www.osu.edu

 

Curriculum Vitae

Home
Research
People
Publications
Photo Gallery
Collaborations
Positions
Courses
Contact
Group Internal
Last Updated:
March 2022

 

Dr. Dongping Zhong


Education

1999, Ph.D., California Institute of Technology, Pasadena, California 

         (Advisor: Nobel Laureate, Linus Pauling Professor Ahmed H. Zewail)


Appointments

Robert Smith Professor of Physics  
Professor of Chemistry and Biochemistry, 2010-Present


Robert Smith Associate Professor of Physics  
Associate Professor of Chemistry and Biochemistry, 2007-2010

Department of Physics

Department of Chemistry and Biochemistry

Member of Biophysics, Biochemistry, and Chemical Physics Programs

The Ohio State University

Assistant Professor, 2002-2007

Departments of Physics, Chemistry (adjunct), and Biochemistry (adjunct)

Member of Biophysics, Biochemistry, and Chemical Physics Programs

The Ohio State University

Postdoctoral Fellow, 1999-2002

NSF Laboratory for Molecular Sciences, California Institute of Technology


Awards and Honors

Guggenheim Fellowship, The John Simon Guggenheim Memorial Foundation, 2013
Fellow, The American Association for the Advancement of Science, 2011
Fellow, American Physical Society, 2009
Outstanding Young Researcher Award, Overseas Chinese Physics Association, 2009
Camille Dreyfus Teacher-Scholar Award, The Camille and Henry Dreyfus Foundation, 2008
Dr. Elizabeth L. Gross Award for Faculty Excellence, The Ohio State University, 2008
CAREER Award, The National Science Foundation, 2008
Sloan Research Fellowship, The Alfred P. Sloan Foundation, 2008
Robert Smith Professorship, The Ohio State University, 2007
Packard Fellowship, The David and Lucile Packard Foundation, 2005
Milton and Francis Clauser Doctoral Prize, California Institute of Technology, 1999
The Herbert Newby McCoy Award, California Institute of Technology, 1999


Research Interests

Femtobiology (DNA repair, Circadian rhythm, Photoreceptors)

Biomolecular Recognition (Hydration dynamics, Conformation fluctuations)

Ultrafast Protein/Enzyme Dynamics (Heme proteins, Flavoproteins)

Four Dimensional (4D) Electron Diffraction and Microscopy for Biology (Structure, Dynamics and Function)


Publications (reverse chronological order)

2022   2021   2020   2019   2018   2017   2016   2015   2014   2013   2012   2011   2010   2009   2008   2007   2006   2005  
2004   2003-1993

   
  2022
134. R. Wu, C. Yang, L. Wang and D. Zhong, J. Phys. Chem. Lett. 13, 11023 (2022). Ultrafast dynamics of fatty acid photodecarboxylase in anionic semiquinone state. [Web link] [PDF] [Supporting Information]
  
133. R. Wu, X. Li, L. Wang and D. Zhong, Angewandte Chemie (International Edition) 61, e202209180 (2022). Ultrafast dynamics and catalytic mechanism of fatty acid photodecarboxylase. [Web link] [PDF] [Supporting Information]
  
132. J. He, J. Chen, C. Zheng, Z. Cao, Z. Liu, C. Jiao, B. Chen, T. Sekiguchi and D. Zhong, J. Phys. Chem. C 126, 16042 (2022). Perovskite bulk crystals grown through antisolvent droplet-assisted crystallization and associated wavelength-dependent photoluminescence dynamics. [Web link] [PDF] [Supporting Information]
  
131. Z. Zhou, Z. Chen, X. Kang, Y. Zhou, B. Wang, S. Tang, S. Zou, Y. Zhang, Q. Hu, F. Bai, B. Ding and D. Zhong, Proc. Natl. Acad. Sci. USA 119, e2203996119 (2022). The nature of proton-coupled electron transfer in a blue light using flavin domain. [Web link] [PDF] [Supporting Information]
  
130. J. Yang, Y. Zhang, Y. Lu, L. Wang, F. Lu and D. Zhong, J. Phys. Chem. Lett. 13, 3202 (2022). Ultrafast dynamics of nonequilibrium short-range electron transfer in semiquinone flavodoxin. [Web link] [PDF] [Supporting Information]
  
129. X. W. Kang, Z. Chen, Z. Zhou, Y. Zhou, S. Tang, Y. Zhang, T. Zhang, B. Ding and D. Zhong, Angewandte Chemie (International Edition) 61, e202114423 (2022). Direct observation of ultrafast proton rocking in the BLUF domain. [Web link] [PDF] [Supporting Information]
  
128. X. Li, Z. Liu, H. Ren, M. Kundu, F. Zhong, L. Wang, J. Gao and D. Zhong, Nature Communications 13, 93 (2022). Dynamics and mechanism of dimer dissociation of photoreceptor UVR8. [Web link] [PDF] [Supporting Information]
  
127. J. Yang, Y. Zhang, T. He, Y. Lu, L. Wang, B. Ding and D. Zhong, Phys. Chem. Chem. Phys. 24, 382 (2022). Ultrafast nonequilibrium dynamics of short-range protein electron transfer in flavodoxin. [Web link] [PDF] [Supporting Information]
  
  2021
126. Q. Zhang, B. Wang, Y. Zhang, J. Yang, B. Deng, B. Ding and D. Zhong, J. Phys. Chem. B 125, 13088 (2021). Probing intermolecular interactions of amyloidogenic fragments of SOD1 by site-specific tryptophan and its noncanonical derivative. [Web link] [PDF] [Supporting Information]
  
125. J. Cao, X. Wang and D. Zhong, Science 374, 34 (2021). Mapping the structural dynamics of water dissociation. [Web link] [PDF]
  
124. N. Marco, L. Chen, Y. Yang, T. Mondel, L. Wang, A. Horovitz and D. Zhong, J. Phys. Chem. Lett. 12, 5723 (2021). Slowdown of water dynamics from the top to the bottom of the GroEL cavity. [Web link] [PDF] [Supporting Information]
  
123. Y. Wang, G. Veglia, D. Zhong and J. Gao, Sci. Adv. 7:eabg3815 (2021). Activation mechanism of Drosophila cryptochrome through an allosteric switch. [Web link] [PDF] [Supporting Information]
  
122. Y. Lu, D. Zhong, Chem. Phys. 548, 111224 (2021). Exact eigenenergies of a model of vibronically coupled electron transfer reactions. [Web link] [PDF]
  
  2020
121. X. Li, Z. Liu, H. Ren, M. Kundu, L. Wang, J. Gao and D. Zhong, Chem. Sci. 11, 12553 (2020). Dynamics and mechanism of light harvesting in UV photoreceptor UVR8. [Web link] [PDF] [Supporting Information]
  
120. D. Wang, X. Li, L. Wang, X. Yang and D. Zhong, J. Phys. Chem. Lett. 11, 8819 (2020). Elucidating ultrafast multiphasic dynamics in the photoisomerization of cyanobacteriochrome. [Web link] [PDF] [Supporting Information]
  
119. X. Li, H. Ren, M. Kundu, Z. Liu, W. Zhong, L. Wang, J. Gao and D. Zhong, Nature Communications 11, 4316 (2020). A leap in quantum efficiency through light harvesting in photoreceptor UVR8. [Web link] [PDF] [Supporting Information]
  
118. D. Wang, X. Li, S. Zhang, L. Wang, X. Yang and D. Zhong, Proc. Natl. Acad. Sci. USA 117, 19731 (2020). Revealing the origin of multiphasic dynamic behaviors in cyanobacteriochrome. [Web link] [PDF] [Supporting Information]
  
117. D. Wang, Y. Qin, M. Zhang, X. Li, L. Wang, X. Yang and D. Zhong, J. Phys. Chem. Lett. 11, 5913 (2020). The origin of ultrafast multiphasic dynamics in photoisomerization of bacteriophytochrome. [Web link] [PDF] [Supporting Information]
  
116. J. He, Z. Liu, Z. Cao, H. Zhang, Y. Meng, B. Chen and D. Zhong, J. Phys. Chem. Lett. 11, 2550 (2020). Visualizing the redox reaction dynamics of perovskite nanocrystals in real and reciprocal space. [Web link] [PDF] [Supporting Information]
  
115. Y. Lu, M. Kundu and D. Zhong, Nature Communications 11, 2822 (2020). Effects of nonequilibrium fluctuations on ultrafast short-range electron transfer dynamics. [Web link] [PDF] [Supporting Information]
  
114. P. Houston, N. Macro, M. Kang, L. Chen, J. Yang, L. Wang, Z. Wu and D. Zhong, J. Am. Chem. Soc. 142, 3997 (2020). Ultrafast dynamics of water-protein coupled motions around the surface of eye crystallin. [Web link] [PDF] [Supporting Information]
  
113. Y. Lu and D. Zhong, J. Chem. Phys. 152, 065102 (2020). Nonequilibrium dynamics of photoinduced forward and backward electron transfer reactions. [Web link] [PDF] [Supporting Information]
  
  2019
112. D. Wang, Y. Qin, S. Zhang, L. Wang, X. Yang, and D. Zhong, J. Phys. Chem. Lett. 10, 6197 (2019). Elucidating the molecular mechanism of ultrafast Pfr-state photoisomerization in bathy bacteriophytochrome PaBphP. [Web link] [PDF] [Supporting Information]
  
111. Y. Lu and D. Zhong, J. Phys. Chem. Lett. 10, 346 (2019). Understanding short-range electron-transfer dynamics in proteins. [Web link] [PDF] [Supporting Information]
  
  2018
110. M. Chergui and D. Zhong, Chem. 4, 2242 (2018). A Legacy in Chemistry. [Web link] [PDF]
  
109. X. L. Wang, Z. N. Zhou, Y. K. Tang, J. Q. Chen, D. Zhong and J. H. Xu, J. Phys. Chem. B 122, 7027 (2018). Excited state decay pathways of 2'-deoxy-5-methylcytidine and deoxycytidine revisited in solution: A comprehensive kinetic study by femtosecond transient adsorption. [Web link] [PDF] [Supporting Information]
  
108. M. Kundu, T.-F. He, Y. Lu, L. Wang, and D. Zhong, J. Phys. Chem. Lett. 9, 2782 (2018). Short-range electron transfer in reduced flavodoxin: Ultrafast nonequilibrium dynamics coupled with protein fluctuations. [Web link] [PDF] [Supporting Information]
  
107. T. J. Zwang, E. C. M. Tse, D. Zhong, and J. K. Barton, ACS Cent. Sci. 4, 405 (2018). A compass at weak magnetic fields using thymine dimer repair. [Web link] [PDF] [Supporting Information] [Commentary]
  
106. D. Zhong, in Reminiscences of Ahmed H. Zewail: Photons, Electrons and What Else? A Portrait from Close Range. Remembrances of his Group Members and Family, A. Douhal, J. S. Baskin and D. Zhong Eds., World Scientific Publishing Co. Ltd: Singapore (2018) p145-154. My memories of a giant (Chapter 20). [Web link]
  
  2017
105. M. Zhang, L. Wang, and D. Zhong, Arch. Biochem. Biophys. 632, 158 (2017). Photolyase: Dynamics and electron-transfer mechanisms of DNA repair. [Web link] [PDF]
  
104. D. Zhong, in Personal and Scientific Reminiscences: Tributes to Ahmed Zewail, M. Chergui, R. A. Marcus, J. M. Thomas, and D. Zhong, Eds., World Scientific Publishing Co. Pte. Ltd: London (2017) p207-219. My time with a giant. [Web link] [PDF]
  
103. Y. Qin, Y. Yang, L. Wang, and D. Zhong, Chem. Phys. Lett. 638, 658 (2017). Dynamics of hydration water and coupled protein sidechains around a polymerase protein surface. [Web link] [PDF] [Supporting Information]
  
102. J. Yang, Y. Wang, L. Wang, and D. Zhong, J. Am. Chem. Soc. 139, 4399 (2017). Mapping hydration dynamics around a β-barrel protein. [Web link] [PDF] [Supporting Information]
  
101. Y. Qin, L. Zhang, L. Wang, and D. Zhong, J. Phys. Chem. Lett. 8, 1124 (2017). Observation of the global dynamic collectivity of a hydration shell around apomyoglobin. [Web link] [PDF]
[Supporting Information]
  
100. M. Zhang, L. Wang, and D. Zhong, Photochemistry and Photobiology 93, 78 (2017). Photolyase: Dynamics and mechanisms of repair of sun-induced DNA damage. (Invited review) [Web link] [PDF]
  
99. D. Zhong, and J. Cadet, Photochemistry and Photobiology 93, 5 (2017). Introduction. (Special issue to Aziz Sancar). [Web link] [PDF]
  
98. Z. Liu, L.Wang, and D. Zhong, Ultrafast Dynamics at the Nanoscale: Biomolecules and Supramolecular Assemblies. Pan Stanford Publishing Pte. Ltd (2017) p91-125. Dynamics and mechanisms of ultraviolet-damaged DNA repair by photolyases. [Web link] [PDF]
  
97. A. Sancar, and D. Zhong, Biochemistry 56, 1 (2017). It is chemistry but not your grandfather's chemistry. [Web link] [PDF]
  
  2016
96. Y. Qin, M. Jia, J. Yang, D. Wang, L. Wang, J. Xu, and D. Zhong, J. Phys. Chem. Lett. 7, 4171 (2016). Molecular origin of ultrafast water-protein coupled interactions. [Web link] [PDF] [Supporting Information]
  
95. M. Zhang, L. Wang, S. Shu, A. Sancar, and D. Zhong, Science 354, 209 (2016). Bifurcating electron-transfer pathways in DNA photolyases determine the repair quantum yield. [Web link] [PDF] [Supporting Information]
  
94. X. Gu, S. Park, M. Tonelli, G. Cornilescu, T. Xia, D. Zhong, and S. J. Schroeder, J. Phys. Chem. Lett. 7, 3841 (2016). NMR structures and dynamics in a prohead RNA loop that binds metal ions. [Web link] [PDF] [Supporting Information]
  
93. Y. Qin, L. Wang and D. Zhong, Proc. Natl. Acad. Sci. USA 113, 8424 (2016). Dynamics and mechanism of ultrafast water-protein interactions. [Web link] [PDF] [Supporting Information][Commentary]
  
92. S. Faraji, D. Zhong, and A. Dreuw, Angew. Chem. Int. Ed. 55, 5175 (2016). Characterization of the intermediate in and identification of the repair mechanism of (6-4) photolesions by photolyases.
[Web link] [PDF] [Supporting Information]
  
  2015
91. M. Jia, J. Yang, Y. Qin, D. Wang, H. Pan, L. Wang, J. Xu, and D. Zhong, J. Phys. Chem. Lett. 6, 5100 (2015). Determination of protein surface hydration by systematic charge mutations. [Web link] [PDF]
  
90. J. Gao, X. Wang, M. Zhang, M. Bian, W. Deng, Z. Zuo, Z. Yang, D. Zhong, and C. Lin, Proc. Natl. Acad. Sci. USA 112, 9135 (2015). Trp triad-dependent rapid photoreduction is not required for the function of Arabidopsis CRY1. [Web link] [PDF] [Supporting Information]
  
89. C. Tan, Z. Liu, J. Li, X. Guo, L. Wang, A. Sancar and D. Zhong, Nature Communications 6, 7302 (2015). The molecular origin of high DNA-repair efficiency by photolyase. [Web link] [PDF] [Supporting Information]
  
88. Z. Liu, L. Wang and D. Zhong, Phys. Chem. Chem. Phys. 17, 11933 (2015). Dynamics and mechanism of DNA repair by photolyase. (Invited Review and Cover Highlight). [Web link] [PDF]
  
87. G.Y. Gao, Y. Li, W. Wang, D. Zhong, S.F. Wang, Q.H. Gong, J. Photochem. Photobiol. B: Biology 145, 60 (2015). Picosecond time-resolved fluorescent spectroscopy of 1-anilino-8-naphthalene sulfonate binding with staphylococcal nuclease in the native and molten globule states. [Web link] [PDF]
  
86. G.Y. Gao, Y. Li, W. Wang. D. Zhong, S.F. Wang and Q.H. Gong, Chinese Physics Letters 32, 048701 (2015). Spectroscopic characterization of staphylococcal nuclease mutants with tryptophan at internal sites. [Web link] [PDF]
  
85. D. Zhong, Ann. Rev. Phys. Chem. 66, 691-715 (2015). Electron transfer mechanisms of DNA repair by photolyase. (Invited Review). [Web link] [PDF]
  
84. X. Guo, Z. Liu, Q. Song, L. Wang and D. Zhong, J. Phys. Chem. B 119, 3446 (2015). Dynamics and mechanism of UV-damaged DNA repair in indole-thymine dimer adduct: Molecular origin of low repair quantum efficiency. [Web link] [PDF]
  
83. G.Y. Gao, Y. Li, W. Wang, S.F. Wang, D. Zhong and Q.H. Gong, Chinese Physics B 24, 018201 (2015). Ultrafast solvation dynamics at internal sites of staphylococcal nuclease investigated by site-directed mutagenesis. [Web link] [PDF]
  
  2014
82. Y. Yang, Y. Qin, Q. Ding, M. Bakhtina, L. Wang, M.-D. Tsai and D. Zhong, Biochemstry 53, 5405 (2014). Ultrafast water dynamics at the interface of the polymerase-DNA binding complex. [Web link] [PDF] [Supporting Information]
  
81. C. Tan, L. Guo, Y. Ai, J. Li, L. Wang, A. Sancar, Y. Luo and D. Zhong, J. Phys. Chem. A 118, 10522 (2014). Direct determination of resonance energy transfer in photolyase: Structural alignment for the functional state. [Web link] [PDF]
  
80. Z. Liu, C. Tan, X. Guo, J. Li, L. Wang and D. Zhong, J. Phys. Chem. Lett. 5, 820 (2014). Dynamic determination of active-site reactivity in semiquinone photolyase by the cofactor photoreduction. [Web link] [PDF] [Supporting Information]
  
79. N. Ozturk, C. P. Selby, D. Zhong and A. Sancar, J. Biol. Chem. 289, 4634 (2014). Mechanism of photosignaling by drosophila cryptochrome role of the redox status of the flavin chromophore. [Web link] [PDF]
  
78. Z. Liu, X. Li, F. W. Zhong, J. Li, L. Wang, Y. Shi and D. Zhong, J. Phys. Chem. Lett. 5, 69 (2014). Quenching dynamics of ultraviolet-light perception by UVR8 photoreceptor. [Web link] [PDF]
  
  2013
77. Y. Qin, Y. Yang, L. Zhang, J. D. Fowler, W. Qiu, L. Wang, Z. Suo and D. Zhong, J. Phys. Chem. A 117, 13926 (2013). Direct probing of solvent accessibility and mobility at the binding interface of polymerase (Dpo4)-DNA complex. [Web link] [PDF] [Supporting Information]
  
76. Z. Liu, M. Zhang, X. Guo, C. Tan, J. Li, L. Wang, A. Sancar and D. Zhong, Proc. Natl. Acad. Sci. USA 110, 12972 (2013). Dynamic determination of the functional state in photolyase and the implication for cryptochrome. [Web link] [PDF] [Supporting Information]
  
75. Z. Liu, C. Tan, X. Guo, J. Li, L. Wang, A. Sancar and D. Zhong, Proc. Natl. Acad. Sci. USA 110, 12966 (2013). Determining complete electron flow in the cofactor photoreduction of oxidized photolyase. [Web link] [PDF] [Supporting Information]
  
74. J. Li, L. Wang and D. Zhong, in Handbook of Flavoproteins, R. Hille, S. M. Miller and B. Palfey, Eds., Walter de Gruyter: Berlin/Boston (2013) p393-428. Ultrafast dynamics of flavins and flavoproteins.
  
73. T.-F. He, L. Guo, X. Guo, C.-W. Chang, L. Wang and D. Zhong, Biochemistry 52, 9120 (2013). Femtosecond dynamics of short-range protein electron transfer in flavodoxin. [Web link] [PDF]
  
72. D. Zhong, in Flavins and Flavoproteins, S. Miller, R. Hille and B. Palfey, Eds., Lulu: Raleigh (2013) p373.  Dynamics of five excited redox states of flavins. [PDF]
  2012
71. J. Yang, L. Zhang, L. Wang, and D. Zhong, J. Am. Chem. Soc. 134, 16460 (2012). Femtosecond conical intersection dynamics of tryptophan in proteins and validation of slowdown of hydration layer dynamics. [Web link] [PDF] [Supporting Information]
  
70. Y. Qin, C.-W. Chang, L. Wang, and D. Zhong, J. Phys. Chem. B 116, 13320 (2012). Validation of response function construction and probing heterogeneous protein hydration by intrinsic tryptophan. [Web link] [PDF]
  
69. D. Zhong, A. Sancar, and A. Stuchebrukhov, Proc. Natl. Acad. Sci. USA 109, E1463 (2012). Reply to Brettel and Byrdin: On the efficiency of DNA repair by photolyase. [Web link] [PDF]
  
68. Y.-T. Kao, X. Guo, Y. Yang, Z. Liu, A. Hassanali, Q.-H. Song, L. Wang, and D. Zhong, J. Phys. Chem. B 116, 9130 (2012). Ultrafast dynamics of nonequilibrium electron transfer in photoinduced redox cycle: Solvent mediation and conformation flexibility. [Web link] [PDF]
  
67. Y.-T. Kao, Q.-H. Song, C. Saxena, L. Wang, and D. Zhong, J. Am. Chem. Soc. 134, 1501 (2012). Dynamics and mechanism of DNA repair in a biomimetic system: Flavin-thymine dimer adduct. [Web link] [PDF] [Supporting Information]
  
66. Z. Liu, X. Guo, C. Tan, J. Li, Y.-T. Kao, L. Wang, A. Sancar, and D. Zhong, J. Am. Chem. Soc. 134, 8104 (2012). Electron tunneling pathways and role of adenine in repair of cyclobutane pyrimidine dimer by DNA photolyase. [Web link] [PDF]
  
65. J.A. Stevens, J.J. Link, C. Zang, L. Wang, and D. Zhong, J. Phys. Chem. A 116, 2610 (2012). Ultrafast dynamics of nonequilibrium resonance energy transfer and probing globular protein flexibility of myoglobin. [Web link] [PDF]
  
  2011
64. X. Li, Q. Wang, X. Yu, H. Liu, H. Yang, C. Zhao, X. Liu, C. Tan, J. Klejnot, D. Zhong, and C. Lin, Proc. Natl. Acad. Sci. USA 108, 20844 (2011). Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction. [Web link] [PDF] [Supporting Information]
  
63. Z. Liu, C. Tan, X. Guo, Y.-T. Kao, J. Li, L. Wang, A. Sancar, and D. Zhong, Proc. Natl. Acad. Sci. USA 108, 14831 (2011). Dynamics and mechanism of cyclobutane pyrimidine dimer repair by DNA photolyase. [Web link] [PDF] [Supporting Information]
  
62. A. A. Hassanali, D. Zhong, and S. J. Singer, J. Phys. Chem. B 115, 3860 (2011). An AIMD study of CPD repair mechanism in water: Role of solvent in ring splitting. [Web link] [PDF] [Supporting Information]
  
61. A. A. Hassanali, D. Zhong, and S. J. Singer, J. Phys. Chem. B 115, 3848 (2011). An AIMD study of the CPD repair mechanism in water: Reaction free energy surface and mechanistic implications. [Web link] [PDF] [Supporting Information]
   
60. D. Zhong, S.K. Pal, A.H. Zewail, Chem. Phys. Lett. 503, 1 (2011). Biological water: A critique. [Web link] [PDF]
   
59. N. Ozturk, C.P. Selby, Y. Annayev, D. Zhong, and A. Sancar, Proc. Natl. Acad. Sci. USA 108, 516 (2011). Reaction mechanism of Drosophila cryptochrome. [Web link] [PDF] [Supporting Information]
   
  2010
58. C.-W. Chang, T.-F. He, L. Guo, J. A. Stevens, T. Li, L. Wang, and D. Zhong, J. Am. Chem. Soc. 132, 12741 (2010). Mapping solvation dynamics at the function site of flavodoxin in three redox states. [Web link] [PDF]
   
57. D. Zhong, Science China: Physics, Mechanics & Astronomy 53, 977 (2010).  From femtochemistry to 4D microscopy. (Special issue on Femtochemistry IX) [Web link] [PDF]
   
56. B. Liu, H. Liu, D. Zhong, and C. Lin, Curr. Opin. Plant Biol. 13, 578 (2010).  Searching for a photocycle of the cryptochrome photoreceptors. [Web link] [PDF]
   
55. J. Li, Z. Liu, C. Tan, X. Guo, L. Wang, A. Sancar, and D. Zhong, Nature 466, 887 (2010).  Dynamics and mechanism of repair of UV-induced (6-4) photoproduct by photolyase. [Web link] [PDF]
   
54. C.-W. Chang, L. Guo, Y.-T. Kao, J. Li, C. Tan, T. Li, C. Saxena, Z. Liu, L. Wang, A. Sancar, and D. Zhong, Proc. Natl. Acad. Sci. USA 107, 2914 (2010).  Ultrafast solvation dynamics at binding and active sites of photolyases. [Web link] [PDF]
   
53. J. A. Stevens, J. J. Link, Y.-T. Kao, C. Zang, L. Wang, and D. Zhong, J. Phys. Chem. B 114, 1498 (2010).  Ultrafast dynamics of resonance energy transfer in myoglobin: Probing local conformation fluctuations. [Web link] [PDF]
   
  2009
52. N. Ozturk, C. P. Selby, S.-H. Song, R. Ye, C. Tan, Y.-T. Kao, D. Zhong, and A. Sancar, Biochemistry 48, 8585 (2009).  Comparative photochemistry of animal type 1 and type 4 cryptochromes. [Web link] [PDF]
   
51. L. Zhang, Y. Yang, Y.-T. Kao, L. Wang, and D. Zhong,  J. Am. Chem. Soc. 131, 10677 (2009).  Protein hydration dynamics and molecular mechanism of coupled water-protein fluctuations. [Web link] [PDF] [Supporting Information]
   
50. D. Zhong, Adv. Chem. Phys. 143, 83 (2009). (Invited review). Hydration dynamics and coupled water-protein fluctuations probed by intrinsic tryptophan. [Web link] [PDF]
   
49. C. Zang, J. A. Stevens, J. J. Link, L. Guo, L. Wang and D. Zhong, J. Am. Chem. Soc. 131, 2846 (2009).  Ultrafast proteinquake dynamics in cytochrome c. [Web link] [PDF] [Supporting Information]
   
  2008
48. Y.-T. Kao, C. Saxena, T.-F. He, L. Guo, L. Wang, A. Sancar and D. Zhong, J. Am. Chem. Soc. 130, 13132 (2008).  Ultrafast dynamics of flavins in five redox states.[Web link] [PDF]
   
47. N. Ozturk, Y.-T. Kao, C. P. Selby, I. H.  Kavakli, C. L. Partch, D. Zhong and A. Sancar, Biochemistry 47, 10255 (2008).  Purification and characterization of a type III photolyase from Caulobacter crescentus. [Web link] [PDF]
   
46. Y.-T. Kao, C. Tan, S.-H. Song, N. Ozturk, J. Li, L. Wang, A. Sancar and D. Zhong, J. Am. Chem. Soc.  130, 7695 (2008).  Ultrafast dynamics and anionic active states of the flavin cofactor in cryptochrome and photolyase. [Web link] [PDF]
   
45. W. Qiu, T. Li, L. Zhang, Y. Yang, Y.-T. Kao, L. Wang, and D. Zhong, Chem. Phys. 350, 154 (2008). (Special Issue on Femtochemistry VIII).  Ultrafast quenching of tryptophan fluorescence in proteins: Interresidue and intrahelical electron transfer. [Web link] [PDF]
   
  2007
44. N. Ozturk, S.-H. Song, S. Ozgur, C. P. Selby,  L. Morrison, C. Partch, D. Zhong, A. Sancar, in Cold Spring Harbor Symposia on Quantitative Biology, Volume LXXII: Clocks and Rhythms, B. Stillman, D. Stewart,  eds., Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY (2007) p119-131.  Structure and function of animal cryptochromes. [Web link] [PDF]
   
43. L. Zhang, L. Wang, Y.-T. Kao, W. Qiu, Y. Yang, O. Okobiah and D. Zhong, Proc. Natl. Acad. Sci. USA 104, 18461 (2007).  Mapping hydration dynamics around a protein surface. [Web link] [PDF] [Supporting Information]
   
42. S.-H. Song, N. Ozturk, T. R. Denaro, N. O. Arat, Y.-T. Kao, H. Zhu, D. Zhong, S. M. Reppert and A. Sancar, J. Biol. Chem.  282, 17608 (2007).  Formation and function of flavin anion radical in cryptochrome 1 blue-light photoreceptor of Monarch butterfly. [Web link] [PDF]
   
41. Y.-T. Kao, C. Saxena, L. Wang, A. Sancar and D. Zhong, Cell Biochem. Biophys.  48, 32 (2007). (Invited review).  Femtochemistry in enzyme catalysis: DNA photolyase. [Web link] [PDF]
   
40. D. Zhong, Curr. Opin. Chem. Biol.  11, 174 (2007).  (Invited review). Ultrafast catalytic processes in enzymes. [Web link] [PDF]
   
39. W. Qiu, L. Wang, W. Lu, A. Boechler, D. A. R. Sanders and D. Zhong, Proc. Natl. Acad. Sci. USA  104, 5366 (2007).  Dissection of complex protein dynamics in human thioredoxin. [Web link] [PDF]
   
38. T. Li, A. A. Hassanali, Y.-T. Kao, D. Zhong and S. J. Singer, J. Am. Chem. Soc.  129, 3376 (2007).
Hydration dynamics and time scales of coupled water-protein fluctuations. [Web link] [PDF] [Supporting Information]
   
  2006
37. W. Qiu, Y.-T. Kao, L. Zhang, Y. Yang, L. Wang, W. E. Stites, D. Zhong and A.H. Zewail, Proc. Natl. Acad. Sci. USA 103, 13979 (2006).  Protein surface hydration mapped by site-specific mutations.  [Web link] [PDF] [Supporting Information]
   
36. L. Zhang, Y.-T. Kao, W. Qiu, L. Wang and D. Zhong, J. Phys. Chem. B  110, 18097 (2006).  Femtosecond studies of tryptophan fluorescence dynamics in proteins: Local solvation and electronic quenching. [Web link] [PDF]
   
35. J. Kim, W. Lu, W. Qiu, L. Wang, M. Caffrey and D. Zhong, J. Phys. Chem. B  110, 21994 (2006).
Ultrafast hydration dynamics in the lipidic cubic phase: Discrete water structures in nanochannels. [Web link]
[PDF]
   
34. A. Hassanali, T. Li, D. Zhong and S. Singer, J. Phys. Chem. B  110, 10497 (2006).  A molecular dynamics study of Lys-Trp-Lys: Structure and dynamics in solution following photoexcitation. [Web link] [PDF]
   
33. W. Qiu, L. Zhang, L. Wang and D. Zhong, in Femtochemistry VII:  Fundamental Ultrafast Processes in Chemistry, Physics, and Biology, A. W. Castleman, Jr., M. L. Kimble,  eds., Elsevier: Amsterdam (2006) p411.  Ultrafast hydration dynamics in protein conformational transitions. [Web link] [PDF]
   
32. C. Saxena, Y.-T. Kao, L. Wang, A. Sancar and D. Zhong, in Femtochemistry VII:  Fundamental Ultrafast Processes in Chemistry, Physics, and Biology, A. W. Castleman, Jr., M. L. Kimble,  eds., Elsevier: Amsterdam (2006) p407. Direct observation of DNA repair by photolyase. [Web link] [PDF]
   
31. D. Zhong, in Femtochemistry VII:  Fundamental Ultrafast Processes in Chemistry, Physics, and Biology, A. W. Castleman, Jr., M. L. Kimble, eds., Elsevier: Amsterdam (2006) p346.  Ultrafast protein dynamics. [Web link] [PDF]
   
30. W. Qiu, L. Zhang, O. Okobiah, Y. Yang, L. Wang, D. Zhong and A.H. Zewail,J. Phys. Chem. B  110, 10540 (2006).  (cover story).  Ultrafast solvation dynamics of human serum albumin: Correlations with conformational transitions and site-selected recognition. [Web link] [PDF] [Supporting Information]
   
  2005
29. Y.-T. Kao, C. Saxena, L. Wang, A. Sancar and D. Zhong, Proc. Natl. Acad. Sci. USA 102, 16128 (2005).  Direct observation of thymine dimer repair in DNA by photolyase. [Web link] [PDF]
   
28. W. Qiu, L. Zhang, Y.-T. Kao, W. Lu, T. Li, J. Kim, G. Sollenberger, L. Wang and D. Zhong, J. Phys. Chem. B  109, 16901 (2005).  Ultrafast hydration dynamics in melittin folding and aggregation: Helix formation and tetramer self-assembly. [Web link] [PDF] [Supporting Information]
   
27. C. Saxena, H. Wang, I. H. Kavakli, A. Sancar and D. Zhong, J. Am. Chem. Soc.  127, 7984 (2005).  Ultrafast dynamics of resonance energy transfer in cryptochrome. [Web link] [PDF]
   
26. H. Wang,  C. Saxena,  D. Quan, A. Sancar and D. Zhong, J. Phys. Chem. B  109, 1329 (2005).  Femtosecond dynamics of flavin cofactor in DNA photolyase: Radical reduction, local solvation, and charge recombination. [Web link] [PDF]
   
  2004
25. W. Lu, W. Qiu, J. Kim, O. Okobiah, J. Hu, G. W. Gokel and D. Zhong, Chem. Phys. Letters 394, 415 (2004).  Femtosecond studies of crown ethers:  supramolecular solvation, local solvent structure and cation-π interaction. [Web link] [PDF]
   
24. C. Saxena, A. Sancar and D. Zhong, J. Phys. Chem. B 108, 18026 (2004). (cover story)
Femtosecond dynamics of DNA photolyase:  Energy transfer of antenna initiation and electron transfer of cofactor reduction.
[Web link] [PDF]
   
23. W. Lu, J. Kim, W. Qiu and D. Zhong, Chem. Phys. Letters 388, 120 (2004).
Femtosecond studies of tryptophan solvation: correlation function and water dynamics at lipid surfaces.
[Web link] [PDF]
   
  2003-1993
22. A. Douhal, D. Zhong and A.H. Zewail, in Femtochemistry and Femtobiology: Ultrafast Dynamics in Molecular Science, A. Douhal and J.Santamaria eds., World Scientific (2002) p731.
Femtosecond studies of protein-ligand hydrophobic binding and dynamics: Human serum albumin.
[PDF]
   
21. D. Zhong, S.K. Pal, D. Zhang, S.I. Chan and A.H. Zewail, Proc. Natl. Acad. Sci. USA 99, 13 (2002).  Femtosecond dynamics of rubredoxin: Tryptophan solvation and resonance energy transfer in the protein. [Web link] [PDF]
   
20. X. Qu, C. Wan, H.-C. Becker, D. Zhong and A.H. Zewail, Proc. Natl. Acad. Sci. USA 98, 14212 (2001).  The anticancer drug-DNA complex: Femtosecond primary dynamics for anthracycline antibiotics function. [Web link] [PDF]  
   
19. D. Zhong, S.K. Pal, C. Wan and A.H. Zewail, Proc. Natl. Acad. Sci. USA 98, 11873 (2001).
Femtosecond dynamics of a drug-protein complex: Daunomycin with apo riboflavin-binding protein. 
[Web link] [PDF] 
   
18. D. Zhong and A.H. Zewail, Proc. Natl. Acad. Sci. USA 98, 11867 (2001).
Femtosecond dynamics of flavoproteins: Charge separation and recombination in riboflavin (vitamin B2)-binding protein and in glucose oxidase enzyme.
[Web link] [PDF]   
   
17. D. Zhong, S.K. Pal and A.H. Zewail, CHEM PHYS CHEM 2, 219 (2001).
Femtosecond studies of protein-DNA binding and dynamics: Histone I. [Web link] [PDF] 
   
16. D. Zhong, A. Douhal and A.H. Zewail, Proc. Natl. Acad. Sci. USA 97, 14056 (2000).
Femtosecond studies of protein-ligand hydrophobic binding and dynamics: Human serum albumin.
[Web link] [PDF] 
   
15. D. Zhong, T.M. Bernhardt and A.H. Zewail, J. Phys. Chem. A 103, 10093 (1999).
Femtosecond real-time probing of reactions. 24. Time, velocity and orientation mapping of the dynamics of dative bonding in bimolecular electron transfer reactions.
[Web link] [PDF]
   
14. D. Zhong and A.H. Zewail, Proc. Natl. Acad. Sci. USA 96, 2602 (1999).
Femtosecond dynamics of dative bonding: Concepts of reversible and dissociative electron transfer reactions.
[Web link] [PDF]
   
13. D. Zhong, Eric W.-G. Diau, T.M. Bernhardt, S.D. Feyter, J.D. Roberts and A.H. Zewail, Chem. Phys. Letters 298, 129 (1998).  Femtosecond dynamics of valence-bond isomers of azines: Transition states and conical interactions. [Web link] [PDF] 
   
12. D. Zhong and A.H. Zewail, J. Phys. Chem. A 102, 4031 (1998).
Femtosecond real-time probing of reactions: 23. Studies of temporal, velocity, angular, and state dynamics from transition states to final products by femtosecond-resolved mass spectrometry.
[Web link] [PDF]
   
11.

D. Zhong, S. Ahmad and A.H. Zewail, J. Am. Chem. Soc. 119, 5978 (1997).

Femtosecond elimination reaction dynamics  [Web link] [PDF]  

   
10.

D. Zhong, S. Ahmad, P.Y. Cheng and A.H. Zewail, J. Am. Chem. Soc. 119, 2305 (1997). 

Femtosecond nucleophilic substitution reaction dynamics. [Web link] [PDF]

   
9.

D. Zhong, P.Y. Cheng and A.H. Zewail, J. Chem. Phys. 105, 7864 (1996).

Bimolecular reactions observed by femtosecond detachment to aligned transition states: 

Inelastic and reactive dynamics. [Web link] [PDF]

   
8.

P.Y. Cheng, D. Zhong and A.H. Zewail, J. Chem. Phys. 105, 6216 (1996).

Femtosecond real-time probing of reactions. XXI. Direct observation of transition-state

dynamics and structure in charge-transfer reactions. [Web link] [PDF] 

   
7. P.Y. Cheng, D. Zhong and A.H. Zewail, J. Phys. Chem. 99, 15733 (1995).
Femtosecond, velocity-gating of complex structures in solvent cages.
[Web link] [PDF]
   
6.

P.Y. Cheng, D. Zhong and A.H. Zewail, Chem. Phys. Letters 242, 369 (1995).

Microscopic salvation and femtochemistry of charge-transfer reactions: the problem of

benzene(s)-iodine binary complexes and their solvent structures. [Web link] [PDF]

   
5.

P.Y. Cheng, D. Zhong and A.H. Zewail, J. Chem. Phys. 103, 5153 (1995).

Transition state of charge-transfer reactions: Femtosecond dynamics and the concept of

harpooning in the bimolecular reaction of benzene  with iodine. [Web link] [PDF]

   
4.

P.Y. Cheng, D. Zhong and A.H. Zewail, Chem. Phys. Letters 237, 399 (1995).

Kinetic-energy, femtosecond resolved reaction dynamics.  Modes of dissociation (in

iodobenzene) from time-velocity correlations. [Web link] [PDF]

   
3.

D. Zhong, D.W. Setser, R. Sobczynski and W. Gadomski, J. Chem. Phys. 105, 5020 (1996).
Conservation of the Kr+(2P1/2) state in the reactive quenching of Kr(5s'[1/2]0) atoms by halogen-containing molecules. [Web link] [PDF]

   
2. N. Sadeghi, I. Colomb, J. Stoyanova, D.W. Setser and D. Zhong, J. Chem. Phys. 102, 2744 (1995).  Excitation transfer from Kr(5s', 3P0) and Kr(5s, 3P2) atoms to 12CO and 13CO. [Web link] [PDF]
   
1.

D. Zhong and D.W. Setser, Chem. Phys. Letters 207, 555 (1993).

Generation of Xe(6s'3P0) atoms by optical pumping in a flow reactor. Reactions with N2 and

halogen containing molecules. [Web link] [PDF]