magnitude differences in the figures of merit that need to be selected according to application, especially:

Brightness vs. 'dynamic range' Resolution and frequency accuracy Quality of implementation

There are also proposed 'THz' sensors that do not understand noise in the 'spectrometer problem' and propose (erroneously) many orders of magnitude better performance.

Sample Collection and Concentration

Large gains practical because we need very small (~10⁻⁵ STP liters), *static* samples.

MACS uses EPA/HAST like sorbent strategy to extend beyond the above comparisons.

DARPA gave us 10 minutes, so we used it. *Much* faster cycle times are possible.

Paths Forward [Time scales and Risks]

More molecules

colder in beam systems how do you count beam dilution? stark cavity double resonance

Smaller, Cheaper, Lower Power

Both microwave and vacuum system matter Less important for central systems like HAST

Interaction of sample collection and spectroscopy

The 'intricate dance'

Adaptability (hardware, software, design) for special purposes

Larger for more sensitivity/speed

JOURNAL OF CHEMICAL PHYSICS

VOLUME 118, NUMBER 8

22 FEBRUARY 2003

The absorption spectroscopy of the lowest pseudorotational states of tetrahydrofuran

Dmitry G. Melnik, Sandhya Gopalakrishnan, and Terry A. Miller Department of Chemistry, Ohio State University, Columbus, Ohio 43210

Frank C. De Lucia Department of Physics, Ohio State University, Columbus, Ohio 43210

Cavity and Stark Approaches to Large Molecules

Cavity spectra of the difluorobenzonitriles.

A comparison of and FM modulate spectrum and a Stark modulated spectrum.

Clear Paths to Small and Inexpensive

Wireless Communications chips to 100 GHz

IBM 60 GHz Rx/Tx HDTV chip set working as spectrometer

discussions to extend to 100's of GHz

CMOS Integration of MACS Rx/Tx with UT-D and SRC sponsorship

	CASE 1	CASE 2	CASE 3
	No absorption	10*(-6) abe -0.000004348	10*(-1) atta -0.45 dB
5.1 mW Transmitter Spectroscopic Cell (-38tt)	-10 dBm -13 dBm	-10.0000043 dbm -13.0000043 dbm	-10.45 dbm -13.45 dbm
Nuer, Filter (-18.1 dB) (Julgut Tearres Note (2005) (M) Tearres Note (2005) Tearres 5/8 Carrier	-51.1 dBm 5-576-24 W -102 dBm 1.396+07	-51.1000043 dBm 5.576-54 W -102 dBm 1.398+07	-31.55 d8 5.578-34 W -102 d8m 1.398+07
6 do NF JF Angelher (+40 dB) Toeres Noise (xt JF extput) Carrier (pt JF extput) Toeres SUR carrier (xt JF extput)	8.0.28m 1.402-29 7.716-25 5.542+06	8.8999957	8.42 days
P Desector (USERCHWE) AC musting/PH Semestuation Townes Name (VI KPR Resection Signer Reset Semestive Detector Inglian	0,776 V 0V 1.408-2 V 0.001+00 780	0.7799993 -0.000000377 V 1.408-7 V 8.5 TBO TBO	8.898 V -0.877 V 1.408-7 V 3.508+05 180 190

CMOS Integration for 240 GHz*

*Sponsored by the Semiconductor Research Corporation

Point Sensor Summary

The current Phase I MACS is the brassboard of an operational sensor, with well defined capabilities as tested by a third party for DARPA.

The technology used has been shown to be fieldable.

There are a few, low risk upgrades which should be implemented, irregardless of application – can be done in the context of a brassboard system that would be prototype for production system.

It is likely that additional spectroscopy/library/preconcentration work will be required to meet specific needs of users.

There are well defined paths forward (often correlated with MACS Phase II) to meet a range of requirements.

Innovations and Advances to go beyond Current System Capabilities or Improve Technical/Physical Attributes

- I. MM Technology
 - A. Currently two VDI chains
 - B. Move to one VDI, with double modulation
 - C. 100 GHz Hittite system
 - D. 250 GHz Wireless (Hittite?) system.
 - E. CMOS system
- II. X-band Technology
 - A. Upgrade package current system
 - B. Hittite Synthesizer(s)
 - C. CMOS synthesizer(s)
- III. Cells (alternatives and evolution)
 - A. currently folded 1 m (0.5 liter)
 - B. 0.3 m, 1 cm diameter (0.03 liter)
 - C. 10 cm cavity (0.15 liter)
 - D. 0.3 m, 1 mm diameter (0.0003 liter)
 - E. Larger cell for optimized ppx sensitivity
- IV. Pumps
 - A. Currently, turbo + diaphragm
 - B. Custom mechanical
 - C. No pump

- V. Sorbents
 - A. Currently 3 cm x .5 cm cylinder
 - B. Sandia-like micro hot plate (< 1 cm³)
 - C. Thermo cooler approaches
 - D. Many other application dependent approaches
- VI. Signal Recovery Technology
 - A. Currently PC cage + lockin card + USB interface
 - B. Laptop + custom lockin + USB interface
 - C. Webbook + custom lockin + USB interface
 - D. Custom, smart phone scale
- VII. More and larger molecules
 - A. Library development
 - B. Sorbent/preconcentration development
 - C. The intricate dance
 - D. Cavity/medium resolution methods
 - E. Stark modulation

Examples

(How the physics drives system choices)

Point Gas Sensors

Remote Gas Sensors

THz Imaging

New Physical Regime for Remote Sensing in the THz

PI: Frank De Lucia / Henry Everitt: Ohio State, AMRDEC Award Number: HDTR1-09-1-0031

Objective: To develop fundamental understandings of collisional energy transfer in the high pump intensity – high pressure limit appropriate for highly specific atmospheric remote sensing.

Relevance: This project explores a fundamentally new concept for the remote detection of chemicals with specificity and sensitivity.

Approach: This project develops a general purpose double resonance energy transfer system for the study of energy transfer in the high intensity regime.

It also develops a comprehensive theoretical model.

Both are applied to a range of molecular types.

Results: Experimentally and theoretically explore:

3-D specificity matrix

Relation between signals at long and short time Pump overlap as a function of pressure Larger molecules with denser spectra

At atmospheric pressure fingerprint lines 10⁴ broader (~5000 MHz)

- <u>Specificity</u>: 5000 times fewer resolution elements
- Orders of magnitude reduction in <u>sensitivity</u> because of ~10% baseline problem

These challenges are easy to ignore: Doesn't impact ideal sensitivity calculations

Very special favorable cases can be chosen to eliminate specificity problems

A Solution: A New Physical Regime via **Double Resonance** Backscatter for

active THz Probe Pulsed CO₂ TEA Laser ~1 km TEA laser modulates target molecules Atmospheric fluctuations THz probes plume Active/Passive THz Probe 3-D Specificity Cube Problem # 1: Specificity Dimension 1: Choose IR pump frequency Dimension 2: Monitor the SMM/THz probe frequencies 500 Dimension 3: Match pump pulse to relaxation of atmosphere (~100 ps) 400 **Fime Signature / ps** => Large number of points in 3-D space increases specificity absorption => Time dimension measure of environmental interactions 300 => Different slices are measures of different interactions equilibrium 200 Problem # 2: Separation of target signature from baseline and clutter emission 100 Lock on to IR pulse sequence to reject atmospheric clutter -350 200 250 300 => Elimination of 10% baseline effect increases sensitivity by 106 Frequency | GHz .9P28 9P30 9P32 9P34 9P36... CO₂ Laser Line

Probe slice for a *particula*r pump

3-D Signatures

Double resonance signatures of 1,1,1 trifluroethane for four different laser pumps.

Double Resonance Paths Forward

Atmospheric Remote Sensing

Signatures and physics in the high pump (fixed frequency), high pressure, 100 ps regime DARPA funded laser under construction

Large Molecules in **Point Sensors**

Signatures in the ns regime Operate at reduced pressure Smaller QCL lasers (tunable)

Examples

(How the physics drives system choices)

Point Gas Sensors

Remote Gas Sensors

THz Imaging

Active Imaging without Coherent Speckle or Special Angle Requirements:

Modulated Mode Mixing

"Passive" Cold sky illumination at 0.094 THz

Specular target at special angle => strong return, no speckle

requirements

Angle and Coherent Effects in Active Images

Passive Image

Active Image

Goal: Use M³ to produce very hot (1 mw in 1 MHz => 10¹⁴ K) incoherent black body

218.4 GHz Imager in Large Volume

1 mw in 1 MHz => 10¹⁴ K

Vacuum electronics makes possible very hot multimode illumination in atrium and extension to considerably greater range (~1 km)

Physics Atrium as 50 Meter Range

Optical Image

217 GHz Image (without mode modulation)

Speckle => 100% noise modulation on image => cannot take advantage of illumination power

Modulated Multimode Mixing

217 GHz Image (without mode modulation) 217 GHz Image (with mode modulation)

Summary and Comments

There are clear development paths to important applications (match scenario to capability).

There are clear R&D paths to broaden 'read to go' capabilities.

- There are many orders of magnitude at stake in the evaluation of proposed THz applications, often as steep functions of frequency.
- The choice of technology also has many orders of magnitude impact.
- Special selection of illumination in imaging and molecule selection in spectroscopic sensors in demonstrations also are orders of magnitude effects.
- Quantitative analyses (many of which can be done quite simply) are required to select promising applications and the appropriate technology to support them.

We have developed:

1. A gas sensor capable of analysis of complex mixtures of gases. Need to follow the clear paths to small and inexpensive systems. R&D to broaden applicability.

2. A double resonance scheme for atmospheric remote sensing/large molecule detection. Need to evaluate target signatures in operational pulse regimes.

3. An active imaging approach which eliminates the need for special target orientation and coherent effects such as speckle; effectively producing very hot, passive-like images. More generally, need to explore phenomenology, illumination strategies, longer ranges, and system implementations.

Acknowledgements

DARPA/ARO

Edgar Martinez, Mark Rosker, John Albrecht, Frank Patten, Dwight Woolard, John Prater

Northrop Grumman Ken Kreischer

Teledyne Mark Field

Mark Field

Semiconductor Research Corporation

Ken O (TxACE/UT-D) Chih-Ming Hung, Django Trombley, Baher Haroun (Kirby Laboratories, Texas Instruments) A. Valdes-Garcia and A. Natarajan (Watson Laboratory, IBM) Phillip Stout (Applied Materials)

AMRDEC

Henry Everitt, Dane Phillips

Naval Research Laboratory Baruch Levush, John Pasour, Colin Joye

Applied Quantum Technologies Bob Guenther, Bob Lontz

Ohio State University Christopher Neese, Jen Holt, Mark Patrick

Wright State University Doug Pektie, Ivan Medvedev

Battelle

Chris Ball