Nordhaus-Gaddum Results for Restrained Domination and Total Restrained Domination in Graphs

¹Johannes H. Hattingh, ²Elizabeth Jonck, ²Ernst J. Joubert and ¹Andrew R. Plummer

¹Department of Mathematics and Statistics University Plaza Georgia State University Atlanta, Georgia 30303, USA

> ²Department of Mathematics University of Johannesburg P.O. Box 524 Auckland Park 2006 South Africa

Abstract

Let G = (V, E) be a graph. A set $S \subseteq V$ is a total restrained dominating set if every vertex is adjacent to a vertex in S and every vertex of V - S is adjacent to a vertex in V - S. A set $S \subseteq V$ is a restrained dominating set if every vertex in V - S is adjacent to a vertex in S and to a vertex in V - S. The total restrained domination number of G (restrained domination number of G, respectively), denoted by $\gamma_{tr}(G)$ ($\gamma_r(G)$, respectively), is the smallest cardinality of a total restrained dominating set (restrained dominating set, respectively) of G. We bound the sum of the total restrained domination numbers of a graph and its complement, and provide characterizations of the extremal graphs achieving these bounds. It is known (see [3]) that if G is a graph of order $n \ge 2$ such that both G and \overline{G} are not isomorphic to P_3 , then $4 \le \gamma_r(G) + \gamma_r(\overline{G}) \le n+2$. We also provide characterizations of the extremal graphs G of order n achieving these bounds.

1 Introduction

In this paper, we follow the notation of [1]. Specifically, let G = (V, E) be a graph with vertex set V and edge set E. A set $S \subseteq V$ is a *dominating set*, denoted **DS**, of G if every vertex not in S is adjacent to a vertex in S. The *domination number* of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set. The concept of domination in graphs, with its many variations, is now well studied in graph theory. The recent book of Chartrand and Lesniak [1] includes a chapter on domination. A thorough study of domination appears in [6, 7].

In this paper, we continue the study of two variations of the domination theme, namely that of restrained domination [4, 3, 5, 8] and total restrained domination [2, 11].

A set $S \subseteq V$ is a *total restrained dominating set*, denoted **TRDS**, if every vertex is adjacent to a vertex in S and every vertex in V - S is also adjacent to a vertex in V - S. Every graph without isolated vertices has a total restrained dominating set, since S = V is such a set. The *total restrained domination number* of G, denoted by $\gamma_{tr}(G)$, is the minimum cardinality of a **TRDS** of G.

A set $S \subseteq V$ is a restrained dominating set, denoted **RDS**, if every vertex in V - S is adjacent to a vertex in S and a vertex in V - S. Every graph has a restrained dominating set, since S = V is such a set. The restrained domination number of G, denoted by $\gamma_r(G)$, is the minimum cardinality of a **RDS** of G. If u, v are vertices of G, then the distance between u and v will be denoted by d(u, v).

Nordhaus and Gaddum present best possible bounds on the sum of the chromatic number of a graph and its complement in [10]. The corresponding result for the domination number is presented by Jaeger and Payan in [9]: If G is a graph of order $n \ge 2$, then $\gamma(G) + \gamma(\overline{G}) \le n + 1$. A best possible bound on the sum of the restrained domination numbers of a graph and its complement is obtained in [3]:

Theorem 1 If G is a graph of order $n \ge 2$ such that both G and \overline{G} are not isomorphic to P_3 , then $4 \le \gamma_r(G) + \gamma_r(\overline{G}) \le n+2$.

A best possible bound on the sum of the total restrained domination numbers of a graph and its complement is obtained in [2]:

Theorem 2 If G is a graph of order $n \ge 2$ such that neither G nor \overline{G} contains isolated vertices or has diameter two, then $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) \le n + 4$.

Let K be the graph obtained from K_3 by matching the vertices of \overline{K}_2 to distinct vertices of K_3 . Note that K is self-complementary, K nor \overline{K} contains isolated vertices or has diameter two, while $\gamma_{tr}(K) + \gamma_{tr}(\overline{K}) = 2 \times 5 = 10 > n(K) + 4$. Thus, Theorem 2 is incorrect.

We will show, in Section 2, that if G is a graph of order $n \ge 2$ such that neither G nor \overline{G} contains isolated vertices or is isomorphic to K, then $4 \le \gamma_{tr}(G) + \gamma_{tr}(\overline{G}) \le n + 4$. Moreover, we will characterize the graphs G of order n for which $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) = n + 4$ and also characterize those graphs G for which $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) = 4$. In Section 3, we characterize the graphs G of order n for which $\gamma_r(G) + \gamma_r(\overline{G}) = n + 2$ as well as those graphs G for which $\gamma_r(G) + \gamma_r(\overline{G}) = 4$.

2 Total Restrained Domination

In this section, we provide bounds on the sum of the total restrained domination numbers of a graph and its complement, and provide characterizations of the extremal graphs achieving these bounds.

Let $n \ge 5$ be an integer and suppose $\{x, y, u, v\}$ and X are disjoint sets of vertices such that |X| = n - 4. Let \mathcal{L} be the family of graphs G of order n where $V(G) = \{x, y, u, v\} \cup X$ and with the following properties:

P1: x and y are non-adjacent, while u and v are adjacent,

P2: each vertex in $\{x, y\} \cup X$ is adjacent to some vertex of $\{u, v\}$,

P3: each vertex in $\{u, v\} \cup X$ is non-adjacent to some vertex of $\{x, y\}$,

P4: each vertex in $\{x, y\} \cup X$ is adjacent to some vertex of $\{x, y\} \cup X$,

P5: each vertex in $\{u, v\} \cup X$ is non-adjacent to some vertex of $\{u, v\} \cup X$.

Theorem 3 If G be a graph of order $n \ge 2$ such that neither G nor \overline{G} contains isolated vertices, then $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) = 4$ if and only if $G \in \mathcal{L}$.

Proof. Suppose G is a graph such that neither G nor \overline{G} contains isolated vertices, and suppose $\gamma_{tr}(\overline{G}) + \gamma_{tr}(\overline{G}) = 4$. Then $\gamma_{tr}(\overline{G}) = \gamma_{tr}(\overline{G}) = 2$. Let $S = \{u, v\}$ $(S' = \{x, y\}$, respectively) be a **TRDS** of G (\overline{G} , respectively). Then x is non-adjacent to y, while u is adjacent to v, and Property **P1** holds. Clearly, $S \neq S'$. Suppose u = x with $v \neq y$. Since $\{u, v\}$ is a **DS** of G and y is non-adjacent to x = u, the vertex y must be adjacent to v. But then v is not dominated by S' in \overline{G} , which is a contradiction. Thus, $S \cap S' = \emptyset$. Let $X = V(G) - \{x, y, u, v\}$. Then |X| = n - 4, and since S (S', respectively) is a **TRDS** of G (\overline{G} , respectively). Properties **P2** – **P5** hold for G. Thus, $G \in \mathcal{L}$. The converse clearly holds as $\{u, v\}$ ($\{x, y\}$, respectively) is a **TRDS** of G (\overline{G} , respectively). \Box

Let diam(G) denote the diameter of G, and let u, v be two vertices of G such that d(u, v) = diam(G). The set of vertices at distance *i* from $u, 0 \le i \le \text{diam}(G)$, will be denoted by V_i , and the sets $V_0, \ldots, V_{\text{diam}(G)}$ will then be called the *level decomposition of* G with respect to u.

Let $\mathcal{U} = \{G \mid G \text{ is a graph of order } n \text{ which can be obtained from a } P_4 \text{ with consecutive vertices labeled } u, v_1, v_2, v \text{ by joining vertices } v_1 \text{ and } v_2 \text{ to each vertex of } K_{n-4} \text{ where } n \geq 6\}.$

Theorem 4 Let G be a graph of order $n \geq 2$ such that neither G nor \overline{G} contains isolated vertices or is isomorphic to K. Then $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) \leq n + 4$. Moreover, $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) = n + 4$ if and only if $G \in \mathcal{U}$ or $\overline{G} \in \mathcal{U}$ or $G \cong P_4$.

Proof. If G is disconnected, then $\gamma_{tr}(\overline{G}) = 2$. Hence $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) \leq n+2$. Thus, without loss of generality, assume both G and \overline{G} are connected. Let u and v be vertices such that d(u, v) = diam(G) and let $V_0, \ldots, V_{\text{diam}(G)}$ be the level decomposition of G with respect to u.

We consider the following cases:

Case 1. diam $(G) \ge 5$.

We claim that $\{u, v\}$ is a **TRDS** of \overline{G} . The vertex u is non-adjacent to all vertices in V_i where $2 \leq i \leq \operatorname{diam}(G)$, while the vertex v is non-adjacent to all vertices in V_i where $0 \leq i \leq \operatorname{diam}(G) - 2$. Moreover, every vertex in $V(G) - \{u, v\}$ is non-adjacent to some vertex of $V(G) - \{u, v\}$. Thus, $\gamma_{tr}(\overline{G}) = 2$, and so $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) \leq n + 2$.

Case 2. diam(G) = 4.

Suppose u, v_1, v_2, v_3, v is a diametrical path. If $|V_4| \ge 2$, then $\{u, v\}$ is a **TRDS** of \overline{G} , and the result follows.

Thus, $V_4 = \{v\}$. Let $V_{21} = \{x \in V_2 \mid \text{ there exists a vertex in } V_1 \cup V_2 \cup V_3 \text{ that is not adjacent to } x\}$ and let $V_{22} = V_2 - V_{21}$. The set $\{u, v\} \cup V_{22}$ is a **TRDS** of \overline{G} . So we have that $\gamma_{tr}(\overline{G}) \leq 2 + |V_{22}|$. If $|V_{22}| \leq 1$, then $\gamma_{tr}(\overline{G}) + \gamma_{tr}(\overline{G}) \leq n+3$.

Hence $|V_{22}| \geq 2$. Let $t \in V_{22}$ such that $t \neq v_2$. Suppose $|V_1 \cup V_{21} \cup V_3| \geq 4$. Let $s \in V_1 \cup V_{21} \cup V_3 \cup \{v_1, v_2, v_3\}$. Then $V_1 \cup V_{21} \cup V_3 \cup \{u, v, t\} - \{s\}$ is a **TRDS** of G and so $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) \leq n - (|V_{22}| - 1) - 1 + |V_{22}| + 2 \leq n + 2$. Hence $|V_1| = 1$, $|V_{21}| \leq 1$ and $|V_3| = 1$. Therefore, $V(G) - V_{22}$ is a **TRDS** of G and so $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) \leq n - |V_{22}| + 2 + |V_{22}| \leq n + 2$.

Case 3. diam(G) = 3.

Let u, v_1, v_2, v be a diametrical path. Suppose $t \in V_3 - \{v\}$. We define $V_{21} = \{x \in V_2 \mid \text{there exists a vertex in } V_1 \cup V_2 \cup V_3 - \{t\}$ that is not adjacent to $x\}$ and let $V_{22} = V_2 - V_{21}$. The set $\{u, t\} \cup V_{22}$ is a **TRDS** of \overline{G} and so $\gamma_{tr}(\overline{G}) \leq 2 + |V_{22}|$. If $|V_{22}| = 1$, then surely $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) \leq n+3$. Hence $|V_{22}| \geq 2$. The vertex t is adjacent to some vertex $s \in V_2$. If $s \in V_{22}$, then the set $\{u, s\} \cup V_1 \cup V_{21} \cup V_3 - \{v\}$ is a **TRDS** of G. If $s \notin V_{22}$, then the set $\{u, w\} \cup V_1 \cup V_{21} \cup V_3 - \{v\}$ is a **TRDS** of G, where $w \in V_{22}$. In both cases, $\gamma_{tr}(G) \leq n - |V_{22}|$, and so $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) \leq n - |V_{22}| + 2 + |V_{22}| = n + 2$.

Thus, $V_3 = \{v\}$. Define $V_{11} = \{x \in V_1 | \text{there exists a vertex in } V_1 \cup V_2 \text{ that is not adjacent to } x\}$ and let $V_{12} = V_1 - V_{11}$. Moreover, let $V_{21} = \{x \in V_2 | \text{there exists a vertex in } V_1 \cup V_2 \text{ that is not adjacent to } x\}$ and let $V_{22} = V_2 - V_{21}$. Then $\{u, v\} \cup V_{12} \cup V_{22}$ is a **TRDS** of \overline{G} , whence $\gamma_{tr}(\overline{G}) \leq 2 + |V_{12}| + |V_{22}|$.

Case 3.1 $|V_{12}| + |V_{22}| \le 2$.

Clearly $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) \leq n + 4$. We now investigate when, in this case, $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) = n + 4$. As $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) = n + 4$, we must have that $|V_{12}| + |V_{22}| = 2$.

We first show that $\deg(u) = \deg(v) = 1$. Suppose, to the contrary, $\{v_1, w\} \subseteq N(u)$, and let $t \in V_{12} \cup V_{22} - \{w\}$. Then t is adjacent to every vertex of $V_1 \cup V_2$, and so $V(G) - \{u, w\}$ is a **TRDS** of G. It now follows that $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) \leq n - 2 + 4 = n + 2$, which is a contradiction. Thus, $\deg(u) = 1$, and $\deg(v) = 1$ follows similarly.

Hence $V_1 = V_{12} = \{v_1\}$, and the set V_{22} consists of exactly one vertex, say w. Suppose $w \neq v_2$. If $|V_2| = 2$, then $G \cong K$, which is not allowable. So, let $w' \in V_2 - \{v_2, w\}$. Then w and w' are adjacent, and $V(G) - \{w, w'\}$ is a **TRDS** of G. As before, we obtain a contradiction.

We conclude $w = v_2$. If $V_{21} = \emptyset$, then $G \cong P_4$. If $V_{21} \neq \emptyset$, then surely $|V_{21}| \ge 2$. If two vertices, say t and t', of V_{21} are adjacent in G, then $V(G) - \{t, t'\}$ is a **TRDS** of G, and we obtain a contradiction as before. Thus, V_{21} is independent, and so $\overline{G} \in \mathcal{U}$.

Case 3.2 $|V_{12}| + |V_{22}| \ge 3$.

If we can show that G has a **TRDS** of size at most $s := n - |V_{12}| - |V_{22}| + 1$, then $\gamma_{tr}(\overline{G}) + \gamma_{tr}(\overline{G}) \le n - |V_{12}| - |V_{22}| + 1 + 2 + |V_{12}| + |V_{22}| = n + 3$.

First consider the case when $v_1 \in V_{11}$. Choose $w = v_2$ if $v_2 \in V_{22}$, otherwise choose $w \in V_{12} \cup V_{22}$. In both situations, $\{u, v, w\} \cup V_{11} \cup V_{21}$ is a **TRDS** of *G* of size *s*. Thus, $v_1 \notin V_{11}$. If $v_2 \in V_{21}$, then $\{u, v_1, v\} \cup V_{11} \cup V_{21}$ is a **TRDS** of *G* of size *s*. Thus, $v_2 \notin V_{21}$.

We conclude that $v_1 \in V_{12}$, while $v_2 \in V_{22}$.

Suppose u is adjacent to a vertex w which is distinct from v_1 . If $w \in V_{12}$, then $\{v_1, v_2, v\} \cup V_{11} \cup V_{21}$ is a **TRDS** of size s. If $w \in V_{11}$, then $\{v_1, v_2, v\} \cup (V_{11} - \{w\}) \cup V_{21}$ is a **TRDS** of size s - 1. Thus, $\deg(u) = 1$, and $\deg(v) = 1$ follows similarly.

Suppose $V_{22} = \{v_2\}$. If $V_{21} = \emptyset$, then $G \cong P_4$ and $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) = n + 4$. If $V_{21} \neq \emptyset$, then surely $|V_{21}| \ge 2$. If two vertices, say t and t', of V_{21} are adjacent in G, then $\{u, v_1, v_2, v\} \cup (V_{21} - \{t, t'\})$ is a **TRDS** of G of size s - 1. Thus, V_{21} is independent, $\overline{G} \in \mathcal{U}$ and $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) = n + 4$.

Thus, $|V_{22}| \geq 2$. If $V_{21} = \emptyset$, then V_{22} induces a clique. If $|V_{22}| = 2$, then $G \cong K$, which is not allowable. If $|V_{22}| \geq 3$, then $G \in \mathcal{U}$ and $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) = n + 4$. Thus, $V_{21} \neq \emptyset$, and so $|V_{21}| \geq 2$. Let $\{t, t'\} \subseteq V_{21}$. Then $\{u, v_1, v_2, v\} \cup (V_{21} - \{t, t'\})$ is a **TRDS** of G of size s - 1.

Case 4. diam $(G) = \text{diam}(\overline{G}) = 2$.

Note that $\delta(G) \geq 2$ and $\delta(\overline{G}) \geq 2$, since otherwise G or \overline{G} will have isolated vertices.

Case 4.1 $\delta(G) = 2$ or $\delta(\overline{G}) = 2$.

Without loss of generality, assume $\delta(G) = 2$ and suppose u is a vertex of minimum degree in G. Let $N(u) = \{v, w\}$. Let $N_{v,w} = \{x \in V(G) - \{u, v, w\} \mid x \text{ is adjacent to both } v \text{ and } w\}$, let $N_{v,\overline{w}} = \{x \in V(G) - \{u, v, w\} \mid x \text{ is adjacent to } v \text{ but not to } w\}$, and let $N_{w,\overline{v}} = \{x \in V(G) - \{u, v, w\} \mid x \text{ is adjacent to } v\}$. Moreover, let $N_1 = \{x \in N_{u,v} \mid N(x) = \{v, w\}\}$ and let $N_2 = N_{v,w} - N_1$.

If $N_1 = \emptyset$, then $\{u, v, w\}$ is a **TRDS** of G and so $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) \leq n+3$. Thus, $N_1 \neq \emptyset$. If $N_{v,\overline{w}} = \emptyset$ ($N_{w,\overline{v}} = \emptyset$, respectively), then $\{u, w\}$ ($\{u, v\}$, respectively) is a **TRDS** of G, whence $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) \leq n+2$. Thus, $N_{v,\overline{w}} \neq \emptyset$ and $N_{w,\overline{v}} \neq \emptyset$.

The set $\{u, v, w\} \cup N_1$ is a **TRDS** of G. Let $Y = V(G) - \{u\} - N_1$. Since all vertices in $N_{v,\overline{w}}$ dominate all vertices in $N_1 \cup \{u\}$ in \overline{G} , and since $N_1 \cup \{u\}$ is a clique in \overline{G} , we have that Y is a **RDS** of \overline{G} . If Y is total, we have that $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) \leq 3 + |N_1| + n - 1 - |N_1| = n + 2$ and we are done.

Assume, therefore, that Y is not total. As w (v, respectively) is non-adjacent to every vertex of $N(v, \overline{w})$ ($N(w, \overline{v})$, respectively), the set $N_2 \neq \emptyset$, since otherwise Y is a **TRDS** of \overline{G} . Moreover, Y will also be a **TRDS** of \overline{G} if every vertex of N_2 is non-adjacent to some vertex of Y. Hence, there exists a vertex $y \in N_2$ which is adjacent to every vertex of $Y - \{y\}$.

The set $\{v, y\}$ is a **TDS** of G. If $\{v, y\}$ is also a **RDS**, we have that $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) \leq n+2$. The set $\{w, y\}$ is also a **TDS** of G and if it is a **RDS**, we are done. Thus, there exist vertices $v' \in N_{v,\overline{w}}$ and $w' \in N_{w,\overline{v}}$ such that $N(v') = \{v, y\}$ and $N(w') = \{w, y\}$.

We now show that $Z = \{u, v', w'\}$ is a **TRDS** of \overline{G} . We show first that Z is a **TDS** of \overline{G} . The vertex v' dominates w in \overline{G} , the vertex w' dominates v in \overline{G} , while the vertex u dominates $V(G) - \{u, v, w, v', w'\}$ in \overline{G} . Moreover, the vertex u dominates $\{v', w'\}$ in \overline{G} .

Suppose, to the contrary, that Z is not a **RDS** of \overline{G} . Hence, there exists a vertex $z \notin Z$ such that z is adjacent to every vertex of $V(G) - Z - \{z\}$ in G. As $\deg(\overline{G}) \ge 2$, the vertex z is adjacent in \overline{G} to at least two vertices of Z. We consider the following cases:

Case 4.1.1 The vertex z is adjacent in \overline{G} to u and at least one of the vertices v' and w'.

Without loss of generality assume that z is adjacent in \overline{G} to the vertex v'. As z is non-adjacent to u in G, it follows that $z \notin \{v, w\}$. As z is adjacent to both of the vertices v and w in G, we have $z \in N_1 \cup N_2$. If $z \in N_1$, then it is not adjacent to y in G, which contradicts the fact that z is adjacent to every vertex of $V(G) - Z - \{z\}$. If $z \in N_2$, then since $N_1 \neq \emptyset$, there exists a vertex $z' \in N_1$ such that z is not adjacent to z' in G, which is again a contradiction.

Case 4.1.2 The vertex z is adjacent in \overline{G} to v' and w', but not to u.

In this case, $z \in \{v, w\}$. Without loss of generality, assume z = v. Then v is adjacent in \overline{G} to both v' and w', which is a contradiction.

Therefore, the set $Z = \{u, v', w'\}$ is a **TRDS** of \overline{G} and so $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) \leq n+3$.

Case 4.2 $\delta(G) \geq 3$ and $\delta(\overline{G}) \geq 3$.

Let u be a vertex of minimum degree in G. Suppose $N(u) = \{u_1, \ldots, u_{\delta}\}$ where $\delta = \delta(G)$.

Suppose the sets N[u] and $N[u] - \{u_i\}$ for $i \in \{1, \ldots, \delta\}$ are not total restrained dominating sets of G. Let $N_1 = \{x \in V(G) - N[u] | N(x) = N(u)\}$ and let $N_2 = V(G) - N[u] - N_1$. As N[u] is a **TDS** of G, but not a **RDS** of G, the set $N_1 \neq \emptyset$. If $N_2 = \emptyset$, then $\{u, u_1\}$ is a **TRDS** of G, whence $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) \leq 2 + n$. Thus, $N_2 \neq \emptyset$.

Suppose $N[u] - \{u_i\}$ is a **DS** for some $i \in \{1, \ldots, \delta\}$. If a vertex $x \in N_2$ is adjacent to vertices in $N(u) - \{u_i\}$ only, then $\deg(x) \leq \delta - 1$, which is impossible. Thus, $N[x] - \{u_i\}$ is a **TRDS** of G, which is contrary to our assumption. Hence, for each $i \in \{1, \ldots, \delta\}$, there exists $u'_i \in N_2$ such that $N(u'_i) \cap N(u) = \{u_i\}$.

We claim that $X = \{u, u'_1, u'_2\}$ is a **TRDS** of \overline{G} . The vertex u'_1 dominates all vertices in $N(u) - \{u_1\}$ in \overline{G} . Similarly, u'_2 dominates all vertices in $N(u) - \{u_2\}$ in \overline{G} . The vertex u dominates all vertices in V(G) - N[u] in \overline{G} , and so X is a **TDS**. Suppose X is not a **RDS** of \overline{G} . Thus, there exists a vertex $x \notin X$ such that x is adjacent in G to each of the vertices in $V(G) - X - \{x\}$. As $\delta(\overline{G}) \ge 3$, the vertex x is not adjacent to each of the vertices in X. Hence, $x \in N_1 \cup N_2$. If $x \in N_1$, then since $|N_2| \ge \delta \ge 3$, there exists a vertex $x' \in N_2 - \{u'_1, u'_2\} \subset V(G) - X - \{x\}$ such that x is not adjacent to x' in G, which is a contradiction. Similarly, if $x \in N_2 - \{u'_1, u'_2\}$, then, since $N_1 \neq \emptyset$, there exists a vertex $x' \in N_1 \subset V(G) - X - \{x\}$ such that x is not adjacent to x' in G, which is a contradiction. Hence X is a **TRDS** of \overline{G} and so $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) \le n + 3$.

We may therefore assume that $N_G[u]$ or $N_G[u] - \{u_i\}$ is a **TRDS** of G for some $i \in \{1, \ldots, \delta\}$. Similarly, if v is a minimum degree vertex in \overline{G} and $N_{\overline{G}}(v) = \{v_1, \ldots, v_{\delta(\overline{G})}\}$, we assume that $N_{\overline{G}}[v]$ or $N_{\overline{G}}[v] - \{v_j\}$ is a **TRDS** of \overline{G} for some $j \in \{1, \ldots, \delta(\overline{G})\}$. Hence $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) \leq \delta(G) + 1 + \delta(\overline{G}) + 1 = \delta(G) + 1 + n - \Delta(G) - 1 + 1 = n + \delta(G) - \Delta(G) + 1 \leq n + 1$.

Clearly, if $G \in \mathcal{U}$ or $\overline{G} \in \mathcal{U}$ or $G \cong P_4$, then $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) = n + 4$. \Box

3 Restrained Domination

In this section, we provide bounds on the sum of the restrained domination numbers of a graph and its complement, and provide characterizations of the extremal graphs achieving these bounds.

Let \mathcal{H} be the family of graphs G of order n where G or \overline{G} is one of the following four types:

Type 1. $V(G) = \{x, y, z\} \cup X$. Moreover:

P1.1: x is adjacent to each vertex of $\{y, z\} \cup X$, **P1.2:** each vertex of $\{y, z\} \cup X$ is adjacent to some vertex of $\{y, z\} \cup X$, **P1.3:** each vertex of X is non-adjacent to some vertex of $\{y, z\}$ and non-adjacent to some vertex in X.

Type 2. $V(G) = \{x, y\} \cup X$. Moreover:

P2.1: each vertex of X is adjacent to exactly one vertex of $\{x, y\}$ and also non-adjacent to exactly one vertex of $\{x, y\}$,

P2.2: each vertex of X is non-adjacent to some vertex of X, **P2.3:** each vertex of X is adjacent to some vertex of X.

Type 3. $V(G) = \{u, v, y\} \cup X$. Moreover:

P3.1: each vertex of $X \cup \{y\}$ is adjacent to some vertex of $\{u, v\}$, **P3.2:** each vertex of $X \cup \{u\}$ is non-adjacent to some vertex of $\{v, y\}$, **P3.3:** each vertex of $X \cup \{y\}$ is adjacent to some vertex of $X \cup \{y\}$, **P3.4:** each vertex of $X \cup \{u\}$ is non-adjacent to some vertex of $X \cup \{u\}$.

Type 4. $V(G) = \{x, y, u, v\} \cup X$. Moreover:

P4.1: each vertex in $\{x, y\} \cup X$ is adjacent to some vertex of $\{u, v\}$, **P4.2:** each vertex in $\{u, v\} \cup X$ is non-adjacent to some vertex of $\{x, y\}$, **P4.3:** each vertex in $\{x, y\} \cup X$ is adjacent to some vertex of $\{x, y\} \cup X$, **P4.4:** each vertex in $\{u, v\} \cup X$ is non-adjacent to some vertex of $\{u, v\} \cup X$.

Theorem 5 If G be a graph of order $n \ge 2$, then $\gamma_r(G) + \gamma_r(\overline{G}) = 4$ if and only if G or $\overline{G} \in \mathcal{H}$.

Proof. Suppose G is a graph such that $\gamma_r(G) + \gamma_r(\overline{G}) = 4$. Then $\gamma_r(G) = 1$ and $\gamma_r(\overline{G}) = 3$ or $\gamma_r(\overline{G}) = 1$ and $\gamma_r(G) = 3$ or $\gamma_r(G) = \gamma_r(\overline{G}) = 2$.

Case 1. $\gamma_r(G) = 1$ and $\gamma_r(\overline{G}) = 3$ or $\gamma_r(\overline{G}) = 1$ and $\gamma_r(G) = 3$.

Suppose $\gamma_r(G) = 1$ and $\gamma_r(\overline{G}) = 3$. Let $\{x\}$ be a **RDS** of G. Then x is adjacent to every other vertex of G, and so x is isolated in \overline{G} and is therefore in every **RDS** of \overline{G} - let $\{x, y, z\}$ be a **RDS** of \overline{G} . Let $X = V(G) - \{x, y, z\}$. It now follows that Properties **P1.1 - P1.3** hold for G. Thus, G is a graph of Type 1.

If $\gamma_r(\overline{G}) = 1$ and $\gamma_r(G) = 3$, then \overline{G} is also of Type 1.

Case 2. $\gamma_r(G) = 2$ and $\gamma_r(\overline{G}) = 2$.

Let $\{u, v\}$ ($\{x, y\}$, respectively) be a **RDS** of G (\overline{G} , respectively). Let $X = V(G) - \{u, v, x, y\}$.

Case 2.1 Suppose u = x and v = y.

If some vertex $w \in X$ is adjacent to both u and v, then w is not dominated by $\{u, v\}$ in \overline{G} , which is a contradiction. As $\{u, v\}$ is a **DS** of G, each vertex $w \in X$ is adjacent to at least one vertex in $\{u, v\}$. Thus, G satisfies Property **P2.1**. Moreover, Properties **P2.2** and **P2.3** hold for G. Thus, Gis a graph of Type 2.

Case 2.2 Suppose $u \neq y$ and x = v.

Clearly, in this case G is a graph of Type 3.

Case 2.3 $\{u, v\} \cap \{x, y\} = \emptyset$.

It is easy to see, that P4.1 - P4.4 hold, so G is a graph of Type 4.

For the converse, suppose $G \in \mathcal{H}$. For a graph of Type 1 we have $\gamma_r(G) = 1$ and $\gamma_r(\overline{G}) \leq 3$. For Types 2, 3 or 4 we obtain $\gamma_r(G) \leq 2$ and $\gamma_r(\overline{G}) \leq 2$. Hence, in all cases $\gamma_r(G) + \gamma_r(\overline{G}) \leq 4$. It is known (see [3]) that $\gamma_r(G) + \gamma_r(\overline{G}) \geq 4$. Therefore, $\gamma_r(G) + \gamma_r(\overline{G}) = 4$. \Box

As before, the sets $V_0, \ldots, V_{\operatorname{diam}(G)}$ will denote the level decomposition of G with respect to u.

Let $\mathcal{B} = \{P_3, \overline{P}_3\}$, and let $\mathcal{G} = \{G \mid G \text{ or } \overline{G} \text{ is a galaxy of non-trivial stars}\}.$

Let $S = \{G \mid G \text{ or } \overline{G} \cong K_1 \cup S \text{ where } S \text{ is a star and } |S| \ge 3\}.$

Lastly, let $\mathcal{E} = \mathcal{G} \cup \mathcal{S}$.

Lemma 6 If $G \in \mathcal{E} - \mathcal{B}$, then $\gamma_r(G) + \gamma_r(\overline{G}) = n + 2$.

Proof. Suppose $G \in \mathcal{G}$ has order n and, without loss of generality, suppose G is a galaxy of non-trivial stars S_1, S_2, \ldots, S_k , for $k \ge 2$. Then $\gamma_r(G) = n$. Let $s \in V(S_1)$ and $t \in V(S_2)$. Since S_i is non-trivial for $i \in \{1, \ldots, k\}$, it follows that $R = \{s, t\}$ is a **RDS** of \overline{G} . Suppose $\{v\}$ is a **RDS** of \overline{G} .

Then $\deg_G(v) = 0$, which is a contradiction. Hence $\gamma_r(G) + \gamma_r(\overline{G}) = n + 2$. Now, suppose k = 1. That is, G is a non-trivial star S such that $S \neq P_3$. The result follows immediately if |S| = 2. Thus we may assume $|S| \ge 4$. Then $\gamma_r(G) = n$. Let s be the center of S and let $t \in N_G(s)$. Notice that $\langle V(G) - \{s\} \rangle \cong K_{n-1}$ in \overline{G} . Thus $R = \{s, t\}$ is a **RDS** of \overline{G} . Suppose $\{v\}$ is a **RDS** of \overline{G} . Then $\deg_G(v) = 0$, which is a contradiction.

Suppose $G \in \mathcal{S}$ and, without loss of generality, let $G = K_1 \cup S$ where S is a star and $|S| \ge 3$. Then $\gamma_r(G) = n$. Let s be the center of S and let $\langle u \rangle$ be the second component of G. Then $R = \{s, u\}$ is a **RDS** of \overline{G} . Suppose $\{v\}$ is a **RDS** of \overline{G} . Then $\deg_G(v) = 0$, and v = u, which is a contradiction as $\{u\}$ is not a **RDS** of \overline{G} . Hence $\gamma_r(G) + \gamma_r(\overline{G}) = n + 2$. \Box

Theorem 7 Let G = (V, E) be a graph of order $n \ge 2$ such that $G \notin \mathcal{B}$. Then $\gamma_r(G) + \gamma_r(\overline{G}) \le n+2$. Moreover, $\gamma_r(G) + \gamma_r(\overline{G}) = n+2$ if and only if $G \in \mathcal{E}$.

Proof. Let G = (V,E) be a graph of order n such that $G \notin \mathcal{B}$. Notice that either G or \overline{G} must be connected. Without loss of generality, suppose \overline{G} is connected. Note that G may also be connected. Let G be comprised of the components G_1, G_2, \ldots, G_ℓ with ℓ possibly equal to one. Without loss of generality, let G_1 be a component of G with longest diameter.

Claim 1 If G_1 contains a path uv_1v_2v and $\ell \geq 3$, then $\gamma_r(G) + \gamma_r(\overline{G}) \leq n$.

Proof. Let uv_1v_2v be a path in G_1 . Notice that $V(G) - \{v_1, v_2\}$ is a **RDS** of G. Hence $\gamma_r(G) \leq n-2$. Let $x \in V(G_1)$ and $w \in V(G_2)$. Since $\ell \geq 3$ it follows that $\{x, w\}$ is a **RDS** of \overline{G} and $\gamma_r(G) + \gamma_r(\overline{G}) \leq n-2+2 = n$.

Claim 2 If $\ell \geq 3$ and there exists $i \in \{1, \ldots, \ell\}$ such that $G_i \cong K_1$, then $\gamma_r(G) + \gamma_r(\overline{G}) \leq n+1$.

Proof. Trivial. \diamond

By Claim 1, for cases in which diam $(G_1) \ge 3$, we may immediately assume that $\ell \le 2$. Note that for the following two cases $V(G_2)$ may or may not be empty.

Suppose diam $(G_1) \geq 5$. Let $uv_1v_2 \dots v_{\text{diam}(G_1)}$ be a diametrical path in G_1 . Notice that $V(G) - \{v_1, v_2\}$ is a **RDS** of G. Hence $\gamma_r(G) \leq n-2$. Moreover, notice that $R' = \{u, v_5\}$ is a **RDS** of \overline{G} , as R' is clearly a dominating set of \overline{G} , $v_1 \in V(\overline{G}) - R'$ is adjacent to $V_3 \cup V_4 \cup \ldots \cup V_{\text{diam}(G)}$, and $v_4 \in V(\overline{G}) - R'$ is adjacent to $V_1 \cup V_2 \cup V(G_2)$. Hence $\gamma_r(\overline{G}) \leq 2$ and we have that $\gamma_r(G) + \gamma_r(\overline{G}) \leq n-2+2 = n$.

Now, suppose diam $(G_1) = 4$. Let $uv_1v_2v_3v_4$ be a diametrical path in G_1 . Notice that $V(G) - \{v_1, v_2\}$ is a **RDS** of G. Hence $\gamma_r(G) \leq n-2$. Suppose $|V_4| \geq 2$. Then there exists a vertex $t \in V_4 - \{v_4\}$. Notice that $R' = \{u, v_4\}$ is a **RDS** of \overline{G} , as R' is clearly a dominating set of \overline{G} , $v_1 \in V(\overline{G}) - R'$ is adjacent to $V_3 \cup V_4$, and $t \in V(\overline{G}) - R'$ is adjacent to $V_1 \cup V_2 \cup V(G_2)$. Hence $\gamma_r(\overline{G}) \leq 2$ and we have that $\gamma_r(G) + \gamma_r(\overline{G}) \leq n-2+2 = n$.

Thus we may assume that $|V_4| = 1$. Let $V_{21} = \{x \in V_2 \mid \text{ there exists } y \in V_1 \cup V_2 \cup V_3 \text{ such that } xy \notin E(G_1)\}$ and let $V_{22} = V_2 - V_{21}$. Consider $R' = \{u, v_4\} \cup V_{22}$. Notice that R' is a dominating set of \overline{G} , $v_1 \in V(\overline{G}) - R'$ is adjacent to V_3 , and $v_3 \in V(\overline{G}) - R'$ is adjacent to $V_1 \cup V(G_2)$. If $V_{21} = \emptyset$, then $V_2 = V_{22} \subseteq R'$ and R' is a **RDS** of \overline{G} . If $V_{21} \neq \emptyset$, then by definition, for each $x \in V_{21}$ there exists a $y \in V_1 \cup V_{21} \cup V_3$ such that $xy \notin E(G_1)$. Hence R' is a **RDS** of \overline{G} . In either case we have that $\gamma_r(\overline{G}) \leq 2 + |V_{22}|$.

If $|V_{22}| \leq 1$, then $\gamma_r(G) + \gamma_r(\overline{G}) \leq n - 2 + 2 + |V_{22}| \leq n + 1$. Thus we may assume that $|V_{22}| \geq 2$. Hence there exists a vertex $t \in V_{22} - \{v_2\}$. Then $R = \{u, v_4, t\} \cup V(G_2)$ is a **RDS** of *G*, as *R* clearly dominates *G*, and a vertex $w \in V_{22} - \{t\}$ is adjacent to every vertex of V(G) - R. Thus, $\gamma_r(G) \leq 3 + |V(G_2)|$ and so $\gamma_r(G) + \gamma_r(\overline{G}) \leq 3 + |V(G_2)| + 2 + |V_{22}| = 1 + (4 + |V_{22}| + |V(G_2)|) = 1 + (|\{u, v_1, v_3, v_4\}| + |V_{22}| + |V(G_2)|) = 1 + |\{u, v_1, v_3, v_4\} \cup V_{22} \cup V(G_2)| \leq 1 + |V(G)| = 1 + n$.

Now, suppose diam $(G_1) = 3$. Let $uv_1v_2v_3$ be a diametrical path in G_1 . Notice that $V(G) - \{v_1, v_2\}$ is a **RDS** of G. Suppose that $V(G_2) \neq \emptyset$. If $V(G_2) = \{v\}$, then $\{v\}$ is a **RDS** of \overline{G} , whence $\gamma_r(G) + \gamma_r(\overline{G}) \leq n-2+1 = n-1$. Thus we may assume that $|V(G_2)| \geq 2$. Let $v \in V(G_2)$. Then $\{u, v\}$ is a **RDS** of \overline{G} and so $\gamma_r(G) + \gamma_r(\overline{G}) \leq n-2+2 = n$.

Thus $V(G_2) = \emptyset$ and both $G_1 = G$ and \overline{G} are connected. Suppose $|V_3| \ge 2$ and let $t \in V_3 - \{v_3\}$. Let $V_{21} = \{x \in V_2 | \text{ there exists } y \in (V_1 \cup V_2 \cup V_3) - \{t\}$ such that $xy \notin E(G)\}$ and let $V_{22} = V_2 - V_{21}$. Consider $R' = \{u, t\} \cup V_{22}$. By reasoning similar to that in the case for diam $(G_1) = 4$, R' is a **RDS** of \overline{G} and $\gamma_r(\overline{G}) \le 2 + |V_{22}|$. If $|V_{22}| \le 1$, then $\gamma_r(G) + \gamma_r(\overline{G}) \le n - 2 + 2 + |V_{22}| \le n + 1$.

Thus we may assume that $|V_{22}| \geq 2$. Hence there exists a vertex $z \in V_{22} - \{v_2\}$. Consider $R = \{u, t, z\}$. By reasoning similar to that in the case for diam $(G_1) = 4$, R is a **RDS** of G and so $\gamma_r(G) + \gamma_r(\overline{G}) \leq 3 + 2 + |V_{22}| = 1 + (4 + |V_{22}|) = 1 + (|\{u, v_1, v_3, t\}| + |V_{22}|) = 1 + |\{u, v_1, v_3, t\} \cup V_{22}| \leq 1 + |V(G)| = 1 + n$.

So we may assume that $|V_3| = 1$. Let $V_{11} = \{x \in V_1 \mid \text{ there exists } y \in V_1 \cup V_2 \text{ such that } xy \notin E(G)\}$ and let $V_{12} = V_1 - V_{11}$. Also, let $V_{21} = \{x \in V_2 \mid \text{ there exists } y \in V_1 \cup V_2 \text{ such that } xy \notin E(G)\}$ and let $V_{22} = V_2 - V_{21}$. Then $\{u, v_3\} \cup V_{12} \cup V_{22}$ is a **RDS** of \overline{G} and $\gamma_r(\overline{G}) \leq 2 + |V_{12}| + |V_{22}|$.

If $|V_{12}| + |V_{22}| \le 1$, then $\gamma_r(G) + \gamma_r(\overline{G}) \le n - 2 + 2 + |V_{12}| + |V_{22}| \le n + 1$.

So we may assume that $|V_{12}| + |V_{22}| \ge 2$. Since $v_1v_3uv_2$ is a path in \overline{G} , it follows that $V(\overline{G}) - \{v_3, u\}$ is a **RDS** of \overline{G} , whence $\gamma_r(\overline{G}) \le n-2$.

Now, suppose $|V_{12}| \ge 2$ and let $z \in V_{12} - \{v_1\}$. Then $\{z, v_3\}$ is a **RDS** of *G*, and so $\gamma_r(G) + \gamma_r(\overline{G}) \le 2 + n - 2 = n$. Thus $|V_{12}| \le 1$.

Suppose $V_{12} = \{z\}$. Then $\{u, v_3, z\}$ is a **RDS** of G except when $G = P_4$, in which case $\{u, v_3\}$ is a **RDS** of G. In both cases $\gamma_r(G) \leq 3$. Hence, $\gamma_r(G) + \gamma_r(\overline{G}) \leq 3 + n - 2 = n + 1$.

Thus $V_{12} = \emptyset$ and so $|V_{22}| \ge 2$. Let $z \in V_{22} - \{v_2\}$. Then $\{u, v_3, z\}$ is a **RDS** of *G*. Therefore, $\gamma_r(G) \le 3$. Hence, $\gamma_r(G) + \gamma_r(\overline{G}) \le 3 + n - 2 = n + 1$.

Thus we may assume diam $(G_1) \leq 2$, and by a similar argument, diam $(\overline{G}) \leq 2$.

As $n \geq 2$, diam $(\overline{G}) \geq 1$. Suppose diam $(\overline{G}) = 1$. Then $\overline{G} \cong K_i$ for some $i \geq 2$. If $i \geq 3$, then $\gamma_r(G) + \gamma_r(\overline{G}) \leq n+1$. Thus, $\overline{G} \cong K_2$, and so $G \in \mathcal{G}$ and $\gamma_r(G) + \gamma_r(\overline{G}) = n+2$.

Thus, diam $(\overline{G}) = 2$.

Suppose diam $(G_1) = 0$. Then $G \cong nK_1$ and $\overline{G} \cong K_n$, which is a contradiction as diam $(\overline{G}) = 2$.

Suppose diam $(G_1) = 1$. Then $G_1 \cong K_i$ where $2 \le i \le n$. Since we assumed that \overline{G} is connected, $\ell \ne 1$. Suppose $\ell = 2$. If $G_2 \cong K_1$, then $i \ne 2$, as $G \notin \mathcal{B}$. Thus $i \ge 3$, so $G \in \mathcal{G}$ and $\gamma_r(G) + \gamma_r(\overline{G}) = n + 2$. Thus $G_2 \cong K_j$ where $2 \le j \le n - i$. If i = j = 2, then $G \in \mathcal{G}$ and we are done. Without loss of generality, suppose $i \ge 3$. Let $V(G_1) = \{v_1, v_2, \ldots, v_i\}$ and let $z \in V(G_2)$. Since $i \ge 3$, $V(G) - \{v_2, v_3\}$ is a **RDS** of G and $\{v_1, z\}$ is a **RDS** of \overline{G} . Hence $\gamma_r(G) + \gamma_r(\overline{G}) \le n - 2 + 2 = n$. Thus $\ell \ge 3$. By Claim 2, $G_k \ncong K_1$ for all $k \in \{1, \ldots, \ell\}$. Suppose $G_k \cong K_2$ for all k. Then $G \in \mathcal{G}$ and we are done. Thus, by relabeling if necessary, we may assume that $G_1 \cong K_i$ for $i \ge 3$. Let $V(G_1) = \{v_1, v_2, \ldots, v_i\}$ and let $z \in V(G_2)$. Since $i \ge 3$, $V(G) - \{v_2, v_3\}$ is a **RDS** of G and $\{v_1, z\}$ is a **RDS** of \overline{G} . Hence $\gamma_r(G) + \gamma_r(\overline{G}) \leq n - 2 + 2 = n$.

Thus we may assume diam $(G_1) = 2$. Suppose $\ell \ge 3$. By Claim 2, $G_k \not\cong K_1$ for all $k \in \{1, \ldots, \ell\}$. If G is a galaxy of non-trivial stars, then $G \in \mathcal{G}$, and we are done. Thus at least one component, say G_1 , contains a cycle containing an edge v_1v_2 , say. Let $z \in V(G_2)$. Then $V(G) - \{v_1, v_2\}$ is a **RDS** of \overline{G} , whence $\gamma_r(G) + \gamma_r(\overline{G}) \le n - 2 + 2 = n$.

Suppose $\ell = 2$ and first suppose $G_2 \not\cong K_1$. If G_1 and G_2 are stars, then $G \in \mathcal{G}$ and we are done. Thus at least one component contains a cycle containing the edge v_1v_2 . Let z be an arbitrary vertex in the other component of G. Then $V(G) - \{v_1, v_2\}$ is a **RDS** of G, while $\{v_1, z\}$ is a **RDS** of \overline{G} , whence $\gamma_r(G) + \gamma_r(\overline{G}) \leq n - 2 + 2 = n$.

So we may assume that $G_2 \cong K_1$. Let $V(G_2) = \{z\}$. If $\Delta(G_1) \le n-3$, then $\{z\}$ is a **RDS** of \overline{G} and so $\gamma_r(G) + \gamma_r(\overline{G}) \le n+1$. Thus $\Delta(G_1) = n-2$, and there exists a vertex $u \in V(G_1)$ such that deg(u) = n-2. Let L be the set of leaves in G_1 and let X = N(u) - L. If $L = \emptyset$, then $\{u, z\}$ is a **RDS** of \overline{G} . Since diam $(G_1) = 2$, there exist nonadjacent vertices $x, y \in V(G_1)$. Then $V(\overline{G}) - \{x, y\}$ is a **RDS** of \overline{G} and $\gamma_r(G) + \gamma_r(\overline{G}) \le n-2+2 = n$. Thus $L \neq \emptyset$. Let $v \in L$ and consider $\{u, v\}$. Since diam $(G_1) = 2$, it follows that deg $(u) \ge 2$. Thus $\{u, v\}$ is a **RDS** of \overline{G} . Suppose $X \neq \emptyset$ and let $s \in X$. Since $s \notin L$, s is adjacent to a vertex $t \in N(v)$. Hence $t \notin L$, so $t \in X$ and thus $|X| \ge 2$. Moreover, V(G) - X is a **RDS** of G, and so $\gamma_r(G) + \gamma_r(\overline{G}) \le n-2+2 = n$. Thus $X = \emptyset$ and so G_1 is a non-trivial star of order $n-1 \ge 3$. Therefore $G \in S$ and we are done.

Thus $G \cong G_1$, and $\operatorname{diam}(G) = \operatorname{diam}(\overline{G}) = 2$. Let uv_1v_2 be a diametrical path in G. If v_2 is a leaf of G, then every vertex $v \in V_1 - \{v_1\}$ is adjacent to v_1 , whence $\operatorname{deg}(v_1) = n - 1$, which is a contradiction as \overline{G} is connected. Moreover, if some vertex $v \in V_1$ is a leaf, then $\operatorname{diam}(G) \ge d(v, v_2) = 3$, which is a contradiction. Lastly, if u is a leaf, then v_1 is adjacent to every vertex of V_1 , whence $\operatorname{deg}(v_1) = n - 1$, which is a contradiction. Thus we may assume that $\delta(G) \ge 2$. A similar argument shows that $\delta(\overline{G}) \ge 2$. Let \mathcal{F} be the collection of graphs described in [5]. It is known (see [5]) that if $G \notin \mathcal{F}$ is a connected graph with order $n \ge 3$ and $\delta(G) \ge 2$, then $\gamma_r(G) \le \frac{n-1}{2}$. It follows immediately that $\gamma_r(G) + \gamma_r(\overline{G}) \le n-1$, provided that $G, \overline{G} \notin \mathcal{F}$. Without loss of generality, suppose $G \in \mathcal{F}$. It is easily verified that $\gamma_r(G) + \gamma_r(\overline{G}) \le n+1$ and we are done.

Finally, recounting the argument, we have that $\gamma_r(G) + \gamma_r(\overline{G}) \leq n+1$ in all cases, save when $G \in \mathcal{E}$. Hence, if $\gamma_r(G) + \gamma_r(\overline{G}) = n+2$ it follows that $G \in \mathcal{E}$. This observation together with Lemma 6 implies that $\gamma_r(G) + \gamma_r(\overline{G}) = n+2$ if and only if $G \in \mathcal{E}$. \Box

References

- G. Chartrand and L. Lesniak, Graphs & Digraphs: Third Edition, Chapman & Hall, London, 1996.
- [2] X.G. Chen, D.X. Ma and L. Sun, On total restrained domination in graphs. Czechoslovak Mathematical Journal 55(1) (2005) 165-173.
- [3] G.S. Domke, J.H. Hattingh, S.T. Hedetniemi, R.C. Laskar, and L.R. Markus, Restrained domination in graphs. *Discrete Math.* 203 (1999), 61–69.
- [4] G.S. Domke, J.H. Hattingh, S.T. Hedetniemi, and L.R. Markus, Restrained domination in trees. Discrete Math. 211 (2000) 1–9.
- [5] G.S. Domke, J.H. Hattingh, M.A. Henning, and L.R. Markus, Restrained domination in graphs with minimum degree two. J. Combin. Math. Combin. Comput. 35 (2000) 239–254.

- [6] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1997.
- [7] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater (eds), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1997.
- [8] M.A. Henning, Graphs with large restrained domination number. Discrete Math. 197/198 (1999) 415-429.
- [9] F. Jaeger and C. Payan, Relations du type Nordhaus-Gaddum pour le nombre d'absorption d' un graphe simple. C. R. Acad. Sci Ser A 274 (1972) 728-730.
- [10] E.A. Nordhaus and J.W. Gaddum, On complementary graphs. Amer. Math. Monthly 63 (1956) 175-177.
- [11] B. Zelinka, Remarks on restrained and total restrained domination in graphs, Czechoslovak Math. J. 55 (130) (2005) 165–173.