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Abstract

Let G = (V,E) be a simple graph. A set D ⊆ V is a dominating set of G if every
vertex of V − D is adjacent to a vertex of D. The domination number of G, denoted
by γ(G), is the minimum cardinality of a dominating set of G. We prove that if G is a
Hamiltonian graph of order n with minimum degree at least six, then γ(G) ≤ 6n

17 .
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1 Introduction

In this paper, we follow the notation of [2]. Specifically, let G = (V,E) be a graph with
vertex set V and edge set E. A set S ⊆ V is a dominating set, denoted DS, of G if every
vertex not in S is adjacent to a vertex in S. The domination number of G, denoted by
γ(G), is the minimum cardinality of a DS. The concept of domination in graphs, with its
many variations, is now well studied in graph theory. The recent book of Chartrand and
Lesniak [2] includes a chapter on domination. A thorough study of domination appears in
[4, 5].

Ore [7] showed that if G is a graph of order n with δ(G) ≥ 1, then γ(G) ≤ n
2 , while

McCuaig and Shepherd [6] showed that if G is a connected graph of order n with δ(G) ≥ 2
and not one of seven exceptional graphs, then γ(G) ≤ 2n

5 . Moreover, Reed [8] showed that if
δ(G) ≥ 3, then γ(G) ≤ 3n

8 . Motivated by these results, Haynes et al. [4] posed the following
conjecture.

Conjecture 1 Let G be a graph of order n such that δ(G) ≥ k ≥ 4. Then γ(G) ≤ kn
3k−1 .
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The following result is due to Caro and Roditty [1].

Theorem 1 Let G be a graph of order n. Then

γ(G) ≤ n[1− δ(G)(
1

δ(G) + 1
)
(1+ 1

δ(G)
)

].

We now show that Theorem 1 implies Conjecture 1 for k ≥ 7.

Proposition 1 Let G be a graph of order n such that δ(G) ≥ k ≥ 7. Then

γ(G) ≤ kn

3k − 1
.

Proof. Suppose k ≥ 7 and let δ(G) ≥ k. We must show that

n
[
1− δ(G)

( 1
δ(G) + 1

)(1+1/δ(G))]
≤ kn

3k − 1
.

Thus, it suffices to show that

1− δ(G)
( 1
δ(G) + 1

)(1+1/δ(G))

≤ k

3k − 1
.

Let f(x) = 1 − x( 1
x+1)(1+1/x), for x ≥ 7. Then f ′(x) = − ln(x+1)

x ( 1
x+1)(1+1/x)

< 0 for
x > 0. Hence, for x ≥ 7, f is monotonically decreasing. Since δ(G) ≥ k ≥ 7, we have
f(δ(G)) ≤ f(k); that is, 1− δ(G)( 1

δ(G)+1)(1+1/δ(G)) ≤ 1− k( 1
k+1)(1+1/k).

Now, let g(x) = x
3x−1 and h(x) = f(x) − g(x) for x ≥ 7. Notice that g(x) > 1

3 , so
h(x) ≤ f(x)− 1

3 . Let H(x) = f(x)− 1
3 and notice that, since f is monotonically decreasing,

H(x) is also. Then, for x = 8, we have h(8) ≤ H(8) = 1 − 8(1
9)(1+1/8) − 1

3 < 0. Since h is
monotonically decreasing, it follows that h(x) ≤ h(8) ≤ 0 for x ≥ 8. Moreover, for x = 7,
we have h(7) = 1− 7(1

8)(1+1/7)− 7
3(7)−1 < 0. Thus, 1−k( 1

k+1)(1+1/k) ≤ k
3k−1 , for k ≥ 7, and

the result follows. 2

Sohn and Yuan [9] proved that Conjecture 1 holds for graphs with minimum degree four,
while Xing et al. [10] proved that Conjecture 1 holds for graphs with minimum degree five.
Therefore, Conjecture 1 remains open for graphs with minimum degree six. In the next
section we prove that Conjecture 1 holds for Hamiltonian graphs with minimum degree six.

2 Main result

We first provide some definitions and notation. Let C be a cycle and P be a path with
V (C) ∩ V (P ) = ∅. Let v ∈ V (C) and let x be an endvertex of P . Let V ′ = V (C) ∪ V (P )
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and let E′ = E(C) ∪ E(P ) ∪ {vx}. We call the graph L = (V ′, E′) a lasso. The cycle C
is called the body of L. If L is a subgraph of a graph G, then L is called a lasso of G. In
order to prove that Conjecture 1 holds for Hamiltonian graphs with minimum degree six,
we state several preliminary results.

Lemma 1 For k ≥ 1, let P = x1, x2, · · · , x3k+1 be a path of order 3k + 1. If x1 is adjacent
to a vertex x3i for some 1 ≤ i ≤ k, then P can be dominated by k vertices.

Proof. The set D = {x3, x6, · · · , x3k} is a DS set of P such that |D| = k. 3

Lemma 2 For k ≥ 1, let C be a cycle of order 3k + 1, and P = x1, x2, x3 be a path such
that V (C) ∩ V (P ) = ∅. If x2 has a neighbor on C, then C ∪ P can be dominated by k + 1
vertices.

Proof. Let C = y1, y2, · · · , y3k+1, y1 and, without loss of generality, assume x2 is adjacent
to y1. Then D = {x2, y3, y6, · · · , y3k} is a DS of C ∪ P such that |D| = k + 1. 3

The following result is due to Clark and Dunning [3].

Lemma 3 Let G be a graph of order n with δ(G) ≥ 4. If n ≤ 16, then γ(G) ≤ n
3 .

The following result is due to Xing et al. [10].

Lemma 4 Let G be a graph of order 3k +1, where 2 ≤ k ≤ 8. If δ(G) ≥ 5, then γ(G) ≤ k.

We are now in position to prove our main result.

Theorem 2 Let G be a Hamiltonian graph of order n such that δ(G) ≥ 6. Then

γ(G) ≤ 6n

17
.

Proof. Let V (G) = {1, 2, · · · , n} and, without loss of generality, assume C = 1, 2, · · · , n, 1
is a Hamiltonian cycle of G. If n ≤ 16, then, by Lemma 3, γ(G) ≤ n

3 ≤ 6n
17 . Thus, n ≥ 17.

Now, let k ≥ 6 and consider the following cases.

Case 1. n = 3k − 1.

Then D = {2, 5, . . . , 3k − 1} is a DS set of G such that |D| = k = n+1
3 . Since n ≥ 17, it

follows that γ(G) ≤ n+1
3 ≤ 6n

17 .

Case 2. n = 3k.

Then D = {2, 5, · · · , 3k − 1} is a DS of G such that |D| = k = n
3 . It follows that γ(G) ≤

n
3 ≤

6n
17 .
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Case 3. n = 3k + 1.

If k ≤ 8, then n ≤ 25, and by Lemma 4, γ(G) ≤ k ≤ 6n
17 . Suppose k ≥ 11. Then n ≥ 34

and D = {2, 5, · · · , 3k− 1, 3k + 1} is a DS of G such that |D| = k + 1 = n+2
3 . Since n ≥ 34,

it follows that γ(G) ≤ n+2
3 ≤ 6n

17 . Hence, we only need to verify that if G has order n = 28
(n = 31, respectively), then G has a DS of cardinality 9 (10, respectively).

Since the proofs are similar, we consider only n = 31. The proof is by contradiction, that
is, we assume γ(G) ≥ 11. Since δ(G) ≥ 6, each vertex of G is incident with at least four
chords of C. We choose a lasso L of G of order 31, obtainable from C, such that the number
of vertices comprising the body of L is maximum. That is, L is a spanning subgraph of the
union of C and a chord of C.

Let v ∈ V (G). Suppose, without loss of generality, that 1v is a chord of C such that
1, v, v − 1, · · · , 1 is the body of L. Note that 1 is adjacent to both v and 31. We consider
possible values of v. If 1 is adjacent to 3i for some 1 ≤ i ≤ 10, then, by Lemma 1, G can
be dominated by 10 vertices, which is a contradiction. Thus we may assume that 1 is not
adjacent to 3i for all i. By similar reasoning, 31 is not adjacent to 3i − 1 for all i. Since
the body of L is a maximum, and by re-labeling if necessary, we have that v ≥ 17. Since 1
is not adjacent to 3i for all i, we have v ∈ {17, 19, 20, 22, 23, 25, 26, 28, 29}.

Before proceeding further, we bound the adjacencies of vertices 31 and 30. Suppose b (c,
respectively) is adjacent to 31 (30, respectively). Then we obtain lassos L1 and L2 (L′

1 and
L′

2, respectively) with cycle lengths b + 1 and 32− b (c + 2 and 31− c, respectively). Thus,
b + 1 ≤ v and 32− b ≤ v (c + 2 ≤ v and 31− c ≤ v, respectively), and so 32− v ≤ b ≤ v− 1
(31− v ≤ c ≤ v − 2, respectively).

Case 3.1. v = 17.

Then 31 is possibly adjacent to vertices in {32 − 17, . . . , 17 − 1, 1, 30} = {15, 16, 1, 30},
contradicting the fact that deg(v) ≥ 6.

Case 3.2. v ∈ {19, 22, 25, 28}.

Since 31− v ≤ c ≤ v − 2, 30 is adjacent to some vertex on the cycle 1, v, v − 1, · · · , 2, 1. As
v ≡ 1 mod 3, Lemma 2 implies that G can be dominated by 10 vertices, a contradiction.

Case 3.3. v = 20.

Again we check the possible adjacencies of 31. By reasoning similar to Case 3.1, we have that
31 is adjacent to 1, 30 and possibly 12, 13, · · · , 19. Recall that 31 is not adjacent to 3i−1 for
all 1 ≤ i ≤ 10. Thus 31 is not adjacent to 14 or 17. Since deg(31) ≥ 6, 31 must be adjacent
to at least one of the vertices 12, 15 or 18. Then D = {3, 6, 9, 12, 15, 18, 20, 23, 26, 29} is a
DS of G of cardinality 10, a contradiction.

Case 3.4. v = 23.

Initially, 31 is adjacent to 1, 30, and possibly vertices in {9, 10, · · · , 21, 22}. Let D =
{3, 6, 9, 12, 15, 18, 21, 23, 26, 29}. Then D dominates G if 31 is adjacent to 3i for some
1 ≤ i ≤ 7. Hence, we eliminate these possibilities and also vertices of the form 3i− 1. We
now have that 31 is possibly adjacent to vertices in {10, 13, 16, 19, 22}. Since deg(31) ≥ 6,
31 must be adjacent to either 19 or 22.
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Now consider the adjacencies of 30. Initially, 30 is adjacent to 29, 31 and possibly vertices
in {8, 9, · · · , 20, 21}. Let D′ = {1, 3, 6, 9, 12, 15, 18, 21, 25, 28}. Then D′ dominates G if 30
is adjacent to 3i for some 1 ≤ i ≤ 7. Hence, we eliminate these possibilities and also
the vertices of the form 3i − 2. We now have that 30 is possibly adjacent to the vertices
in {8, 11, 14, 17, 20}. Since deg(30) ≥ 6, 30 must be adjacent to either 8 or 11. Then
D′′ = {2, 5, 8, 11, 14, 17, 19, 22, 25, 28} is a DS of G of cardinality 10, a contradiction.

Case 3.5. v = 26.

Initially, 31 is adjacent to 1, 30, and possibly vertices in {6, 7, · · · , 25}. Let D = {3, 6, 9, 12,
15, 18, 21, 24, 26, 29}. Then D dominates G if 31 is adjacent to 3i for some 1 ≤ i ≤ 8. Hence,
we eliminate these possibilities and also vertices of the form 3i− 1. Thus, we have that 31
is possibly adjacent to the vertices in {7, 10, 13, 16, 19, 22, 25}. Since deg(31) ≥ 6, 31 must
be adjacent to at least one of the vertices in {16, 19, 22, 25}.

Now consider the adjacencies of 30. Initially, 30 is adjacent to 29, 31 and possibly vertices
in {5, 6, · · · , 24}. Let D′ = {1, 3, 6, 9, 12, 15, 18, 21, 24, 28}. Then D′ dominates G if 30
is adjacent to 3i for some 1 ≤ i ≤ 8. Hence, we eliminate these possibilities and also
the vertices of the form 3i − 2. We now have that 30 is possibly adjacent to vertices in
{5, 8, 11, 14, 17, 20, 23}. Since deg(30) ≥ 6, 30 must be adjacent to at least one of the vertices
in {5, 8, 11, 14}. Then D′′ = {2, 5, 8, 11, 14, 16, 19, 22, 25, 28} is a DS of G of cardinality 10,
a contradiction.

Case 3.6. v = 29.

Initially, 31 is adjacent to 1, 30, and possibly the vertices in {3, 4, · · · , 28}. Let D =
{3, 6, 9, 12, 15, 18, 21, 24, 27, 29}. Then D dominates G if 31 is adjacent to 3i for some
1 ≤ i ≤ 9. Hence, we eliminate these possibilities and also vertices of the form 3i−1. Thus,
we have that 31 is possibly adjacent to the vertices in {4, 7, 10, 13, 16, 19, 22, 25, 28}.

Now, consider the adjacencies of 30. Initially, 30 is adjacent to 29, 31 and possibly the
vertices in {2, 3, · · · , 27}. Let D′ = {1, 3, 6, 9, 12, 15, 18, 21, 25, 28}. Then D′ dominates G
if 30 is adjacent to 3i for some 1 ≤ i ≤ 9. Hence, we eliminate these possibilities and also
the vertices of the form 3i− 2. We now have that 30 is possibly adjacent to the vertices in
{2, 5, 8, 11, 14, 17, 20, 23, 26}.

Suppose 31 is adjacent to one of the vertices in {19, 22, 25, 28}. Let D′′ = {2, 5, 8, 11, 14, 17,
19, 22, 25, 28}. Then D′′ dominates G if 30 is adjacent to 3i− 1 for some 1 ≤ i ≤ 6. Hence,
we eliminate these possibilities. It follows that 30 is adjacent to 29, 31 and possibly to
vertices in {20, 23, 26}, which implies that deg(30) ≤ 5, a contradiction. We conclude that
31 is not adjacent to any of the vertices in {19, 22, 25, 28}.

Suppose 31 is adjacent to 4. Then 2 must be adjacent to some vertex on the cycle
31, 4, 5, · · · , 30, 31 of length 28. By Lemma 2, G can be dominated by 10 vertices, which is
a contradiction. Suppose 31 is adjacent to 7. Then 2 must be adjacent to some vertex on
the cycle 31, 7, 8, · · · , 30, 31 of length 25. By Lemma 2, the vertices on the cycle and the
vertices 1, 2, 3 can be dominated by a set composed of 9 vertices. Adding the vertex 5 to
this set yields a DS set of G of cardinality 10, a contradiction. Thus, 31 is adjacent to 1,
30 and possibly to vertices in {10, 13, 16}, which implies that deg(31) ≤ 5, a contradiction.
2
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Corollary 1 Let G be a Hamiltonian graph of order n such that δ(G) ≥ k ≥ 3. Then
γ(G) ≤ kn

3k−1 .
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