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The Evolution of Submillimeter Spectroscopy
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Robust technology and computing make applications possible
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he Structure of Submillimeter Rotational
Spectroscopy for Air/Space Missions

SCIENTIFIC/SPECTROSCOPIC STRUCTURE

What are the frequency extent and density of states/spectra as a function of
molecular size and type?

ORGANIZATIONAL STRUCTURE

How is spectroscopic structure related to remote sensing applications and what
Impact does it have on spectroscopy and catalogs?

DISCIPLINE STRUCTURE

How are we spectroscopists going to respond to these new opportunities?
How can new people obtain the recognition needed for career development?

Molecular Engineering Connects Spectroscopic Science and Applications
Are we to be ‘useful servants’* or Kings?

*The term ‘useful servants’ is from J.T. Hougen in Prague (2002)
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Where are the Lines (300K)?
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Light molecules have sparse spectra throughout this region, more or less

independent of temperature.

Not all that many molecules have dense spectra that exists to 2 THz, but there are

important examples.
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Completeness in Spectral Interval

High Resolution Analysis 3D Spectroscopy
Complete in Frequency
D SO - B e W - W Intensity calibrated => linestrength

Function of Temperature => E,
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InSb CRYSTAL

Long searches for sparse spectra (e.g. water)

Measure, Assign, Model and Calculate Catalog
(largely ground vibrational state)

Good for Small Molecules (not all lines had to be
measured; large vibrational frequencies lead to
very small excited vibrational state populations)

For large and complex molecules, ~lifetime job
security
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What Is the Distribution of Line Strengths?

10 000 strongest experimental lines vs. 800 strongest ground state catalogue lines
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The probability of intensity modification of assigned line by unassigned line
Is significant and much larger than would be inferred from catalogues.
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What Do We Mean by a Clutter Limit?

Submillimeter spectra have enormous information content:
108 resolution elements — 107 measureable frequencies + absolute intensity calibration
But, Submillimeter spectra can be very dense

Cannot deconvolve molecular presence vs No empty white space

Doppler Limited Spectrain

Thermal Equilibrium Astrophysical Spectra
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Incomplete catalogues
T110 — Christopher Neese
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Is there an Ultimate Clutter limit?

As we showed above, the density of lines grows rapidly with
Increasing sensitivity. Are we doomed to reach a clutter limit?
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When ‘many’ small clutter lines (the weak lines of the weed molecules) merge into
a continuum, they average like noise and their signal power will be much greater
than their noise power. The few stronger lines of large flowers can still stand out
against this floor.

This is driven by the statistical distribution of line strengths, which can vary
substantially by molecular type. The spectroscopic engineering is complicated.
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Where are the Photons?

Rotational Partition Functions At a given observational frequency:

the distance between band heads is

1
%\7 oc — oc\VABC Agy ~2R
ast the number of K-levels associated with each band head is:
1
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st the number of M, levels associated with each K - line is:

1 1
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Sum of line strengths/frequency interval - the number of spectral photons

available to a multi-channel telescope
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Because the spectral space occupied by these lines grows as R? (the
M, factor above adds intensity, but not spectral space)
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Conventional Wisdom about Large Molecules
Are Detections Doomed?

Lines get weaker as molecule gets larger for asymmetric rotor

This is the right question for a laboratory spectrometer,

but the wrong question for a multiplex telescope
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MICRO
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What Do We Conclude?

1. Both the rotational and vibrational density of states and spectral
congestion grow rapidly with molecular size. Low temperature is a
significant advantage, but many astronomical sources are warm.

2. Spectra based on calculations can be significantly different from
experiment both in density and in distribution of line strengths

3. In single line spectrometers, line strengths grow correspondingly weaker
with larger molecules.

4. But In multiplex instruments integrated spectral intensity grows.
5. Collective analysis of spectra becomes more important.

6. This is much harder in astrophysics because of the inhomogenity of the
sample, but the higher spatial resolution of systems like ALMA should help.
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Catalogs and Data

In the beginning line frequencies were easier to model/predict than to measure

Small, easy to model species - measure a few well selected transitions, predict the rest

As an important by-product, these models gave astronomers intensities

As an additional by-product, this led naturally to catalogues based on these models

Now it is often easier to measure spectra than to predict them

Orders of magnitude increase in the difficulty of modeling (large molecules/perturbations)

Robustness of experimental approaches

Catalogues have become very incomplete in unpredictable ways

But even with experimentally measured spectral frequencies, we have to deal with
the intensity/temperature problem
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Start by Quoting an Authority

The Data. 1t is vital to publish the actual data on which the conclu-
R rodacton 1o sions are based. A single average value is ordinarily not enough. Even
Scientific Research % though numerous measurements are made, it is usually possible to display
E. Brlght Wilson, Jr.
the individual values compactly by giving the average and the individual
residuals. These should be in the order in which they were obtained, or
grouped according to the values of some possibly pertinent variable.
Some measure of dispersion, such as the standard deviation (Secs. 9.2 and
9.7), should be given and indentified.

Primary measurements should be published, and not merely derived
quantities. Many magnetic-susceptibility data, for example, have been
published in terms of Weiss magnetons instead of in the units in which
they were actually measured. This is an outmoded theoretical concept
whose disappearance affects a considerable number of perfectly good
experimental papers. It is worth remembering that good data can easily
outlast many successive theories. The data should be presented in their
rawest form so that later theorists can use them. If it is impractical to do
this, the treatment to which the data have been subjected should be so
clearly and completely specified that the original values can be recovered

A bottom line: Data and analyses must be traceable via the refereed literature
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An Extensible and Sustainable Approach

Spectroscopic analyses use good data from decades ago
Incremental extensions and improvements are the norm
This supports the attractiveness and power of calculated catalogues

How can 3D spectroscopy be extensible, for:
A new temperature range?
More sensitivity?
More accuracy?

For both, we have to have access to the data so that we can refit
How much data is there?

How might it be archived?
Is there an intermediate level for the user?
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Approach 1:
What Mig

Nt a Hybrid Catalog Look Ll

Ke?
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Approach 2:
A Normalized Complete Spectral Alternative

4 x 10° pts/100 GHz
for
Hundreds of temperatures?

A few polynomial parameters?

There are many blended lines that are revealed by the variable temperature
spectra. For catalogue purposes, these can be fitted with simple
polynomials.

WHO04 Ivan Medvedev
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Summary

The integrated development of science and technology in the submillimeter
has aided the explosive growth of the field and influences how we do
science.

Spectroscopic engineering is the interface with the applications community.

The structure of submillimeter spectroscopy is at the heart of this
spectroscopic engineering.
- How we run experiments and what we measure.
- How we handle our results and what kinds of information we provide.
- How we interface with other communities.
- How we transfer and archive our results.

What happens to spectroscopic engineers is up to us - our behavior and
ambition:

Sometimes we are useful servants, sometimes we become kings
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Spectroscopic Engineers:
Kings or Useful Servants




