On the domination number of Hamiltonian graphs with minimum degree six

Hua-Ming Xing^{1,2}, Johannes H. Hattingh³, Andrew R. Plummer³

¹School of Science, Tianjin University of Science and Technology Tanggu, Tianjin 300457, P. R. China ²Department of Mathematics, Langfang Normal College Langfang, Hebei 065000, P. R. China ³Department of Mathematics and Statistics, Georgia State University Atlanta, Georgia 30303, USA

Abstract

Let G = (V, E) be a simple graph. A set $D \subseteq V$ is a *dominating set* of G if every vertex of V - D is adjacent to a vertex of D. The *domination number* of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. We prove that if G is a Hamiltonian graph of order n with minimum degree at least six, then $\gamma(G) \leq \frac{6n}{17}$.

Keywords: Domination, Hamiltonian graph, degree six

MSC 2000: 05C69

1 Introduction

In this paper, we follow the notation of [2]. Specifically, let G = (V, E) be a graph with vertex set V and edge set E. A set $S \subseteq V$ is a *dominating set*, denoted **DS**, of G if every vertex not in S is adjacent to a vertex in S. The *domination number* of G, denoted by $\gamma(G)$, is the minimum cardinality of a **DS**. The concept of domination in graphs, with its many variations, is now well studied in graph theory. The recent book of Chartrand and Lesniak [2] includes a chapter on domination. A thorough study of domination appears in [4, 5].

Ore [7] showed that if G is a graph of order n with $\delta(G) \geq 1$, then $\gamma(G) \leq \frac{n}{2}$, while McCuaig and Shepherd [6] showed that if G is a connected graph of order n with $\delta(G) \geq 2$ and not one of seven exceptional graphs, then $\gamma(G) \leq \frac{2n}{5}$. Moreover, Reed [8] showed that if $\delta(G) \geq 3$, then $\gamma(G) \leq \frac{3n}{8}$. Motivated by these results, Haynes et al. [4] posed the following conjecture.

Conjecture 1 Let G be a graph of order n such that $\delta(G) \ge k \ge 4$. Then $\gamma(G) \le \frac{kn}{3k-1}$.

^{*}Corresponding author e-mail address: hmxing001@sina.com (H.-M. Xing).

The following result is due to Caro and Roditty [1].

Theorem 1 Let G be a graph of order n. Then

$$\gamma(G) \le n[1 - \delta(G)(\frac{1}{\delta(G) + 1})^{(1 + \frac{1}{\delta(G)})}].$$

We now show that Theorem 1 implies Conjecture 1 for $k \ge 7$.

Proposition 1 Let G be a graph of order n such that $\delta(G) \ge k \ge 7$. Then

$$\gamma(G) \le \frac{kn}{3k-1}.$$

Proof. Suppose $k \ge 7$ and let $\delta(G) \ge k$. We must show that

$$n\Big[1-\delta(G)\Big(\frac{1}{\delta(G)+1}\Big)^{(1+1/\delta(G))}\Big] \leq \frac{kn}{3k-1}.$$

Thus, it suffices to show that

$$1 - \delta(G) \Big(\frac{1}{\delta(G) + 1} \Big)^{(1 + 1/\delta(G))} \le \frac{k}{3k - 1}$$

Let $f(x) = 1 - x(\frac{1}{x+1})^{(1+1/x)}$, for $x \ge 7$. Then $f'(x) = -\frac{\ln(x+1)}{x}(\frac{1}{x+1})^{(1+1/x)} < 0$ for x > 0. Hence, for $x \ge 7$, f is monotonically decreasing. Since $\delta(G) \ge k \ge 7$, we have $f(\delta(G)) \le f(k)$; that is, $1 - \delta(G)(\frac{1}{\delta(G)+1})^{(1+1/\delta(G))} \le 1 - k(\frac{1}{k+1})^{(1+1/k)}$.

Now, let $g(x) = \frac{x}{3x-1}$ and h(x) = f(x) - g(x) for $x \ge 7$. Notice that $g(x) > \frac{1}{3}$, so $h(x) \le f(x) - \frac{1}{3}$. Let $H(x) = f(x) - \frac{1}{3}$ and notice that, since f is monotonically decreasing, H(x) is also. Then, for x = 8, we have $h(8) \le H(8) = 1 - 8(\frac{1}{9})^{(1+1/8)} - \frac{1}{3} < 0$. Since h is monotonically decreasing, it follows that $h(x) \le h(8) \le 0$ for $x \ge 8$. Moreover, for x = 7, we have $h(7) = 1 - 7(\frac{1}{8})^{(1+1/7)} - \frac{7}{3(7)-1} < 0$. Thus, $1 - k(\frac{1}{k+1})^{(1+1/k)} \le \frac{k}{3k-1}$, for $k \ge 7$, and the result follows. \Box

Sohn and Yuan [9] proved that Conjecture 1 holds for graphs with minimum degree four, while Xing et al. [10] proved that Conjecture 1 holds for graphs with minimum degree five. Therefore, Conjecture 1 remains open for graphs with minimum degree six. In the next section we prove that Conjecture 1 holds for Hamiltonian graphs with minimum degree six.

2 Main result

We first provide some definitions and notation. Let C be a cycle and P be a path with $V(C) \cap V(P) = \emptyset$. Let $v \in V(C)$ and let x be an endvertex of P. Let $V' = V(C) \cup V(P)$

and let $E' = E(C) \cup E(P) \cup \{vx\}$. We call the graph L = (V', E') a *lasso*. The cycle C is called the *body* of L. If L is a subgraph of a graph G, then L is called a *lasso* of G. In order to prove that Conjecture 1 holds for Hamiltonian graphs with minimum degree six, we state several preliminary results.

Lemma 1 For $k \ge 1$, let $P = x_1, x_2, \dots, x_{3k+1}$ be a path of order 3k + 1. If x_1 is adjacent to a vertex x_{3i} for some $1 \le i \le k$, then P can be dominated by k vertices.

Proof. The set $D = \{x_3, x_6, \dots, x_{3k}\}$ is a **DS** set of P such that |D| = k.

Lemma 2 For $k \ge 1$, let C be a cycle of order 3k + 1, and $P = x_1, x_2, x_3$ be a path such that $V(C) \cap V(P) = \emptyset$. If x_2 has a neighbor on C, then $C \cup P$ can be dominated by k + 1 vertices.

Proof. Let $C = y_1, y_2, \dots, y_{3k+1}, y_1$ and, without loss of generality, assume x_2 is adjacent to y_1 . Then $D = \{x_2, y_3, y_6, \dots, y_{3k}\}$ is a **DS** of $C \cup P$ such that |D| = k + 1.

The following result is due to Clark and Dunning [3].

Lemma 3 Let G be a graph of order n with $\delta(G) \ge 4$. If $n \le 16$, then $\gamma(G) \le \frac{n}{3}$.

The following result is due to Xing et al. [10].

Lemma 4 Let G be a graph of order 3k + 1, where $2 \le k \le 8$. If $\delta(G) \ge 5$, then $\gamma(G) \le k$.

We are now in position to prove our main result.

Theorem 2 Let G be a Hamiltonian graph of order n such that $\delta(G) \ge 6$. Then

$$\gamma(G) \le \frac{6n}{17}.$$

Proof. Let $V(G) = \{1, 2, \dots, n\}$ and, without loss of generality, assume $C = 1, 2, \dots, n, 1$ is a Hamiltonian cycle of G. If $n \leq 16$, then, by Lemma 3, $\gamma(G) \leq \frac{n}{3} \leq \frac{6n}{17}$. Thus, $n \geq 17$. Now, let $k \geq 6$ and consider the following cases.

Case 1. n = 3k - 1.

Then $D = \{2, 5, \dots, 3k - 1\}$ is a **DS** set of G such that $|D| = k = \frac{n+1}{3}$. Since $n \ge 17$, it follows that $\gamma(G) \le \frac{n+1}{3} \le \frac{6n}{17}$.

Case 2. n = 3k.

Then $D = \{2, 5, \dots, 3k - 1\}$ is a **DS** of G such that $|D| = k = \frac{n}{3}$. It follows that $\gamma(G) \leq \frac{n}{3} \leq \frac{6n}{17}$.

Case 3. n = 3k + 1.

If $k \leq 8$, then $n \leq 25$, and by Lemma 4, $\gamma(G) \leq k \leq \frac{6n}{17}$. Suppose $k \geq 11$. Then $n \geq 34$ and $D = \{2, 5, \dots, 3k - 1, 3k + 1\}$ is a **DS** of G such that $|D| = k + 1 = \frac{n+2}{3}$. Since $n \geq 34$, it follows that $\gamma(G) \leq \frac{n+2}{3} \leq \frac{6n}{17}$. Hence, we only need to verify that if G has order n = 28(n = 31, respectively), then G has a **DS** of cardinality 9 (10, respectively).

Since the proofs are similar, we consider only n = 31. The proof is by contradiction, that is, we assume $\gamma(G) \ge 11$. Since $\delta(G) \ge 6$, each vertex of G is incident with at least four chords of C. We choose a lasso L of G of order 31, obtainable from C, such that the number of vertices comprising the body of L is maximum. That is, L is a spanning subgraph of the union of C and a chord of C.

Let $v \in V(G)$. Suppose, without loss of generality, that 1v is a chord of C such that $1, v, v - 1, \dots, 1$ is the body of L. Note that 1 is adjacent to both v and 31. We consider possible values of v. If 1 is adjacent to 3i for some $1 \le i \le 10$, then, by Lemma 1, G can be dominated by 10 vertices, which is a contradiction. Thus we may assume that 1 is not adjacent to 3i for all i. By similar reasoning, 31 is not adjacent to 3i - 1 for all i. Since the body of L is a maximum, and by re-labeling if necessary, we have that $v \ge 17$. Since 1 is not adjacent to 3i for all i, we have $v \in \{17, 19, 20, 22, 23, 25, 26, 28, 29\}$.

Before proceeding further, we bound the adjacencies of vertices 31 and 30. Suppose b (c, respectively) is adjacent to 31 (30, respectively). Then we obtain lassos L_1 and L_2 (L'_1 and L'_2 , respectively) with cycle lengths b + 1 and 32 - b (c + 2 and 31 - c, respectively). Thus, $b + 1 \le v$ and $32 - b \le v$ ($c + 2 \le v$ and $31 - c \le v$, respectively), and so $32 - v \le b \le v - 1$ ($31 - v \le c \le v - 2$, respectively).

Case 3.1. v = 17.

Then 31 is possibly adjacent to vertices in $\{32 - 17, ..., 17 - 1, 1, 30\} = \{15, 16, 1, 30\}$, contradicting the fact that $\deg(v) \ge 6$.

Case 3.2. $v \in \{19, 22, 25, 28\}.$

Since $31 - v \le c \le v - 2$, 30 is adjacent to some vertex on the cycle $1, v, v - 1, \dots, 2, 1$. As $v \equiv 1 \mod 3$, Lemma 2 implies that G can be dominated by 10 vertices, a contradiction.

Case 3.3. v = 20.

Again we check the possible adjacencies of 31. By reasoning similar to Case 3.1, we have that 31 is adjacent to 1, 30 and possibly 12, 13, \cdots , 19. Recall that 31 is not adjacent to 3i-1 for all $1 \le i \le 10$. Thus 31 is not adjacent to 14 or 17. Since $\deg(31) \ge 6$, 31 must be adjacent to at least one of the vertices 12, 15 or 18. Then $D = \{3, 6, 9, 12, 15, 18, 20, 23, 26, 29\}$ is a **DS** of *G* of cardinality 10, a contradiction.

Case 3.4. v = 23.

Initially, 31 is adjacent to 1, 30, and possibly vertices in $\{9, 10, \dots, 21, 22\}$. Let $D = \{3, 6, 9, 12, 15, 18, 21, 23, 26, 29\}$. Then D dominates G if 31 is adjacent to 3i for some $1 \le i \le 7$. Hence, we eliminate these possibilities and also vertices of the form 3i - 1. We now have that 31 is possibly adjacent to vertices in $\{10, 13, 16, 19, 22\}$. Since deg $(31) \ge 6$, 31 must be adjacent to either 19 or 22.

Now consider the adjacencies of 30. Initially, 30 is adjacent to 29, 31 and possibly vertices in $\{8, 9, \dots, 20, 21\}$. Let $D' = \{1, 3, 6, 9, 12, 15, 18, 21, 25, 28\}$. Then D' dominates G if 30 is adjacent to 3*i* for some $1 \le i \le 7$. Hence, we eliminate these possibilities and also the vertices of the form 3i - 2. We now have that 30 is possibly adjacent to the vertices in $\{8, 11, 14, 17, 20\}$. Since deg $(30) \ge 6$, 30 must be adjacent to either 8 or 11. Then $D'' = \{2, 5, 8, 11, 14, 17, 19, 22, 25, 28\}$ is a **DS** of G of cardinality 10, a contradiction.

Case 3.5. v = 26.

Initially, 31 is adjacent to 1, 30, and possibly vertices in $\{6, 7, \dots, 25\}$. Let $D = \{3, 6, 9, 12, 15, 18, 21, 24, 26, 29\}$. Then D dominates G if 31 is adjacent to 3i for some $1 \le i \le 8$. Hence, we eliminate these possibilities and also vertices of the form 3i - 1. Thus, we have that 31 is possibly adjacent to the vertices in $\{7, 10, 13, 16, 19, 22, 25\}$. Since deg $(31) \ge 6$, 31 must be adjacent to at least one of the vertices in $\{16, 19, 22, 25\}$.

Now consider the adjacencies of 30. Initially, 30 is adjacent to 29, 31 and possibly vertices in $\{5, 6, \dots, 24\}$. Let $D' = \{1, 3, 6, 9, 12, 15, 18, 21, 24, 28\}$. Then D' dominates G if 30 is adjacent to 3*i* for some $1 \le i \le 8$. Hence, we eliminate these possibilities and also the vertices of the form 3i - 2. We now have that 30 is possibly adjacent to vertices in $\{5, 8, 11, 14, 17, 20, 23\}$. Since deg $(30) \ge 6$, 30 must be adjacent to at least one of the vertices in $\{5, 8, 11, 14\}$. Then $D'' = \{2, 5, 8, 11, 14, 16, 19, 22, 25, 28\}$ is a **DS** of G of cardinality 10, a contradiction.

Case 3.6. v = 29.

Initially, 31 is adjacent to 1, 30, and possibly the vertices in $\{3, 4, \dots, 28\}$. Let $D = \{3, 6, 9, 12, 15, 18, 21, 24, 27, 29\}$. Then D dominates G if 31 is adjacent to 3i for some $1 \le i \le 9$. Hence, we eliminate these possibilities and also vertices of the form 3i - 1. Thus, we have that 31 is possibly adjacent to the vertices in $\{4, 7, 10, 13, 16, 19, 22, 25, 28\}$.

Now, consider the adjacencies of 30. Initially, 30 is adjacent to 29, 31 and possibly the vertices in $\{2, 3, \dots, 27\}$. Let $D' = \{1, 3, 6, 9, 12, 15, 18, 21, 25, 28\}$. Then D' dominates G if 30 is adjacent to 3i for some $1 \le i \le 9$. Hence, we eliminate these possibilities and also the vertices of the form 3i - 2. We now have that 30 is possibly adjacent to the vertices in $\{2, 5, 8, 11, 14, 17, 20, 23, 26\}$.

Suppose 31 is adjacent to one of the vertices in $\{19, 22, 25, 28\}$. Let $D'' = \{2, 5, 8, 11, 14, 17, 19, 22, 25, 28\}$. Then D'' dominates G if 30 is adjacent to 3i - 1 for some $1 \le i \le 6$. Hence, we eliminate these possibilities. It follows that 30 is adjacent to 29, 31 and possibly to vertices in $\{20, 23, 26\}$, which implies that $\deg(30) \le 5$, a contradiction. We conclude that 31 is not adjacent to any of the vertices in $\{19, 22, 25, 28\}$.

Suppose 31 is adjacent to 4. Then 2 must be adjacent to some vertex on the cycle $31, 4, 5, \dots, 30, 31$ of length 28. By Lemma 2, G can be dominated by 10 vertices, which is a contradiction. Suppose 31 is adjacent to 7. Then 2 must be adjacent to some vertex on the cycle $31, 7, 8, \dots, 30, 31$ of length 25. By Lemma 2, the vertices on the cycle and the vertices 1, 2, 3 can be dominated by a set composed of 9 vertices. Adding the vertex 5 to this set yields a **DS** set of G of cardinality 10, a contradiction. Thus, 31 is adjacent to 1, 30 and possibly to vertices in $\{10, 13, 16\}$, which implies that $\deg(31) \leq 5$, a contradiction. \Box

Corollary 1 Let G be a Hamiltonian graph of order n such that $\delta(G) \ge k \ge 3$. Then $\gamma(G) \le \frac{kn}{3k-1}$.

References

- Y. Caro and Y. Roditty, A note on the k-domination number of a graph, Internat. J. Math. Sci. 13 (1990) 205–206.
- [2] G. Chartrand and L. Lesniak, Graphs & Digraphs: Third Edition, Chapman & Hall, London, 1996.
- [3] W.E. Clark and L.A. Dunning, Tight upper bounds for the domination numbers of graphs with given order and minimum degree, *Electron J. Comb.* 4 (1997) #R26.
- [4] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1997.
- [5] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater (eds), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1997.
- [6] W. McCuaig and B. Shepherd, Domination in graphs with minimum degree two, J. Graph Theory 13 (1989) 749–762.
- [7] O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ. 38 (Amer. Math. Soc. Providence, RI) 1962.
- [8] B. Reed, Paths, stars, and the number three, Comb. Prob. Comp. 5 (1996) 277–295.
- [9] M.Y. Sohn and X. Yuan, Domination in graphs of minimum degree four, Manuscript.
- [10] H. Xing, L. Sun and X. Chen, Domination in graphs of minimum degree five, Graph. Combinator. 22 (2006) 127–143.