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Abstract

Bar-Hillel et al. [1] prove that applicative categorial grammars weakly recognize the
context-free languages. Buszkowski [2] proves that grammars based on the product-free
fragment of the non-associative Lambek calculus NL recognize exactly the context-
free languages. Kandulski [7] furthers this result by proving that grammars based on
NL also recognize exactly the context-free languages. Jäger [6] proves that categorial
grammars based on NL3, the non-associative Lambek calculus enriched with residuated
modalities, weakly recognize exactly the context-free languages. We extend this result,
proving that categorial grammars based on NLS4, the enrichment of NL3 by the axioms
4 and T , weakly recognize exactly the context-free languages.

1 Introduction

In this paper we consider the generative capacity of a certain class of type-logical grammars.
Lambek [9] develops an axiomatic calculus of syntactic types that serves as a deductive
system upon which grammars recognizing fragments of natural language are predicated. A
relation → on the set of types is defined as A → B if and only if the type A is also of type
B. Reflexivity of → is immediate. The set of syntactic types F is built up recursively from
a set of atomic types A, the directed implication symbols / and \, and a binary product
symbol • as follows:

F ::= A | F\F | F • F | F/F .

The behavior of the logical connectives is governed by the following laws:

residuation laws : A → C/B if and only if A •B → C if and only if B → A\C
law of associativity : (A •B) • C if and only if A • (B • C).

To establish the transitivity of →,

Cut: if A → B and B → C, then A → C
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is included in the axiomatic presentation . The calculus above is referred to as the associative
Lambek calculus L.

Lambek [8], develops a non-associative variant of L, referred to as the non-associative
Lambek calculus NL. That is, NL is the calculus L, without the law of associativity.
Moortgat [10] extends the calculi L and NL to the calculi L3 and NL3 respectively, by
adding to the inventory of logical connectives two unary operators, the unary product 3

and the unary slash ��. The inferential behavior of the unary operators is governed by the
residuation law:

3A → B if and only if A → ��B.

Thus far we have described the pure logic of residuation for the unary operators 3 and
��, though herein we discuss type-logics enriched with structural rules. Specifically, we
consider the following structural postulates:

K1: 3(A •B) → 3A •B 4: 33A → 3A
K2: 3(A •B) → A •3B T : A → 3A.

Before proceeding, we recount some basic definitions. An alphabet is a finite set of
symbols, denoted by Σ. A language is a set of strings over some alphabet. The set of all
strings over Σ is denoted by Σ∗. We denote by Σ+ the set of all strings over Σ, save the
null string ε.

Definition 1.1. A context-free grammar is a quadruple G = (V,Σ, S, P ), where

V is a finite set of nonterminal symbols,
Σ is a finite set, disjoint from V , of terminal symbols,
P is a finite set of productions of the form A →G α (A ∈ V , α ∈ (V ∪ Σ)∗),
S is an element of V , called the start symbol.

Let G be a context-free grammar and let →∗
G denote the transitive closure of →G. A

string x ∈ Σ∗ is generated by G if and only if S →∗
G x. The language generated by G is

L(G) = {x ∈ Σ∗ | x is generated by G}. A language L is a context-free language if there
is a context-free grammar G such that L = L(G). An ε-free context-free grammar is a
context-free grammar with no production of the form A →G ε. A language L is an ε-free
context-free language if there is an ε-free context-free grammar G such that L = L(G). It
should be noted that the type-logical grammars discussed herein recognize ε-free context-
free languages only.

We are interested in situating type-logical grammars within the Chomsky hierarchy. Bar-
Hillel et al. [1] prove that applicative categorial grammars weakly recognize the context-free
languages. Buszkowski [2] proves that grammars based on the product free fragment of NL
recognize exactly the context-free languages. Kandulski [7] furthers this result by proving
that grammars based on NL also recognize exactly the context-free languages. Pentus
[11] demonstrates that grammars based on L weakly recognize exactly the context-free
languages. In Jäger [5] and Jäger [6], it is shown that grammars based on the enriched
calculi L3 and NL3 respectively, also recognize exactly the context-free languages. That
is, the enrichment of L and NL based solely on the residuated unary operators does not
increase generative capacity.
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Thus it would seem that the generative capacity of grammars based on type-logics is
bounded by context-freeness. Yet, Carpenter [3] proves that every recursively enumer-
able language is recognized by some structurally enriched multimodal categorial grammar.
Hence, we are interested in the class of structural rules that increase generative capacity. It
is a corollary of results in Emms [4] that L3 enriched with the interaction postulates K1
and K2 provides the basis for grammars that recognize non-context-free languages. How-
ever, the rules 4 and T remain unanalyzed. In this paper we analyze NL3 enriched with
4 and T . We establish that this enrichment does not increase the generative capacity of
NL3.

1.1 The Sequent Presentations for NL and NL3

Lambek [9] describes a substructural logic sequent calculus over types. This sequent calculus
is equivalent to the axiomatic deductive system L in that every sequent derivable via the
sequent calculus is derivable from the axioms of L. Lambek [9] further proves that L has
Cut-elimination and the subformula property, and that L is decidable. Similar results are
obtained for NL in Lambek [8], and for L3 and NL3 in Moortgat [10].

We present the axiomatic type calculi for NL and NL3, along with their respective
sequent calculi. The logical vocabulary of NL consists of one binary product • together
with its left and right residuation, the directed implications \ and /. The types of NL are
defined recursively over some finite alphabet of atomic types A as

F ::= A|F\F|F • F|F/F .

The behavior of the logical connectives is governed by the following residuation laws:

A → C/B if and only if A •B → C if and only if B → A\C.

Since NL lacks associativity, antecedents of sequents become binary trees via the structural
operator (·, ·). The set of NL-trees is thus given by

T ::= F|(T , T ).

Uppercase Latin letters A,B, C, . . . are metavariables over types and uppercase Greek
letters ∆,Γ,∆′,Γ′, . . . are metavariables over trees of types. The notational convention Γ[∆]
denotes a tree Γ with subtree ∆. When Γ[∆] is followed in discourse by Γ[Υ], we mean that
Γ[Υ] is the tree Γ[∆] with the subtree ∆ replaced by the tree Υ.

The following Gentzen style sequent presentation provided by Lambek [8] is equivalent
to NL:

A ⇒ A
id

∆ ⇒ A Γ[A] ⇒ B

Γ[∆] ⇒ B
Cut

∆ ⇒ A Γ[B] ⇒ C

Γ[∆, A\B] ⇒ C
\L

A,Γ ⇒ B

Γ ⇒ A\B
\R
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∆ ⇒ A Γ[B] ⇒ C

Γ[B/A, ∆] ⇒ C
/L

Γ, A ⇒ B

Γ ⇒ B/A
/R

Γ[A,B] ⇒ C

Γ[A •B] ⇒ C
•L

Γ ⇒ A ∆ ⇒ B

Γ,∆ ⇒ A •B
•R.

Moortgat [10] considers calculi that comprise more than one family of residuated opera-
tors, and generalizes the binary operators to the n-ary case. One of the simplest versions of
such a multimodal system is the combination of one binary product and its accompanying
implications with one unary product and its residuated counterpart. This system is referred
to as NL3.

The logical vocabulary of NL3 is the logical vocabulary of NL enriched with two unary
connectives, 3 and ��. The set of NL3-types is given by

F ::= A|F\F|F • F|F/F|3F|�� F .

The unary modalities form a pair of residuated operators. Their logical behavior is governed
by the residuation law:

3A → B if and only if A → ��B.

We now introduce a unary structural operator 〈·〉 on trees, occurring in sequent an-
tecedents, corresponding to the unary product 3. Therefore, the set of NL3-trees is given
by

T ::= F|(T , T )|〈T 〉.

The following are sequent rules for the unary modalities:

Γ[〈A〉] ⇒ B

Γ[3A] ⇒ B
3L

Γ ⇒ A

〈Γ〉 ⇒ 3A
3R

Γ[A] ⇒ B

Γ[〈��A〉] ⇒ B
��L

〈Γ〉 ⇒ A

Γ ⇒ ��A
��R.

The sequent rules of the Gentzen style presentation of NL3 are simply the rules of NL
together with the rules for the unary modalities given above. We write NL3 ` Γ ⇒ A
if and only if the sequent Γ ⇒ A is derivable in the NL3 sequent calculus. A sequent
Γ ⇒ A such that Γ is an NL3-tree and A is a type of NL3 is called an NL3-sequent. The
definitions for NL-sequents are analogous. Hence, every NL-sequent is an NL3-sequent.

1.2 NL3-grammars

Definition 1.2. An NL3-grammar over an alphabet Σ is a pair 〈L,D〉, where L is a finite
relation between Σ+ and the set of NL3-types F called a lexicon, and D ⊆ F is a finite
set of designated types.
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Let G = 〈L,D〉 be an NL3-grammar over an alphabet Σ, ` ∈ Σ+ and A ∈ F . If
〈`, A〉 ∈ L, then ` is a lexical item corresponding to a lexical type A. A string x ∈ Σ+ is
recognized by an NL3-grammar if and only if x is a concatenation of lexical items, and
replacing each lexical item by one of its corresponding lexical types forms the yield of some
binary tree that is the antecedent of a sequent, derivable in NL3, having a designated type
as its succedent. This concept is formalized below.

Definition 1.3. Let G = 〈L,D〉 be an NL3-grammar over an alphabet Σ. A string
x = `1 · · · `n ∈ Σ+ is recognized by G if and only if there are types A1, . . . , An, S such that,
for all 1 ≤ i ≤ n, 〈`i, Ai〉 ∈ L, S ∈ D and there is a tree Γ with A1, . . . , An as its yield such
that NL3 ` Γ ⇒ S.

Let G be an NL3-grammar over an alphabet Σ. The language recognized by G is
L(G) = {x ∈ Σ+ | x is recognized by G}. A language L is recognized by G if L = L(G).
The definitions for NL-grammars, L-grammars and L3-grammars are analogous. Recall
that Jäger [6] proves the equivalence of the class of context-free languages and the class
of languages recognized by NL3-grammars. As noted in the Introduction, the structural
interaction rules K1 and K2 increase generative capacity. Thus, the generative power of a
grammar augmented with unary operators is licensed by the axioms of its underlying type
calculus. In the remainder of this paper we show that grammars based on NL3 augmented
with the structural rules 4 and T still recognize exactly the context-free languages.

2 NLS4-grammars

2.1 The Type Calculus

We enrich NL3 by adding the following axioms:

4 : 33A → 3A T : A → 3A.

We refer to the type calculus NL3 enriched by 4 and T as NLS4. Notice that NLS4-types
and NLS4-trees are simply NL3-types and NL3-trees, respectively. The following are
sequent rules for 4 and T :

Γ[〈∆〉] ⇒ A

Γ[〈〈∆〉〉] ⇒ A
4

Γ[〈∆〉] ⇒ A

Γ[∆] ⇒ A
T .

The sequent rules of the Gentzen style presentation of NLS4 are simply the rules of NL3

together with the rules for 4 and T given above. Moortgat [10] proves that the sequent
presentation noted above is equivalent to NLS4. The rules 4 and T are the structural rules
of NLS4. The definitions for NLS4-sequents are analogous to those for NL3. Hence, every
NL3-sequent is an NLS4-sequent. Moortgat [10] proves Cut-elimination, the subformula
property, and decidability for NLS4. The definitions for NLS4-grammars are analogous to
those for NL3.
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2.2 Generative Capacity

We now show that NLS4-grammars weakly recognize exactly the context-free languages. We
first prove that every context-free language is recognized by some NLS4-grammar. The in-
clusion of the context-free languages in the class of languages recognized by NLS4-grammars
is easily demonstrated. The proof follows almost immediately from the analogous result
given in Kandulski [7]. We require the following proposition.

Proposition 2.1. Let Γ ⇒ A be an NLS4-sequent containing no modal operators. Then
NLS4 ` Γ ⇒ A if and only if NL ` Γ ⇒ A.

Proof. The sufficiency is obvious, therefore we prove the necessity. Suppose NLS4 ` Γ ⇒ A.
By the subformula property, Γ ⇒ A has a proof in which no modal operator occurs. Thus,
no sequent appearing in the proof contains 〈·〉, since each rule introducing 〈·〉 into a 〈·〉-free
sequent also introduces a modal operator. Hence, NL ` Γ ⇒ A.

Lemma 2.2. Every context-free language is recognized by some NLS4-grammar.

Proof. Let L be a context-free language. Kandulski [7] shows that the class of NL-grammars
recognizes exactly the context-free languages. Hence there is an NL-grammar G = 〈L,D〉
that recognizes L. Since neither the lexical nor the designated types contain modal opera-
tors, by Proposition 2.1, G recognizes L if G is conceived as an NLS4-grammar.

Now, to prove that a class of grammars based on a certain type-logic recognize exactly
the context-free languages, it is enough to show that a relevant fragment of the type-logic
can be axiomatized by finitely many axioms and Cut. That is, the fragment is the closure
of a finite set of sequents under Cut. Pentus [11] utilizes this technique in proving that L-
grammars recognize exactly the context-free languages. Jäger [5] and Jäger [6] also utilize
this technique in proving that L3-grammars and NL3-grammars respectively, recognize
exactly the context-free languages. We now provide a brief sketch of the proof technique.

A grammar based on NL3 contains finitely many types. This implies that the number
of connectives appearing in any given type is bounded by some natural number n. The rel-
evant fragment of NL3 considered for finite axiomatization is the fragment utilizing types
containing no more than n connectives. This fragment contains all the types corresponding
to strings recognized by the grammar. It is then established that this fragment is axioma-
tized by sequents having at most two antecedent types, and is closed under Cut. Since the
fragment contains only finitely many types, it follows immediately that the axiomatization
described is finite.

We employ a similar proof technique herein. We show that every NLS4-sequent is deriv-
able in a finitely axiomatizable fragment of NLS4 that is subject to the constraints detailed
above. To achieve this, Cut must be applicable to any subtree of an NLS4-sequent an-
tecedent. The next lemma (a variation of the interpolation theorem for L) licenses this
necessity, and facilitates the desired axiomatization. We also make use of the following
definition.

Definition 2.3. Let A and B be types. We define nc, the number of connectives in a type,
as follows:
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1. nc(A) = 0 (if A is an atom)

2. nc(A •B) = nc(A/B) = nc(A\B) = nc(A) + nc(B) + 1

3. nc(3A) = nc(��A) = nc(A) + 1.

Moreover, let

ρ(S) =
{

nc(S) if S is a type
max{nc(A) | A is a type in S} if S is an NLS4-tree or sequent.

Lemma 2.4. Let Γ[∆] ⇒ A be derivable in NLS4. Then there is a type B such that
NLS4 ` ∆ ⇒ B, NLS4 ` Γ[B] ⇒ A and ρ(B) ≤ ρ(Γ[∆] ⇒ A).

Proof. Before proceeding, we establish some terminology. If NLS4 ` Γ[∆] ⇒ A and a type
B possesses the properties given in the statement of the lemma, we call B an interpolant
for ∆ in Γ[∆] ⇒ A (or simply an interpolant for ∆ if the context is clear). The subtree
introduced by a sequent rule into the antecedent of a sequent is called the active formula.

We proceed by induction over cut-free sequent derivations. For the base case we consider
id, in which we simply have Γ = A = B, and the result is trivial. Therefore, suppose that
the result holds for the premises of a sequent rule by which Γ[∆] ⇒ A is inferred. Since
sequent derivations are cut-free, it suffices to prove that the result holds for each sequent
rule.

The rules \L, \R, /L, /R, •L, •R, 3L, 3R, ��L and ��R are settled in Jäger [6].
We recount the primary arguments for •L and 3L, and fully treat T and 4. We con-
sider three cases concerning the location of the active formula with respect to ∆. That
is, either ∆ contains the active formula, ∆ occurs in the premise of the sequent rule, or
∆ does not contain the active formula and does not occur in the premise of the sequent rule.

Γ[∆′[C,D]] ⇒ A

Γ[∆′[C •D]] ⇒ A
•L

Γ[∆′[〈C〉]] ⇒ A

Γ[∆′[3C]] ⇒ A
3L

Suppose ∆ contains the active formula. We first present the argument for •L, in which
∆ = ∆′[C • D]. By the induction hypothesis, there is a type B that is an interpolant
for ∆′[C,D]. By applying •L to ∆′[C,D] ⇒ B, we have NLS4 ` ∆′[C • D] ⇒ B. Since
ρ(C), ρ(D) ≤ ρ(C • D), we have that ρ(B) ≤ ρ(Γ[∆′[C,D]] ⇒ A) ≤ ρ(Γ[∆′[C • D]] ⇒ A).
Hence, B is an interpolant for ∆ in Γ[∆] ⇒ A.

We now present the argument for 3L, in which ∆ = ∆′[3C]. By the induction hypoth-
esis, there is a type B that is an interpolant for ∆′[〈C〉]. By applying 3L to ∆′[〈C〉] ⇒ B,
we have NLS4 ` ∆′[3C] ⇒ B. Since ρ(B) ≤ ρ(Γ[∆′[〈C〉]] ⇒ A) ≤ ρ(Γ[∆′[3C]] ⇒ A), B is
an interpolant for ∆ in Γ[∆] ⇒ A.

Γ[∆′[〈Υ〉]] ⇒ A

Γ[∆′[〈〈Υ〉〉]] ⇒ A
4

Γ[∆′[〈Υ〉]] ⇒ A

Γ[∆′[Υ]] ⇒ A
T

Suppose the rule is T . Thus, ∆ = ∆′[Υ], and by the induction hypothesis, there is
a type B that is an interpolant for ∆′[〈Υ〉]. By applying T to ∆′[〈Υ〉] ⇒ B, we have
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NLS4 ` ∆′[Υ] ⇒ B. Since ρ(B) ≤ ρ(Γ[∆′[〈Υ〉]] ⇒ A) ≤ ρ(Γ[∆′[Υ]] ⇒ A), B is an inter-
polant for ∆ in Γ[∆] ⇒ A. Now, suppose the rule is 4. Hence, ∆ = ∆′[〈〈Υ〉〉], and by
similar reasoning, B is an interpolant for ∆ in Γ[∆] ⇒ A.

Γ[〈∆′〉] ⇒ A

Γ[〈〈∆′〉〉] ⇒ A
4

Γ[〈∆′〉] ⇒ A

Γ[∆′] ⇒ A
T

Suppose ∆ occurs in the premise of the sequent rule. Suppose the sequent rule is T .
Then an interpolant for ∆ in the premise serves as an interpolant for ∆ in Γ[∆] ⇒ A. We
expound the only non-trivial case, ∆ = ∆′. By the induction hypothesis we have a type B
that is an interpolant for ∆′. By applying T to Γ[〈B〉] ⇒ A, we have NLS4 ` Γ[B] ⇒ A.
Hence, B is an interpolant for ∆ in Γ[∆] ⇒ A. If the sequent rule is 4, then again, an
interpolant for ∆ in the premise serves as an interpolant for ∆ in Γ[∆] ⇒ A.

Suppose ∆ does not contain the active formula and does not occur in the premise of
the sequent rule. Then the sequent rule must be 4, and ∆ = 〈〈∆′〉〉. By the induction
hypothesis, there is a type B that is an interpolant for 〈∆′〉. By applying 4 to 〈∆′〉 ⇒ B we
have NLS4 ` 〈〈∆′〉〉 ⇒ B. Since, ρ(Γ[〈∆′〉] ⇒ A) = ρ(Γ[〈〈∆′〉〉] ⇒ A), B is an interpolant
for ∆ in Γ[∆] ⇒ A.

We define a deductive sequent system to be a set of sequents Γ ⇒ A which is closed under
Cut. A deductive sequent system is finitely axiomatizable if and only if it is the closure
of a finite set of sequents under Cut. The following definition describes our desired finite
axiomatization. We then prove that the relevant fragment of NLS4 is derivable within the
deductive sequent system.

Definition 2.5. For any non-negative integer n, the deductive sequent system Pn is the
closure of the following set of axioms under Cut: {A ⇒ B | NLS4 ` A ⇒ B and
ρ(A), ρ(B) ≤ n} ∪ {〈A〉 ⇒ B | NLS4 ` 〈A〉 ⇒ B and ρ(A), ρ(B) ≤ n} ∪ {(A,B) ⇒ C |
NLS4 ` (A,B) ⇒ C and ρ(A), ρ(B), ρ(C) ≤ n}.

Lemma 2.6. Let Γ ⇒ A be an NLS4-sequent. If NLS4 ` Γ ⇒ A and ρ(Γ ⇒ A) ≤ n, then
Γ ⇒ A ∈ Pn.

Proof. We proceed by induction over the number of structural operators, (·, ·) and 〈·〉, in
Γ. If Γ contains no structural operators then Γ is a single type and the result is trivial.
Therefore, assume that Γ contains at least one structural operator. We consider two cases.
Suppose Γ = ∆[〈C〉], where C is a type. By Lemma 2.4, there is an interpolant B for 〈C〉
in ∆[〈C〉] ⇒ A. Since ρ(C) ≤ n, by Definition 2.5, 〈C〉 ⇒ B ∈ Pn. Since ρ(∆[B] ⇒ A) ≤ n,
by the induction hypothesis ∆[B] ⇒ A ∈ Pn. Applying Cut to the premises 〈C〉 ⇒ B
and ∆[B] ⇒ A, we have that ∆[〈C〉] ⇒ A ∈ Pn. Now, suppose Γ = ∆[(C,D)], where C
and D are types. By Lemma 2.4, there is an interpolant B for (C,D) in ∆[(C,D)] ⇒ A.
Since ρ(C), ρ(D) ≤ n, by Definition 2.5, (C,D) ⇒ B ∈ Pn. Since ρ(∆[B] ⇒ A) ≤ n, by
the induction hypothesis ∆[B] ⇒ A ∈ Pn. Applying Cut to the premises (C,D) ⇒ B and
∆[B] ⇒ A, we have that ∆[(C,D)] ⇒ A ∈ Pn.

Based on the axiomatization Pn, we may now prove the main result.
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Lemma 2.7. Every language recognized by an NLS4-grammar is context-free.

Proof. Let G = 〈L,D〉 be an NLS4-grammar over an alphabet Σ and let n = max{ρ(A) | A
is a type occurring in G}. We construct an equivalent context-free grammar G′ in the
following way. The terminal symbols of G′ are the lexical items of G. The nonterminal
symbols of G′ are the NLS4-types A such that ρ(A) ≤ n. By relabeling if necessary, S is
the start symbol of G′. The productions of G′ are {S →G′ D | D ∈ D} ∪ {A →G′ B |
B ⇒ A ∈ Pn} ∪ {A →G′ B | 〈B〉 ⇒ A ∈ Pn} ∪ {A →G′ BC | (B,C) ⇒ A ∈ Pn} ∪
{A →G′ ` | 〈`, A〉 ∈ L}.

Suppose `1 . . . `k ∈ L(G). Then there are types A1, . . . , Ak, D such that, for all 1 ≤
i ≤ k, 〈`i, Ai〉 ∈ L, D ∈ D and there is a tree Γ with A1, . . . , Ak as its yield such that
NLS4 ` Γ ⇒ D. By the construction of G′, S →G′ D and Ai →G′ `i for each i. By
Lemma 2.6, D →∗

G′ A1 . . . Ak. Since the production relation →G′ is transitive, it follows
that S →∗

G′ `1 . . . `k. Hence, `1 . . . `k ∈ L(G′).
Now, suppose `1 . . . `k ∈ L(G′). That is, S →∗

G′ `1 . . . `k. By the construction of G′, we
must have D ∈ D and A1, . . . , Ak with 〈`i, Ai〉 ∈ L such that D →∗

G′ A1 . . . Ak. Hence,
there is a derivation tree Γ with D as its root node and A1, . . . , Ak as its yield. Since the
productions of G′ correspond to NLS4-sequents in Pn, and since all sequents in Pn are, by
definition, derivable in NLS4, it follows that NLS4 ` Γ ⇒ D. Thus, `1 . . . `k ∈ L(G).

Notice that the context-free grammar simulating the NLS4-grammar completely ignores
the 〈·〉 structures of an NLS4-tree. This follows from the fact that, due to rule T , in
derivations, we may employ only those sequents without 〈·〉 structure.

Theorem 2.8. NLS4-grammars recognize exactly the context-free languages.

Proof. Immediate from Lemma 2.2 and Lemma 2.7.

3 Conclusion

This article shows that enriching the type calculus NL3 with the structural postulates 4 and
T does not increase its generative capacity. To achieve this result we utilize a proof employed
in Jäger [6]. The adapted proof is based on a variation of the interpolation lemma for L,
and a finitely axiomatizable set of NLS4-sequents comprising no more than two antecedent
types. Moreover, it is shown that simple structural rules are capable of extending the
generative capacity of NL3, necessitating the study of structurally enriched variants of
type-logical grammars. Specifically, we submit for further research, an extension of the
result of Emms [4], establishing that the structural rules K1 and K2 extend the generative
capacity of NL3. Furthermore, we are interested in the generative capacity of L3 enriched
with the structural postulates 4 and T . Generally, we state that the generative capacity
of structurally enriched multimodal grammars is largely unstudied. The proof strategy
employed in this paper remains viable with respect to other type-logical grammars further
enriched with additional structural postulates. As stated, certain structural rules extend
the generative capacity of grammars based on variants of L. It is recommended that further
results be established regarding the generative capacity of structurally enriched multimodal
categorial grammars.
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