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Abstract

Let G = (V,E) be a graph. A set S C V is a restrained dominating set if every
vertex not in S is adjacent to a vertex in S and to a vertex in V' — S. The restrained
domination number of G, denoted by 7, (G), is the smallest cardinality of a restrained
dominating set of G. We define the restrained bondage number b.(G) of a nonempty
graph G to be the minimum cardinality among all sets of edges £/ C E for which
v-(G — E') > ~,(G). Sharp bounds are obtained for b,.(G), and exact values are deter-
mined for several classes of graphs. Also, we show that the decision problem for b, (G)
is NP-complete even for bipartite graphs.
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1 Introduction

In this paper, we follow the notation of [2]. Specifically, let G = (V| E) be a graph with
vertex set V and edge set E. Moreover, the notation P, will denote the path of order n,
and the notation .S,, will denote the star graph of order n. A set S C V is a dominating
set of G if every vertex not in S is adjacent to a vertex in S. The domination number of
G, denoted by v(G), is the minimum cardinality of a dominating set of G. The concept of
domination in graphs, with its many variations, is now well studied in graph theory. The
recent book of Chartrand and Lesniak [2] includes a chapter on domination. A thorough
study of domination appears in [9, 10].

In this paper, we continue the study of a variation of the domination theme, namely that of
restrained domination [3, 4, 5, 11, 12]. A set S C V is a restrained dominating set (RDS)
if every vertex not in S is adjacent to a vertex in .S and to a vertex in V' — S. Every graph
has a RDS, since S = V is such a set. The restrained domination number of GG, denoted
by 7r(G), is the minimum cardinality of a RDS of G. A RDS S is called a v, (G)-set of G

if |5] = 7(G).



The concept of restrained domination was introduced by Telle and Proskurowski [12], albeit
indirectly, as a vertex partitioning problem. Here conditions are imposed on a set S, the
complementary set V — S and on edges between the sets S and V — S. For example, if we
require that every vertex in V' — S should be adjacent to some other vertex of V' — S (the
condition on the set V' — S) and to some vertex in S (the condition on edges between the
sets S and V' — S), then S is a RDS.

One application of domination is that of prisoners and guards. For security, each prisoner
must be seen by some guard; the concept is that of domination. However, in order to protect
the rights of prisoners, we may also require that each prisoner is seen by another prisoner;
the concept is that of restrained domination.

The bondage number b(G) of a nonempty graph G is the minimum cardinality among all
sets of edges £’ C E for which v(G — E’) > v(G). Thus, the bondage number of G is
the smallest number of edges whose removal renders every minimum dominating set of G a
“nondominating” set in the resultant spanning subgraph. Since the domination number of
every spanning subgraph of a nonempty graph G is at least as great as v(G), the bondage
number of a nonempty graph is well defined. This concept was introduced by Bauer, Harary,
Nieminen and Suffel [1] and has been further studied by Fink, Jacobson, Kinch and Roberts
[6], Hartnell and Rall [8] and Teschner|[13].

Herein we further the study of bondage by considering a variation based on restrained
domination. Ergo, the restrained bondage number b.(G) of a nonempty graph G is the
minimum cardinality among all sets of edges E' C F for which v,.(G — E’) > ~,(G). Thus,
the restrained bondage number of G is the smallest number of edges whose removal renders
every v,(G)-set of G either a “nondominating” set or an “unrestrained” set in the resultant
spanning subgraph.

We define a remote vertex as a vertex adjacent to a leaf. A galaxy is a forest in which each
component is a star. Note that when G is a galaxy, there exists no set of edges E’ such
that v.(G — E') > ~+-(G). Conversely, suppose there exists no set of edges E' of G such
that v,.(G — E') > 7,(G). We show that G is a galaxy. For suppose, to the contrary, that
component K is not a star. Then K either contains a C3 with vertex set {ui,ug,us} or
a Py with vertex set {u1,us,us,us}. But then 7,(G) < |V(G) — {ug,us}| = n — 2, while
(G — E') = n where E' = E(G). Thus, 7,(G — E') > 7,(G) for the set of edges E(G),
which is a contradiction. Thus, there exists a set of edges E’ such that v,(G — E') > 7,(G)
if and only if G is not a galaxy. The restrained bondage number of a graph G is therefore
only defined for a graph G which is not a galaxy.

2 Exact values for b,(G)

Proposition 1 For the complete graph K, (n > 3),

1 ifn=3
[5] otherwise.

b (1) = {



Proof. Assume n = 3. Clearly v,(K3) = 1. Now, removing any edge from K3 yields Ps.
Since 7, (P3) = 3, it follows that b,(K3) = 1. Let n > 4 and let H be a spanning subgraph
of K, that is obtained by removing fewer than [5] edges from K,. Then H contains a
vertex of degree n — 1. Moreover, for every v € V(H), degy(v) > 2. Hence, v,.(H) = 1. It

follows that b, (Ky,) > [5].

Assume n is even. Let H be the graph obtained by removing n/2 independent edges from
K,. Thus, for every v € V(H), degy(v) =n — 2, whence v,(H) = 2. Assume n is odd and
let H' be the graph obtained by removing (n — 1)/2 independent edges from K,. Thus,
there is exactly one vertex v € V(H') such that degy/(v) = n — 1. Let H be the graph
obtained by removing from H' one edge incident with v. It follows that v,.(H) = 2. In
either case, H results from the removal of [5] edges from K. Thus b,(kK,) < [§], whence
by (Kn) = (%W o

Proposition 2 [5] If n > 3, then v.(Cn) = n — 2[§]. Moreover, if n > 1, then v.(P,) =
n—2|%1].

Corollary 3 If n > 3, then

[2]1+1 ifn=2mod3
(%] otherwise.

Moreover, if n > 1, then

[%]1+2 ifn=0mod3
Y (Pn) =19 [§]+1 ifn=2mod3
(5] otherwise.

Proposition 4 Ifn > 3, then

1 4 n=0mod3
br(cn>:{ -

otherwise.

Proof. Assume n = 0 mod 3. Since 7,.(Cy) < 7(Py), by(Cp) = 1.

Thus, assume n = imod 3 (i = 1,2). Since v,(Cy) = v (F,), it follows that b,(Cy) > 2.
Let H be the graph obtained by the removal of two edges from C), such that P; and P,_3
are formed. Then v, (H) = v, (Po—3) + 7 (P5) = ([252]+i—1)+3=([2-1]+i—-1)+3 =
((%1 +i—1)+2=7(Cpn) +2 > 7(Cpn).

Thus, v (H) > v-(Cy), whence b,(C,,) < 2. Hence, b,(Cy,) = 2. O

Theorem 5 If P, is a path of order n > 4, then b,(P,) = 1.



Proof. Assume n = imod 3 (i = 1,2). Since v.(P,) = 7-(Cy), by reasoning similar to
that in the previous proof, we have b.(P,) < 1, whence b,(P,) = 1. Assume n = 0 mod 3.
Let H be the graph obtained by the removal of one edge from P, such that P; and P,_3
are formed. Then ~,(H) = 7(Po-3) + % (P3) = ([%52]1 +2)+3 = ([ — 1] +2)+3 =
(2] — 14243 =([2]+2) +2=7(Py) + 2 > 7 (Py).

Thus, v(H) > v-(P,), whence b,.(P,) < 1. Hence, b.(P,) =1. O
Theorem 6 Let T be a tree of order n > 4. Then T 2 S, if and only if b.(T) = 1.

Proof. Since n > 4 and T 2 S, it follows that diam(7) > 3. Assume diam(7) = 3.
Then T is a double star. Let L(T") denote the set of leaves of T', and notice that L(T) is
the unique v, (7)-set of T. Hence, 7,(T") = n — 2. Let a,b € V(T) — L(T), and consider
T' =T — ab. Since T" comprises two stars, it follows immediately that ~,.(7") = n, and so
by(T') = 1. Therefore, assume that diam(7") > 4. Suppose to the contrary that b,(7) > 2.
Let T be rooted at a leaf r of a longest path. Let v be any vertex on a longest path P at
distance diam(7") — 1 from r. Let w be the vertex on P at distance diam(7") — 2 from r
adjacent to v, and let x be the vertex on P at distance diam(7") — 3 from r adjacent to w.

Suppose deg(w) = 2 and consider 77 = T — zw. Let T, denote the component of 7"
containing x and let 7, denote the component of 7" containing w. Since b,.(T) > 2, it
follows that v, (T) = v (T") = 7 (T%) + v (T},). Moreover, since deg(w) = 2, it follows that
T! = Sk, where k = |V(T),)|. Therefore, ~,(T},) = k, and ~.(T") = v(T.) + k. Let R’ be
a v-(T")-set of T, and notice that V(7)) C R'. If x € R, then R’ — {w, v} is an RDS of
T, and if x ¢ R, then R' — w is an RDS of T, both of which are contradictions. Thus
deg(w) > 3.

Consider 7" = T — wv. Let T}, denote the component of 7" containing w and let 7}, denote
the component of 7" containing v. Since b.(T) > 2, it follows that ,.(T) = ~.(T") =
v (T)) + 7(T)). Since v is a remote vertex, it follows that T} = Sk, where k = |[V(T))|.
Therefore, v,(T)) = k, and v-(T") = v(T),) + k. Let R’ be a ~,(T")-set of T”, and notice
that V(7)) C R'. f w ¢ R’, then R = R' — {v} is a RDS of T, a contradiction. Hence,
w € R'. Now, since w € R/, every vertex adjacent to w, except possibly z, is in R’.
Furthermore, since v,.(T) = v,.(T"), R' is a 7,.(T)-set of T. Since diam(T) > 4, it follows
that deg(x) > 2. If z € R/, then R = R’ — {w,v} is a RDS of T, a contradiction. Thus,
x ¢ R'. Let N, = N(x) — {w} and let s € N,. If s € R/, then R = R’ — {w,v} is a RDS
of T, a contradiction. Hence, x,s ¢ R’ and z is not a remote vertex. Thus deg(s) > 2.
Let Ny = N(s) — {x}. Suppose Ny C R’. Then R = R — {w,v} U{s} isa RDS of T, a
contradiction. Thus Ny € R’ for all s € N,. It follows that R = R’ — {w,v}U{z} is a RDS
of T', a contradiction.

Finally, let 7" be a tree of order n > 4 such that b,.(7") = 1. It follows immediately that
TS, O

We close this section by determining the restrained bondage numbers for multipartite
graphs.



Theorem 7 Let ny < ng < --- < ny (t > 2), where n; > 2 for some 1 < i <t, and let

G = Kpy ny,...n.- Then
[m/2] if nm =1 and npy1 > 2 (1 <m < t),
) 2t-2 ifni=ng=---=n =2 (t>2),
b(G) = 2 ifni =2 and ng >3 (t = 2),

1 .
Siini— 1 otherwise.

Proof. Let 1 <m < tsuch that n;=1fori=1,...,m, whilen; >2fori=m+1,...,t.
Let A be union of the partite sets of cardinality one, and let B = V(G) — A.

The following immediate fact will prove to be useful.
Fact. Let H be a graph of order n. If A(H) <n — 2, then ~,(H) > 2.

Let H be a spanning subgraph of G that is obtained by removing fewer than [%] edges
from G.

If at least one edge incident with every vertex of A is removed to form H, then at least
[5] edges are removed, which is a contradiction. We conclude that A contains a vertex of
degree n — 1 in H.

If at least n —2 edges incident with a vertex of A are removed to form H, then [§] > [
n —2,ie. [§] >n—2, which is a contradiction as n > 4. We conclude that degy (v
for every v € A.

5 >
) > 2

Note that degg(v) > m for every v € B, as each vertex of B is adjacent to every vertex of
Ain G. Thus, for every v € B, degg(v) >m — ([B] —1)=m - [Z]+1= ] +1>2.

It now follows that ,(H) = 1, whence b,(G) > [%]. Furthermore, it follows as in the proof

1
of Proposition 1 that b.(G) < [%]. Hence, b.(G) = [F].

Let t > 2, assume that n; = ng = --- = ny; = 2, and note that v,.(G) = 2. If t = 2 then
G = (4, whence b,(G) = 2 = 2t — 2. Thus, we assume that ¢ > 3. We first show that
by(G) > 2t — 2. Suppose to the contrary that there is a set of edges E' C E(G) such that
|E'| =2t —3 and (G — E') > 7,(G). Notice that §(G — E’) > 1. Suppose u; € V(G — E’)
such that deg(u;) = 1. Let x be the vertex adjacent to u; in G — E’ and let U = {u1,ua}
and X be partite sets, with x € X. Moreover, let w be a vertex in a partite set distinct from
U and X. Notice that every vertex in V(G — E') — {u1} is adjacent to ug, and at least one
of z or w. It follows that U is a RDS of G — E’. Hence, v,(G — E') < 2, a contradiction.
Thus, §(G — E') > 2

We show that this inequality is strict. Suppose u; € V(G — E’) such that deg(u;) = 2 and
let U = {u1,u2} be a partite set. Let N(uj) = {z1,z2}. Suppose {x1,z2} is a partite set
of G — E'. Since |E’'| = 2t — 3, for at least one of 1, x2, say 1, deg(x1) = 2t — 2. Hence,
{z1,u1} is a RDS of G — E', a contradiction.

Thus, assume {x1, 22} is not a partite set of G — E’, and let {x1, 27} and {x2, 25} be partite
sets.



Notice that U is a dominating set of G — E’ except when ugx € F' forz € Q = V(G- FE') —
{z1,22,u1}. Yet, if z = x7, then D = {uy, 25} dominates G — E, and if x € Q — {z}}, then
D = {uy,z7} dominates G— E. Observe that u; is a member of D in each case. Since 2t —4
edges of E’ are incident with u; and 6(G) = 2t —2, 6((G—E')—D) > (2t —2) -3 > 1.
Therefore, in each case D is a RDS of G — E’, a contradiction.

Suppose u; € V(G — E’) such that deg(ui) = 2t — 2. Let U = {uy,us} be a partite set.
Notice that U is a dominating set of G — E’. Since 7,.(G — E') > 2, necessarily U is not
restrained. Hence, there exists a vertex w € V(G —E') such that N(w) = U, a contradiction.

Hence, there exists a vertex z; € V(G — E’) such that deg(z1) = 2t—3. Let let X = {z1,z2}
be a partite set, and let y; be the one vertex distinct from zo that is not adjacent to x7.
Since we assumed that v,(G — E’') > v,(G), X is not a restrained dominating set of G — E'.
Since §(G — E') > 3, X is simply not dominating. That is, y; is not adjacent to 3. Let
{y1,y2} be a partite set.

Suppose there is a vertex a which is adjacent to both x5 and y; in G — E’. Then {1, a}
is a dominating set of G — E’, but as v,(G — E') > 3, {x1,a} is not a RDS of G — F'.
Thus, there exists a b € V(G — E’) such that Ng_g(b) = {a, 1}, a contradiction. Thus,
in G — E', every vertex different from x1, x9,y1,y2 must be adjacent to at most one of the
vertices xo and y;. Since there are 2t — 4 such vertices, each requiring removal of an edge
incident with one of x9 and y;, we have accounted for at least 2t — 4 4+ 2 = 2t — 2 edges in
E'. Hence, |E’'| > 2t — 2, a contradiction.

Thus, b,.(G) > 2t — 2.

Let {z1,z2} and {y1,y2} be any partite sets of G and remove all edges incident with xi,
except for x1y;. Finally, remove the edge z2y2. Let E’ be the set of edges removed from G
and notice that |E'| = 2t — 2. Then 3 < ~,.(G — E’), whence b,.(G) = 2t — 2.

Let t = 2, and assume n; = 2 and ng > 3. Notice that v,(G) = 2. Let X = {x1,22} and
Y = {y1,...,yn,} be the partite sets of G. Remove any edge e from G. Without loss of
generality, suppose e = x1yp,. Then G — e is simply K(2,ny — 1) with a pendant vertex
Yn, attached to xs. Notice that {y,,,z1} is a RDS of G — e. Hence, v,(G —e) < 2. Since
e was chosen arbitrarily, b,.(G) > 2. Let E’ be the set of edges incident with y,, and notice
that v,.(G — E') = 3 > v,.(G). Thus b.(G) < |E'| =2, and so b,.(G) = 2.

Now, assume nj > 3. Notice that 7, (G) = 2. Using notation from the previous paragraph,
X ={x1,...,xn, } and Y = {y1,...,Yn, }- Let E' C E(G) such that |E'| = ny — 2 and
consider G — E’. Notice that (G — E') > 2. Moreover, there is a vertex z; € X and a
vertex y; € Y such that Ng_pr(2;) =Y and Ng_pr(y;) = X. Hence, 7.(G— E’) = 2. Since
E’ was chosen arbitrarily, b.(G) > n; — 1. However, notice that degq(y1) = n1. Let E be
any set of ny — 1 edges incident with y; and notice that v,.(G — E’) = 3 > ~,(G). Thus
b(G) <ni—1,and so b,(G) =n; — 1.

Finally, let t > 3 and assume n; > 2 and n; > 3. Notice that v,.(G) = 2. Let s = Zf;i n;

and observe that §(G) > s > 4. We first show that b,(G) > s — 1. Suppose to the contrary
that there exists E' C F(G) such that |E'| = s—2 and v,(G— E’) > 7,.(G). Since §(G) > s,



it follows that §(G — E) > 2. Suppose there exists v; € G — E’ such that degg_p/ (v1) = 2,
and let E'(v1) denote the set of edges in G incident with vy. Since degq_ g/ (v1) = 2, it follows
that ' C E(v1). Let {v1,v2} be a partite set and let y ¢ {v1,v2} be a vertex adjacent to
v1 in G — E'. Since degg_gi(v1) = 2, {y,v2} is a RDS of G — E’. Hence, v,(G — E') < 2,
which is a contradiction. Therefore, we may assume that 6(G — E’) > 3.

We claim that each vertex of G is incident with at least one edge in E’. Suppose not.
Then there is a vertex x € V(G — E’) such that degq_p/(x) = degg(x). Let X be the
partite set containing x. Suppose there exists v € V(G — E’) — X such that X C Ng_pr(v).
Since §(G — E’) > 3, it follows that {z,v} is a RDS of G — E’. Hence, 7,(G — E') < 2, a
contradiction. Thus, for every v € V(G—E')—X, X ¢ Ng_gr(v). Since |[V(G—E')—X| > s,
it follows that | E’| > s, contradicting our assumption. Therefore, each vertex of G is incident
with at least one edge in E’.

Since |E’| < s — 2, there exists a vertex x; that is incident with exactly one edge e € E'.
Let y € V(G) such that e = yz1, and let Y be the partite set containing y. Note that x; is
adjacent in G — E’ to every vertex not in X U{y}. If some vertex u ¢ X UY is adjacent to
every vertex of X U{y}, then, as §(G—FE’) > 3, {u,z1} is a RDS of G— E’, a contradiction.
Thus, each vertex not in X UY must be nonadjacent in G — E’ to at least one vertex in
X U{y}. Moreover, since each vertex of Y is also nonadjacent to some vertex in G — F’, it
follows that |E'| > |[V(G) — (X UY)| 4+ |Y| > s, a contradiction. Therefore, b,(G) > s — 1.

Finally, let Z be a partite set of G of cardinality n;, and let z € Z. Notice that deg(z) = s.
Let H be the graph obtained by removing s — 1 edges incident with z. Since n; > 3, it
follows that v,(H) = 3 > v,(G). Thus b,(G) < s—1,and so b,(G) =s—1. O

3 Complexity results

Consider the decision problem

RESTRAINED BONDAGE (RB)
INSTANCE: A graph G and a positive integer k.
QUESTION: Does G have a restrained bondage set of cardinality at most k7

Theorem 6 shows that the restrained bondage number of a tree can be computed in constant
time. We now show that RB is NP-complete even for bipartite graphs by describing a
polynomial transformation from the following NP-complete problem (see [7]).

3-SATISFIABILITY (3SAT)
INSTANCE: A set U = {uy,us, ..., u,} of variables, and a collection C = {C1,Cs,...,Cp}
of clauses over U such that |C;| = 3 for i = 1,2,...,m. Furthermore, every literal is used

in at least one clause.
QUESTION: Is there a satisfying truth assignment for C?

Theorem 8 RB is NP-complete, even for bipartite graphs.



Proof. Let U = {uy,us,...,uy} and C = {C,Cq,...,Cp} be an arbitrary instance I of
3SAT. We will construct a bipartite graph G and an integer k such that I is satisfiable
if and only if b,.(G) < k. The bipartite graph G is constructed as follows. Corresponding
to each variable u; € U, associate a path P,, = x;u;v;u;y;. Corresponding to each clause
C; € C, associate a single vertex ¢;. Now, join the vertex ¢; to a vertex u; (u;, respectively)
in P,; if and only if the literal u; (@;, respectively) appears in clause Cj, for i =1,2,...,n
and j = 1,2,...,m. Finally, add a path P, = s1s2s3, join s1 and s3 to each vertex c; and
set k = 1. Throughout, let R be a 7,(G)-set.

Claim 1 v,.(G) > 3n+1. Moreover, if v.(G) = 3n+1, then c; ¢ R for each j, ROV (Ps) =
{s2}, and |RNV(P,,)| =3 for each i.

Proof. Notice that |[R N V(P,,)| > 3 for each ¢, while |[R NV (Ps)] > 1. Therefore,

|R| > 3n+ 1. Since R was chosen arbitrarily, v,.(G) > 3n + 1.

Suppose 7,(G) = 3n + 1. Then |[RNV(P,,)| = 3 for each i, while |[R NV (Ps)| = 1.
Consequently, ¢; € R for each j. If sy € R, then |[RN V(FP;)| = 1 implies that R N
V(Ps;) = {s1}, and so s3 is not dominated. Hence, s; ¢ R, and, similarly, s3 ¢ R. Thus,
RNV(P,) = {s3}. ©

If v; ¢ R for some 4, then |R N {u;,w;}| = 1; for simplicity denote the neighbor of v; in R
by u;.

Lemma 9 7,(G) = 3n+ 1 if and only if there exists a satisfying truth assignment for I.

Proof. Suppose 7,(G) = 3n + 1. By Claim 1, ¢; is adjacent to u for at least one i. As
|[RNV(P,)| = 3 for each 14, it follows that R NV (P,,) = {xi,yi,uj} or RNV (P,,) =
{zi,yi, vi}.

Now, define t : U — {T, F'} by

Hug) = T ifuje Rorv, € R
Y1 F ifu; €R.

Consider ¢; for some j. Without loss of generality, let ¢; be adjacent to u; € R for some i.

Recall that v} € {u;,u;}. Assume u} = u;. Since u; is dominating c;, u; is in the clause
Cj. Since u; € R, it follows that t(u;) = T. Thus Cj is satisfied. Assume u] = ;. Since @;
is dominating c;, @; is in the clause C;. Since uw; € R, it follows that ¢(u;) = F. Thus, w; is
assigned the truth value T', so Cj is satisfied.

Now, let t be a satisfying truth assignment for I. Let R; be the set of true literals. By
construction of G and the fact that ¢ is a satisfying truth assignment for I, each c¢; is
adjacent to at least one vertex in Ry;. Let R = Ry U (U;— {zi,¥i}) U {s2}, and notice
that, by definition of R;, R is a RDS of G. Hence, 7,.(G) < |R| = 3n + 1. By Claim 1,
v (G) > 3n + 1. Therefore, v,(G) =3n+ 1. O



Lemma 10 For alle € E(G), 7.(G —e) <3n+2.

Proof. Since every literal is used in at least one clause, m > 2. Moreover, each u;,u; is
adjacent to some c¢j. Assume e = s182. Then R = (U {zs, yi,ui}) U{s1, s2} is a RDS of
G —e. Hence, 7,(G—e) < |R'| = 3n+2. Similarly, e = sas3 implies that v, (G—e) < 3n+2.

By the construction of G we need only consider the following cases restricted to a particular
vertex ¢;. Suppose e = si¢;. Then S = (Ui {i, yi, ui })U{s1,¢;} isa RDS of G—e. Hence,
(G —e) < |R'| < 3n+ 2. Similarly, e = s3¢; implies that 4, (G —e) < 3n + 2. Suppose
e = u)c; for some 7. It follows that R’ is again a RDS of G —e. Hence, 7,(G —¢) < 3n+2.

Without loss of generality, assume that ¢; is adjacent to u;, and assume e = z;u;. Then R’
is again a RDS of G — e. Therefore, v,.(G —¢e) < |R'| = 3n + 2. Suppose ¢ = u;v;. Then
R" = R' — {u;} U{v;} is a RDS of G — e (note that degg_.(u;) > 3, as every literal is
contained in some clause). Hence, v, (G —¢) < |R"”| < 3n+ 2. Similar arguments show that
(G —€e) < 3n+ 2 when e = y;u; or e = w;v;. O

Lemma 11 ~,(G) = 3n + 1 if and only if b,(G) = 1.

Proof. Assume v, (G) = 3n+1. Let e = s159 and consider G—e. Suppose v, (G) = 7, (G—e).
Let R’ be a v,.(G — e)-set of G —e. As R’ is a 7,.(G)- set of cardinality 3n + 1, we have (cf.
Claim 1) ¢; ¢ R’ for each j and R' NV (Ps) = {s2}. But then s; is not dominated by R',
which is a contradiction. Hence, 7,(G) < 7.(G — €), whence b,(G) = 1.

Now, assume b,(G) = 1. By Claim 1, we have that v,.(G) > 3n + 1. Let ¢’ be an edge such
that v,.(G) < 7-(G — ¢€’). By Lemma 10, we have that v,.(G —¢) < 3n + 2 for all e € E(G).
Thus, 3n + 1 < 7,(G) < (G — €') < 3n+ 2. Tt follows that v,.(G) =3n+1. O

Thus, from Lemmas 9 and 11, it follows that b,(G) < 1 if and only if I is satisfiable. Hence,
we have proven Theorem 8.

4 General bounds and further results

Theorem 12 If §(G) > 2, then b,.(G) < min{deg(u) + deg(v) — 2 : uv € E(G)}.

Proof. Let b, = min{deg(u) + deg(v) — 2 : wv € E(G)}, and let uv € E(G) such that
deg(u) + deg(v) — 2 = b,. Suppose to the contrary that b,(G) > b,. Let E’ denote the
set of edges that are incident with at least one of u and v, but not both. Then |E'| =
by and v.(G — E') = 4(G). Since u and v are endvertices in G — E’, it follows that
(G —u—v) = (G) —2. Let R be a v(G —u—v)-set of G —u—wv. Since §(G) > 2,
it follows that Ng(u) U Ng(v) — {u,v} # 0. If Ng(u) U Ng(v) — {u,v} C R, then R is a
restrained dominating set of G of cardinality 7,(G — u — v) = 7.(G) — 2, a contradiction.
Hence, N(u) UN (v) — {u,v} ¢ R and there is a vertex w € N(u) U N (v) — {u, v} such that
w ¢ R. Without loss of generality, assume w is adjacent to u. Then RU {v} is a restrained
dominating set of G of cardinality v,(G —u —v) +1 = 7.(G) — 1, a contradiction. O



Corollary 13 If 6(G) > 2, then b (G) < A(G) 4+ 6(G) — 2.

Notice that the bounds stated in Theorem 12 and Corollary 13 are sharp. Indeed the
class of cycles whose orders are congruent to 1,2 mod 3 have a restrained bondage number
achieving these bounds.

Theorem 14 If v,.(G) > 2, then b,(G) < (v(G) — 1)A(G) + 1.

Proof. We proceed by induction on 7, (G). Let ,(G) = 2, and suppose b,(G) > A(G) + 2.
Let u € V(G) be of maximum degree. It follows that 7,(G — u) = 7(G) —1 = 1 and
b-(G —u) > 2. Since 7.(G) = 2 and ~,(G — u) = 1, there is a vertex v € V(G — u) that
is adjacent to every vertex in V(G) — {u}. Furthermore, u is adjacent to every vertex in
V(G) — {v}. Let e be any edge incident with v, and let H = (V(G — u), E(G — u — €)).
Since b,(G — u) > 2, it follows that ~,.(H) = 1. Hence, there is a vertex w € V(G — u)
such that w # v and w is adjacent to every vertex in V(G — u). Since v is the only vertex
not in Ng(u), we have w € Ng(u). Hence, degg(w) = |V(G)| — 1, a contradiction. Thus,
by (G) < A(G) + 1, for 7,(G) = 2.

Now, assume that, for any graph G’ such that v, (G') =k > 2, b,(G') < (k — 1)A(G') + 1.
Let G be a graph such that 7, (G) = k+1. Suppose to the contrary that b,.(G) > kA(G)+1.
Let u € V(G) and notice that v,.(G — u) = 7.(G) — 1 = k. Furthermore, b,.(G) < b.(G —
u) 4+ deg(u). By the inductive hypothesis we have b,(G) < [(k — 1)A(G —u) + 1] + deg(u) <
[(k —1DA(G —u) + 1] + A(G) = kA(G) 4+ 1. Thus b,(G) < kA(G) + 1, contradicting our
assumption that b,(G) > kA(G) + 1. By induction the proof is complete. O

We close by relating the bondage number and restrained bondage number of a graph.
Observe that if v,(G) = v(G), then b,(G) < b(G). Indeed, assume 7, (G) = v(G). Let E’
be a set of edges such that v(G — E') > v(G), where |E’| = b(G). Then ~,.(G) = v(G) <
(G = E') <4.(G — E'), whence b.(G) < |E'| = b(G).

However, we do not have b,(G) = b(G), when v,(G) = v(G). Observe that 7, (K3) = v(K3),
yet by(K3) =1 and b(K3) = 2. We still may not claim that b,(G) = b(G) even in the case
that every v(G)-set is a 7, (G)-set. The example K3 again demonstrates this.

Furthermore, we immediately have an infinite class of graphs satisfying b(G) < b,.(G).
Define the brilliant corona of G to be the graph obtained by attaching ¢ > 2 pendant
vertices to each vertex in V(G). The brilliant corona of G will be denoted by be(G). Let
B={G:G = bc(H) for some graph H such that §(H) > 2}.

Proposition 15 If G € B, then b(G) < b,(G).

Proof. Let H be a graph such that be(H) = G, where ¢ is number of pendant vertices
attached to each vertex in V(H). Let L denote the set of pendant vertices of G. Notice that
L is the unique 7, (G)-set of G and V (H) is the unique 7(G)-set of G. It follows immediately
that b(G) = 1 and b,(G) = min{é(H),¢} > 2. O
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Notice that b,(G) = min{d(H),(}, for G € B. This fact allows us to show that b,(G) can
be much larger than b(G). We conclude with the following proposition.

Proposition 16 For each positive integer k there is a graph G such that k = b.(G) — b(G).

Proof. Attach no less than n — 1 pendant vertices to each vertex of K,, and call this new
graph G. Let L denote the set of pendant vertices of G. Notice that L is the unique v, (G)-
set of G, and V(K,,) is the unique 7(G)-set of G. It follows immediately that b(G) = 1,
and b,.(G) =n — 1. Thus, k = b,.(G) — b(G) = n — 2, and the result follows. O
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