Restrained domination in unicyclic graphs

¹Johannes H. Hattingh, ²Ernst J. Joubert, ³Marc Loizeaux, ⁴Andrew R. Plummer and ³Lucas van der Merwe

> ¹Department of Mathematics and Statistics Georgia State University Atlanta, GA 30303-3083, USA

> > ²Department of Mathematics University of Johannesburg PO Box 524 Auckland Park 2006, South Africa

³Department of Mathematics University of Tennessee, Chattanooga 615 McCallie Avenue Chattanooga, TN 37403, USA

⁴Department of Linguistics The Ohio State University
222 Oxley Hall, 1712 Neil Avenue Columbus, OH 43210, USA

Abstract

Let G = (V, E) be a graph. A set $S \subseteq V$ is a restrained dominating set if every vertex in V - S is adjacent to a vertex in S and to a vertex in V - S. The restrained domination number of G, denoted by $\gamma_r(G)$, is the minimum cardinality of a restrained dominating set of G. A unicyclic graph is a connected graph that contains precisely one cycle. We show that if U is a unicyclic graph of order n, then $\gamma_r(U) \ge \lceil \frac{n}{3} \rceil$, and provide a characterization of graphs achieving this bound.

Keywords: Restrained domination; Unicyclic graph MSC: 05C69

1 Introduction

In this paper, we follow the notation of [1]. Specifically, let G = (V, E) be a graph with vertex set V and edge set E. A set $S \subseteq V$ is a *dominating set* (**DS**) of G if every vertex in V - S is adjacent to a vertex in S. The *domination number* of G, denoted by $\gamma(G)$, is the minimum cardinality of a **DS** of G. The concept of domination in graphs, with its many variations, is now well studied in

graph theory. The recent book of Chartrand and Lesniak [1] includes a chapter on domination. A thorough study of domination appears in [10, 11].

In this paper, we continue the study of a variation of the domination theme, namely that of restrained domination - see [2, 3, 4, 5, 6, 7, 8, 9, 12, 13].

A set $S \subseteq V$ is a restrained dominating set (**RDS**) if every vertex in V - S is adjacent to a vertex in S and to a vertex in V - S. Every graph has a **RDS**, since S = V is such a set. The restrained domination number of G, denoted by $\gamma_r(G)$, is the minimum cardinality of a **RDS** of G. A **RDS** of G of cardinality $\gamma_r(G)$ is called a γ_r -set of G.

Throughout, let n and m denote the order and size of G, respectively. A unicyclic graph U of order n is a connected graph that contains exactly one cycle. Thus, U has size n. A vertex of degree one will be called a *leaf*, while a vertex adjacent to a leaf will be called a *remote vertex*. The open neighborhood of a vertex u, denoted N(u), is the set $\{v \in V \mid v \text{ is adjacent to } u\}$, while the closed neighborhood of u, denoted N[u], is defined as $N(u) \cup \{u\}$.

A graph G is status labeled if every vertex in V is labeled either A or B. A vertex $v \in V$ has status A (B, respectively) if v is labeled A (B, respectively). The status of a vertex v will be denoted Sta(v). We define Sta(A) (Sta(B), respectively) as the set of vertices in V with status A (B, respectively).

Theorem 1 Let G be a connected graph of order n and size m. Then $\gamma_r(G) \ge n - \frac{2m}{3}$.

Proof. Let *S* be a γ_r -set of *G*, and consider $H = \langle V - S \rangle$. Let n_1 and m_1 be the order and size of $\langle V - S \rangle$, respectively. Thus, $m_1 = \frac{1}{2} \sum_{v \in V-S} \deg_H(v) \ge \frac{1}{2}(n - \gamma_r(G))$. Let m_2 denote the number of edges between *S* and V - S. Since *S* is a **DS**, every vertex in V - S is adjacent to at least one vertex in *S*. Thus, $m_2 \ge n - \gamma_r(G)$. Hence, $m \ge m_1 + m_2 \ge \frac{1}{2}(n - \gamma_r(G)) + n - \gamma_r(G)$, which implies that $\gamma_r(G) \ge n - \frac{2}{3}m$. \Box

The following known result of [4] is an immediate consequence of Theorem 1.

Corollary 2 Let T be a tree of order n. Then $\gamma_r(T) \geq \lceil \frac{n+2}{3} \rceil$.

In similar fashion, we derive our first main result.

Corollary 3 Let U be a unicyclic graph of order n. Then $\gamma_r(U) \geq \lfloor \frac{n}{3} \rfloor$.

Domke et al. [4] provided a constructive characterization of trees achieving the lower bound given in Corollary 2. Hattingh and Plummer [9] gave a simpler characterization, independent of γ_r -set consideration. In the sequel, we constructively characterize unicyclic graphs achieving the lower bound given in Corollary 3, utilizing constructive operations governed by status labeling.

2 Unicylic graphs U of order n with $\gamma_r(U) = \left\lceil \frac{n}{3} \right\rceil$

Let \mathcal{E} denote the class of all unicyclic graphs U of order n such that $\gamma_r(U) = \lfloor \frac{n}{3} \rfloor$. In order to provide the characterization, we state and prove a few observations.

Let $U \in \mathcal{E}$ and let S be a γ_r -set of U.

Observation 1 If $n \equiv 0 \mod 3$, then S is independent and every vertex in V - S has degree 2.

Proof. Assume that $n \equiv 0 \mod 3$. If $v \in V$ such that $\deg(v) = 1$, then $v \in S$. Thus $\deg(v) \ge 2$, for all $v \in V-S$. Now, let $y \in V-S$. Suppose that $|N(y) \cap (V-S)| \ge 2$. By assumption, $|V-S| = \frac{2n}{3}$. Therefore, $n = m \ge n - \gamma_r(U) + \frac{1}{2}(n - \gamma_r(U) + 1)$, which implies that $\gamma_r(U) \ge \left\lceil \frac{n+1}{3} \right\rceil > \left\lceil \frac{n}{3} \right\rceil$, a contradiction. Suppose that $|N(y) \cap S| \ge 2$. Then $n = m \ge n - \gamma_r(U) + 1 + \frac{1}{2}(n - \gamma_r(U))$, which implies that $\gamma_r(U) \ge \left\lceil \frac{n+2}{3} \right\rceil > \left\lceil \frac{n}{3} \right\rceil$, a contradiction. Thus, every vertex in V - S is adjacent to exactly one vertex of S and adjacent to exactly one vertex of V - S.

Since $|V - S| = \frac{2n}{3}$, the vertices in V - S form a matching with exactly $\frac{n}{3}$ edges. Since m = n, there are $\frac{2n}{3}$ edges between S and V - S. Hence, S is independent. \diamond

Observation 2 If $n \equiv 1 \mod 3$, then S has exactly one of the following properties:

- 1. $m(\langle S \rangle) = 1$, while every vertex in V S has degree 2.
- 2. There is a vertex $y \in V S$ such that $\deg(y) = 3$ and $|N(y) \cap S| = 2$. Furthermore, S is independent and every vertex in $V S \{y\}$ has degree 2.
- 3. There are exactly two vertices $x, y \in V-S$ such that $\deg(x) = \deg(y) = 3$, and $|N(x) \cap (V-S)| = |N(y) \cap (V-S)| = 2$. Furthermore, S is independent and every vertex in $V S \{x, y\}$ has degree 2.
- 4. There is exactly one vertex $y \in V S$ such that $\deg(y) = 4$ and $|N(y) \cap (V S)| = 3$. Furthermore, S is independent and every vertex in $V - S - \{y\}$ has degree 2.

Proof. Assume that $n \equiv 1 \mod 3$. Suppose first that, for all $y \in V - S$, $\deg(y) = 2$ and that S is independent. Clearly, $|S| = \frac{n+2}{3}$ and $|V - S| = \frac{2(n-1)}{3}$. There are exactly $\frac{2(n-1)}{3}$ edges between V - S and S, and there are $\frac{n-1}{3}$ edges in $\langle V - S \rangle$. Hence, $n = m = \frac{2(n-1)}{3} + \frac{n-1}{3} = n - 1$, a contradiction. Thus, there is a vertex $y \in V - S$ such that $\deg(y) \ge 3$ or $m(\langle S \rangle) \ge 1$.

Suppose $m(\langle S \rangle) \ge 1$. If $m(\langle S \rangle) \ge 2$, then $n = m \ge n - \gamma_r(U) + 2 + \frac{1}{2}(n - \gamma_r(U))$, implying that $\gamma_r(U) \ge \left\lceil \frac{n+4}{3} \right\rceil > \left\lceil \frac{n}{3} \right\rceil$, a contradiction. Therefore, $m(\langle S \rangle) = 1$.

Suppose there is a vertex $y \in V-S$ such that $\deg(y) \ge 3$. If $|N(y) \cap S| \ge 2$, then $n = m \ge n - \gamma_r(U) + 2 + \frac{1}{2}(n - \gamma_r(U))$, implying that $\gamma_r(U) \ge \lceil \frac{n+4}{3} \rceil > \lceil \frac{n}{3} \rceil$, a contradiction. If $|N(y) \cap (V-S)| \ge 2$, then $n = m \ge n - \gamma_r(U) + 1 + \frac{1}{2}(n - \gamma_r(U) + 1)$, implying that $\gamma_r(U) \ge \lceil \frac{n+3}{3} \rceil > \lceil \frac{n}{3} \rceil$, a contradiction. Therefore, every vertex in V - S has degree 2. Thus, S has Property 1.

We may assume that S is independent and there is a vertex $y \in V - S$ such that $\deg(y) \geq 3$.

Suppose that $|N(y) \cap S| \geq 2$. If $|N(y) \cap S| \geq 3$, then $n = m \geq n - \gamma_r(U) + 2 + \frac{1}{2}(n - \gamma_r(U))$, implying that $\gamma_r(U) \geq \left\lceil \frac{n+4}{3} \right\rceil > \left\lceil \frac{n}{3} \right\rceil$, a contradiction. Thus, $|N(y) \cap S| = 2$. If deg $(y) \geq 4$, then $|N(y) \cap (V-S)| \geq 2$, and so $n = m \geq n - \gamma_r(U) + 1 + \frac{1}{2}(n - \gamma_r(U) + 1)$, implying that $\gamma_r(U) \geq \left\lceil \frac{n+3}{3} \right\rceil > \left\lceil \frac{n}{3} \right\rceil$, a contradiction. If deg $(x) \geq 3$ for $x \in V - S - \{y\}$, then either $\gamma_r(U) \geq \left\lceil \frac{n+4}{3} \right\rceil$ or $\gamma_r(U) \geq \left\lceil \frac{n+3}{3} \right\rceil$, a contradiction in either case. Thus, S has Property 2.

Suppose that, for all $x \in V - S$ such that $\deg(x) \geq 3$, $|N(x) \cap S| = 1$. If $v \in V - S$ such that $\deg(v) \geq 5$, then $n = m \geq n - \gamma_r(U) + \frac{1}{2}(n - \gamma_r(U) + 3)$, a contradiction. Thus, for all $v \in V - S$, $\deg(v) \leq 4$. Suppose there is a vertex $y \in V - S$ such that $\deg(y) = 4$. Then every vertex in $V - S - \{y\}$ must have degree 2. Thus, S has Property 4.

Therefore, we may assume that, if $y \in V - S$ such that $\deg(y) \geq 3$, then $\deg(y) = 3$, while $|N(y) \cap S| = 1$. Suppose there are three or more vertices $y \in V - S$ such that $\deg(y) = 3$. Then $n = m \geq n - \gamma_r(U) + \frac{1}{2}(n - \gamma_r(U) + 3)$, and so $\gamma_r(U) \geq \left\lceil \frac{n+3}{3} \right\rceil$, a contradiction. Suppose there is exactly one $y \in V - S$ such that $\deg(y) = 3$. Recall that there are $\frac{2(n-1)}{3}$ vertices in V - S. Moreover, for all $v \in V - S - \{y\}$, $\deg(v) = 2$, and since $|N(y) \cap S| = 1$, there are $\frac{2(n-1)}{3} - 3 > 0$ vertices to be matched in $\langle V - S \rangle$. This is impossible as $\frac{2(n-1)}{3} - 3$ is odd. Thus, there are exactly two vertices $x, y \in V - S$ such that $\deg(x) = \deg(y) = 3$. Thus, S has Property 3.

Observation 3 If $n \equiv 2 \mod 3$, then there is exactly one vertex $y \in V - S$ such that $\deg(y) = 3$ and $|N(y) \cap (V - S)| = 2$. Furthermore, S is independent and every vertex in $V - S - \{y\}$ has degree 2.

Proof. Suppose $n \equiv 2 \mod 3$. If S is dependent, then $n = m \ge n - \gamma_r(U) + 1 + \frac{1}{2}(n - \gamma_r(U))$, and so $\gamma_r(U) \ge \left\lceil \frac{n+2}{3} \right\rceil > \left\lceil \frac{n}{3} \right\rceil$, a contradiction. Suppose that, for all $v \in V - S$, deg(v) = 2. Let n = 3q + 2, where $q \ge 1$. Then |S| = q + 1 and |V - S| = 2q + 1. Notice that V - S must form a matching, and since |V - S| = 2q + 1 is odd, this is not possible. Thus, there is a $y \in V - S$ such that deg $(y) \ge 3$. If $|N(v) \cap S| \ge 2$ for some $v \in V - S$, then $\gamma_r(U) \ge \left\lceil \frac{n+2}{3} \right\rceil > \left\lceil \frac{n}{3} \right\rceil$, a contradiction. Thus, $|N(v) \cap S| = 1$ for all $v \in V - S$. Suppose deg $(y) \ge 4$, or $x \in V - S$ such that $x \ne y$ and deg $(x) \ge 3$. Then $n = m \ge n - \gamma_r(U) + \frac{1}{2}(n - \gamma_r(U) + 2)$, which implies that $\gamma_r(U) \ge \left\lceil \frac{n+2}{3} \right\rceil > \left\lceil \frac{n}{3} \right\rceil$, a contradiction. Thus, the observation holds. \diamond

Let K be the status labeled graph obtained from the complete graph K_2 with vertex set $\{k_1, k_2\}$ by setting $\operatorname{Sta}(k_1) = A$ and $\operatorname{Sta}(k_2) = B$.

Let P_{AAB} be the status labeled graph obtained from the path P_3 with consecutive vertices p_1, p_2, p_3 by setting $\operatorname{Sta}(p_1) = \operatorname{Sta}(p_2) = A$ and $\operatorname{Sta}(p_3) = B$. Similarly, let P_{ABA} be the status labeled graph obtained from the path P_3 with consecutive vertices p_1, p_2, p_3 by setting $\operatorname{Sta}(p_1) = \operatorname{Sta}(p_3) = A$ and $\operatorname{Sta}(p_2) = B$.

The following status labeled graphs will serve as the basis for our characterization.

Let B_1 be the status labeled graph obtained from the cycle C_3 with consecutive vertices v_1, v_2, v_3, v_1 by setting $\operatorname{Sta}(v_1) = B$ and $\operatorname{Sta}(v_2) = \operatorname{Sta}(v_3) = A$.

Let B_2 be the status labeled graph obtained from the cycle C_4 with consecutive vertices v_1, v_2, v_3, v_4, v_1 by setting $\operatorname{Sta}(v_1) = \operatorname{Sta}(v_2) = B$ and $\operatorname{Sta}(v_3) = \operatorname{Sta}(v_4) = A$.

Lastly, let B_3 be the status labeled graph obtained from C_5 with consecutive vertices $v_1, v_2, v_3, v_4, v_5, v_1$ by setting $\operatorname{Sta}(v_1) = \operatorname{Sta}(v_3) = B$ and $\operatorname{Sta}(v_2) = \operatorname{Sta}(v_4) = \operatorname{Sta}(v_5) = A$, and joining v_2 to the vertex k_1 of K.

Note that if $U \cong B_i$ for $i \in \{1, 2, 3\}$, then $\operatorname{Sta}(B)$ is a γ_r -set of U of cardinality $\left\lceil \frac{n}{2} \right\rceil$.

Let U be a status labeled unicyclic graph. Define the following operations on U:

 \mathcal{O}_1 : Suppose v is a vertex of U such that $\operatorname{Sta}(v) = B$. Join v to the vertex p_1 of P_{AAB} .

 \mathcal{O}_2 : Suppose uv is an edge of U. One of the following is performed:

- 1. If Sta(u) = B, then delete the edge uv and join the vertex u (v, respectively) to the vertex p_1 (p_3 , respectively) of P_{AAB} .
- 2. If $\operatorname{Sta}(u) = \operatorname{Sta}(v) = A$, then delete the edge uv, join the vertex u (v, respectively) to the vertex p_1 (p_3 , respectively) of P_{ABA} .

 \mathcal{O}_3 : Suppose uv is an edge of U, and suppose $\operatorname{Sta}(u) = \operatorname{Sta}(v) = A$. Delete the edge uv, and join u and v to vertex k_1 of K.

Observation 4 If U' is the status labeled graph obtained by applying one of the above operations on U, then Sta(B) is a **RDS** of U'.

Let \mathcal{C} be the family of status labeled unicyclic graphs U, where U is one of the following six types:

Type 1: U is obtained from B_1 by $\ell \ge 0$ applications of \mathcal{O}_1 or \mathcal{O}_2 .

Type 2: U is obtained from a **Type 1** graph by joining a vertex v in this **Type 1** graph to a vertex w of K_1 , setting $\operatorname{Sta}(w) = B$, and then following this by $\ell \ge 0$ applications of \mathcal{O}_1 or \mathcal{O}_2 .

Type 3: U is obtained from:

- 1. a **Type 1** graph by joining some $v \in \text{Sta}(A)$ to the vertex k_1 of K, followed by $\ell \geq 0$ applications of \mathcal{O}_1 or \mathcal{O}_2 .
- 2. a **Type 1** graph by exactly one application of \mathcal{O}_3 , followed by $\ell \geq 0$ applications of \mathcal{O}_1 or \mathcal{O}_2 .

Type 4: U is obtained from:

- 1. a **Type 3** graph by joining some $v \in \text{Sta}(A)$ to the vertex k_1 of K, followed by $\ell \geq 0$ applications of \mathcal{O}_1 or \mathcal{O}_2 .
- 2. a **Type 3** graph by exactly one application of \mathcal{O}_3 , followed by $\ell \geq 0$ applications of \mathcal{O}_1 or \mathcal{O}_2 .

Type 5: U is obtained from B_2 by $\ell \ge 0$ applications of \mathcal{O}_1 or \mathcal{O}_2 .

Type 6: U is obtained from B_3 by $\ell \ge 0$ applications of \mathcal{O}_1 or \mathcal{O}_2 .

Observation 5 If U is in C, then $\operatorname{Sta}(B)$ is a γ_r -set of U of cardinality $\left\lceil \frac{n}{3} \right\rceil$.

Proof. Suppose that U is in C. Then U is of **Type i**, where $1 \leq i \leq 6$. That $\operatorname{Sta}(B)$ is a **RDS** of U follows from Observation 4, the fact that if an isolated vertex of status B is joined to any vertex of a status labeled unicyclic graph in which $\operatorname{Sta}(B)$ is a **RDS**, then in the resulting unicyclic graph $\operatorname{Sta}(B)$ is still a **RDS**, and the fact that if the vertex k_1 of K is joined to any vertex of status A of a status labeled unicyclic graph in which $\operatorname{Sta}(B)$ is a **RDS**, then in the resulting unicyclic graph $\operatorname{Sta}(B)$ is still a **RDS**.

If U is a **Type 1** graph, then $n(U) \equiv 0 \mod 3$ and $|\operatorname{Sta}(B)| = \frac{n}{3}$, since B_1 contributes one vertex out of three to $\operatorname{Sta}(B)$, while each of the $\ell \geq 0$ applications of \mathcal{O}_1 or \mathcal{O}_2 contributes one vertex out of three to $\operatorname{Sta}(B)$.

Suppose U is a **Type 2** graph obtained from the **Type 1** graph U' by joining a vertex v in U to a vertex w of K_1 , setting $\operatorname{Sta}(w) = B$, and then following this by $\ell \geq 0$ applications of \mathcal{O}_1 or \mathcal{O}_2 .

Then $n(U') \equiv 0 \mod 3$ and U' has exactly $\frac{n(U')}{3}$ vertices of status B, and so $n(U) \equiv 1 \mod 3$ and $|\operatorname{Sta}(B)| = \frac{n(U)-1}{3} + 1 = \frac{n+2}{3}$, since w contributes one vertex to both $\operatorname{Sta}(B)$ and n(U), while each of the $\ell \geq 0$ applications of \mathcal{O}_1 or \mathcal{O}_2 contributes one vertex out of three to $\operatorname{Sta}(B)$. As $n \equiv 1 \mod 3$, we have $\lceil \frac{n}{3} \rceil = \frac{n+2}{3}$, and so $|\operatorname{Sta}(B)| = \lceil \frac{n}{3} \rceil$.

For a **Type 3** graph, $n \equiv 2 \mod 3$, while $|\text{Sta}(B)| = \frac{n-2}{3} + 1 = \frac{n+1}{3} = \lceil \frac{n}{3} \rceil$.

For a **Type 4** graph, $n \equiv 1 \mod 3$, while $|\operatorname{Sta}(B)| = \lceil \frac{n-2}{3} \rceil + 1 = \lceil \frac{n+1}{3} \rceil = \lceil \frac{n}{3} \rceil$.

For graphs of **Type 5** and **Type 6**, $n \equiv 1 \mod 3$, while $|\operatorname{Sta}(B)| = \frac{n-1}{3} + 1 = \frac{n+2}{3} = \lceil \frac{n}{3} \rceil$.

Thus, $\left\lceil \frac{n}{3} \right\rceil = |\operatorname{Sta}(B)| \ge \gamma_r(U) \ge \left\lceil \frac{n}{3} \right\rceil$, and the observation holds. \diamond

Let U be a unicyclic graph and denote its unique cycle by C. A reference path of U is a path $v = u_0, u_1, \ldots, u_t$, where $v \in C$, u_t is a leaf, and $u_i \notin C$ for $i = 1, \ldots, t$. We are now ready to state our characterization.

Theorem 4 Let U be a unicyclic graph of order $n \ge 3$. Then $U \in \mathcal{E}$ if and only if U can be status labeled in such a way that it is in \mathcal{C} .

Proof. Suppose $U \in \mathcal{C}$. By Observation 5, $U \in \mathcal{E}$.

Now, assume $U \in \mathcal{E}$ and let S be a γ_r -set of U. We proceed by induction on n. If n = 3, then $U = C_3$, and so it can be status labeled as B_1 which is in \mathcal{C} . Therefore, assume $n \ge 4$ and, for all $U' \in \mathcal{E}$ such that $3 \le n(U') < n$, U' can be status labeled so that it is in \mathcal{C} . (Henceforth, we will abuse notation slightly by just saying that $U' \in \mathcal{C}$.) Suppose U is a cycle. If $n \equiv 2 \mod 3$, then Observation 3 is contradicted. Thus, $n \equiv 0$ or 1 mod 3, and so U is of **Type 1** or **Type 5**. Thus, there exists $v \in V(U)$ such that $\deg(v) \ge 3$.

Throughout, S will denote a γ_r -set for U.

Before proceeding further, we prove the following two claims.

Claim 1 Suppose $v' = w_0, w_1, \ldots, w_s$ is a reference path of U. If $w_{s-1} \in S$, then $U \in \mathcal{C}$.

Proof. As $w_s \in S$, S is not independent, and so, by Observations 1, 2 and 3, n = 3q + 1 for some positive integer q, and Property 1 of Observation 2 is satisfied. Let $U' = U - w_s$, and notice that $S' = S - \{w_s\}$ is a **RDS** of U', while n(U') = 3q. Moreover, S' is a **RDS** of U' of size $\lceil \frac{3q+1}{3} \rceil - 1 = q$, whence $q = \frac{3q}{3} \leq \gamma_r(U') \leq |S'| = q$. Thus, $U' \in \mathcal{E}$, and, by the induction assumption, $U' \in \mathcal{C}$. As $n(U') \equiv 0 \mod 3$, the graph U' is of **Type 1**. U can now be obtained from U' by joining w_s to w_{s-1} , and setting $\operatorname{Sta}(w_s) = B$, and so U is of **Type 2**.

Claim 2 Suppose $v' = w_0, w_1, \ldots, w_s$ is a reference path in U. If w_{s-1} is adjacent to a vertex $w'_s \in S - \{w_s\}$, then $U \in C$.

Proof. As $w'_s, w_s \in S$, $w_{s-1} \notin S$, since otherwise either Observation 1, 2 or 3 will be contradicted. Let $U' = U - w_s$ and notice that $S' = S - \{w_s\}$ is a **RDS** of U'. Then, since $|N(w_{s-1}) \cap S| \ge 2$, Observations 1 and 3 imply that n = 3q + 1 for some positive integer q. Therefore, n(U') = 3q. Also, S' is a **RDS** of U' of size $\lceil \frac{3q+1}{3} \rceil - 1 = q$, whence $q = \frac{3q}{3} \le \gamma_r(U') \le |S'| = q$. Thus, $U' \in \mathcal{E}$, and, by the induction assumption, $U' \in \mathcal{C}$. As $n(U') \equiv 0 \mod 3$, the graph U' is of **Type 1**. U can now be obtained from U' by joining w_s to w_{s-1} , and setting $\operatorname{Sta}(w_s) = B$, and so U is of **Type 2**.

By Claims 1 and 2, we conclude that if w is a remote vertex of U, then $w \notin S$ and $\deg(w) = 2$.

Let C denote the unique cycle of U. Among all vertices $v \in C$ such that $\deg(v) \geq 3$, choose the reference path $P = v, u_1, \ldots, u_t$ for which t is as large as possible. We call a reference path an **R**t path if $\deg(v) = 3$ and $\deg(u_i) = 2$ for $i = 1, \ldots, t - 1$.

We begin by reducing reference paths to either **R1**, **R2** or **R3**.

Case 1. $t \geq 2$.

Since u_{t-1} is a remote vertex, $\deg(u_{t-1}) = 2$, $u_{t-1} \notin S$ and so $u_{t-2} \notin S$.

Case 1.1. t = 2. Note that $v = u_{t-2}$.

Suppose that $\deg(v) \ge 4$. Then v is either a remote vertex or v lies on a reference path v, u'_1, u'_2 , where $\{u'_1, u'_2\} \cap \{u_1, u_2\} = \emptyset$, $\deg(u'_1) = 2$ and $u'_1 \notin S$.

As $v \notin S$, Property 4 of Observation 2 must be satisfied. Then $\deg(v) = 4$, $|N(v) \cap (V-S)| \ge 3$, $u_2 \in S$ and n = 3q + 1 where q is a positive integer. Let $U' = U - u_1 - u_2$, and notice that $S' = S - \{u_2\}$ is a **RDS** of U'. Then U' has order n - 2 = 3(q - 1) + 2 and |S'| = q. Thus, $U' \in \mathcal{E}$, and Observation 3 holds for U'. Moreover, by the induction assumption, $U' \in \mathcal{C}$. In fact, U' is of **Type 3**. By Observation 3 and 5, $\operatorname{Sta}(B)$ is a $\gamma_r(U')$ -set which is independent. If v is a remote vertex, then since the leaf adjacent to v is in $\operatorname{Sta}(B)$, $v \notin \operatorname{Sta}(B)$. If v is not a remote vertex, then $v \in \operatorname{Sta}(B)$ would imply that $u'_1 \in \operatorname{Sta}(B)$, which contradicts the fact that $\operatorname{Sta}(B)$ is independent. Thus, $\operatorname{Sta}(v) = A$. U can now be obtained from U' by joining v to vertex u_1 of $\langle \{u_1, u_2\} \rangle$, and setting $\operatorname{Sta}(u_1) = A$ and $\operatorname{Sta}(u_2) = B$, and so U is of **Type 4**.

Thus, if t = 2, then $\deg(v) = 3$ and $\deg(u_1) = 2$.

Case 1.2. $t \ge 3$.

We first show that $\deg(u_{t-2}) = 2$. Suppose, to the contrary, that $\deg(u_{t-2}) \ge 3$. Since $u_{t-2} \notin S$, Observation 1 implies that $n \not\equiv 0 \mod 3$.

Let $U' = U - u_{t-1} - u_t$. Suppose n = 3q + 2 for some positive integer q. Since $u_{t-2} \notin S$, we have, by Observation 3, $\deg(u_{t-2}) = 3$ and $|N(u_{t-2}) \cap (V - S)| \ge 2$, and so $S' = S - \{u_t\}$ is a **RDS** of U'. Thus, $U' \in \mathcal{E}$ and U' must be of **Type 1**. By Observation 1, $\operatorname{Sta}(B)$ is an independent set of U', and so $\operatorname{Sta}(u_{t-2}) = A$. We obtain U by attaching u_{t-1} to u_{t-2} , and setting $\operatorname{Sta}(u_{t-1}) = A$ and $\operatorname{Sta}(u_t) = B$. Hence, U is of **Type 3**.

Suppose n = 3q + 1 for some positive integer q. Since $u_{t-2} \notin S$ and $\deg(u_{t-2}) \geq 3$, one of the Properties 2, 3 or 4 of Observation 2 must hold. Suppose Property 2 holds. Then $\deg(u_{t-2}) = 3$ and $|N(u_{t-2}) \cap S| = 2$. Then, besides $u_{t-3} \in S$, u_{t-2} is adjacent to exactly one other vertex in S, say w. If $\deg(w) \geq 2$, then, by our choice of the reference path P, w must be adjacent a leaf, which contradicts the fact that S is an independent set. Thus, w is a leaf, and it follows by Claim 2 that $U \in C$. Hence, suppose either Property 3 or 4 holds. In both cases, u_{t-2} is adjacent to a vertex in $V - S - \{u_{t-1}\}$. It follows that $S' = S - \{u_t\}$ is a **RDS** of U'. Thus, $U' \in \mathcal{E}$ and U' must be of **Type 3**. By Observation 3, $\operatorname{Sta}(B)$ is an independent set of U', and so $\operatorname{Sta}(u_{t-2}) = A$. We obtain U by attaching u_{t-1} to u_{t-2} , and setting $\operatorname{Sta}(u_{t-1}) = A$ and $\operatorname{Sta}(u_t) = B$. Hence, U is of **Type 4**.

We may assume that $\deg(u_{t-2}) = 2$, whence $u_{t-3} \in S$. Note that u_{t-3} is not adjacent to a leaf, since otherwise $U \in \mathcal{C}$ by Claim 1. Suppose u_{t-3} lies on the reference path $v = u_0, \ldots, u_{t-3}, u'_{t-2}, u'_{t-1}$, where $\deg(u'_{t-2}) = 2$. Since $u_{t-3} \in S$, it follows that $\{u_{t-3}, u'_{t-2}, u'_{t-1}\} \subseteq S$, and Observations 1, 2 and 3 cannot be satisfied.

Suppose that $t \ge 4$. We may assume that every reference path that contains u_{t-3} has the form $v, u_1, \ldots, u_{t-3}, u'_{t-2}, u'_{t-1}, u'_t$, where $\deg(u'_{t-2}) = \deg(u'_{t-1}) = 2$, $u_{t-3} \in S$ and $u'_{t-2}, u'_{t-1} \notin S$. Let U' be obtained by removing from U every path of the form u'_{t-2}, u'_{t-1}, u'_t . Then $U' \in \mathcal{E}$. By the induction assumption, U' is of **Type i** for some $\mathbf{i} \in \{1, \ldots, 6\}$. Since u_{t-3} is a leaf of U', $\operatorname{Sta}(u_{t-3}) = B$. It follows that U can be obtained from U' by $\deg(u_{t-3}) - 1$ applications of \mathcal{O}_1 by joining u_{t-3} to the vertex u'_{t-2} of each of the deleted paths u'_{t-2}, u'_{t-1}, u'_t , and setting

 $\operatorname{Sta}(u_{t-2}') = \operatorname{Sta}(u_{t-2}') = A$ and $\operatorname{Sta}(u_t') = B$. Thus, U is of **Type i**.

So suppose t = 3. Furthermore, suppose $\deg(v) \ge 4$. We may assume that v lies on more than one reference path of the form v, u'_1, u'_2, u'_3 , where $\deg(u'_2) = \deg(u'_1) = 2$, $v \in S$ and $u_1, u_2 \notin S$. Let U' be obtained by removing the vertices u'_1, u'_2 and u'_3 . Then $\deg_{U'}(v) \ge 3$, $U' \in \mathcal{E}$, and so U' is of **Type** i for some $i \in \{1, \ldots, 6\}$. If $v \notin \operatorname{Sta}(B)$, then $\{u_2, u_3\} \subseteq \operatorname{Sta}(B)$, contradicting Observations 1, 2 and 3. Thus, $\operatorname{Sta}(v) = B$. It follows that U can be obtained from U' by applying \mathcal{O}_1 once by joining v to the vertex u_1 of the deleted path u_1, u_2, u_3 , and setting $\operatorname{Sta}(u_1) = \operatorname{Sta}(u_2) = A$ and $\operatorname{Sta}(u_3) = B$. Thus, U is of **Type** i.

Thus, if $t \ge 3$, then t = 3 and $\deg(v) = 3$.

Case 2. t = 1. By Claim 1, deg(v) = 3, since otherwise $U \in \mathcal{C}$. Thus, if t = 1, then deg(v) = 3.

We have now reduced P to either an **R1**, **R2** or **R3** path. We may therefore assume that each reference path of U is either an **R1**, **R2** or **R3** path.

Suppose v_i, u_1 is an **R1** path of U. By Claim 2, $N[v_i] \cap S = \{u_1\}$ since otherwise $U \in C$. Since $v_i \notin S$ and $\deg(v_i) = 3$, Observation 1 implies that $n \not\equiv 0 \mod 3$. Let v_{i-1} and v_{i+1} be the neighbors of v_i on the cycle C of U. Since the cycle in U contains at least four vertices, consider the path $v_{i-2}, v_{i-1}, v_i, v_{i+1}, v_{i+2}$ on C. If $v_{i-2} = v_{i+2}$, then U is of **Type 3** or **Type 4**. Thus, $v_{i-2} \neq v_{i+2}$.

In what follows, U' is the graph obtained by removing v_i and u_1 and joining v_{i-1} and v_{i+1} . Then $S' = S - \{u_1\}$ is a $\gamma_r(U')$ -set of size $\lceil \frac{n-2}{3} \rceil$, and so $U' \in \mathcal{E}$. By the induction hypothesis, $U' \in \mathcal{C}$. If $n \equiv 1 \mod 3$, then U' is of **Type 3**; if $n \equiv 2 \mod 3$, then U' is of **Type 1**.

We first show that $\deg(v_{i+1}) = 2$. Suppose, to the contrary, $\deg(v_{i+1}) \ge 3$. Then, since $v_{i+1} \notin S$, we have (cf. Observation 3) $n \equiv 1 \mod 3$, S is independent, $\deg(v_{i+1}) = 3$, and v_{i+1} lies on either an **R1** or an **R2** path. Suppose v_{i+1} lies on an **R1** path. Then (cf. Observation 3 applied to U'), it follows that $\{v_{i-1}, v_{i+1}\} \subseteq \operatorname{Sta}(A)$. By applying \mathcal{O}_3 once, and setting $\operatorname{Sta}(v_i) = A$ and $\operatorname{Sta}(u_1) = B$, we see that U is of **Type 4**.

Suppose v_{i+1} lies on an **R2** path v_{i+1}, u'_1, u'_2 . Let $U'' = U - u'_1 - u'_2$, and $S'' = S - \{u'_2\}$. Then S'' is a $\gamma_r(U'')$ -set of size $\lceil \frac{n-2}{3} \rceil$, and so $U'' \in \mathcal{E}$. By the induction hypothesis, $U'' \in \mathcal{C}$. As $n \equiv 1 \mod 3$, U'' is of **Type 3**. Observation 3 holds for U'', and so $\operatorname{Sta}(B)$ is an independent set, whence $v_i \notin \operatorname{Sta}(B)$, while $N(v_i) \cap \operatorname{Sta}(B) = \{u_1\}$. Thus, $\operatorname{Sta}(v_{i+1}) = A$. We obtain U by attaching u'_1 to v_{i+1} , and setting $\operatorname{Sta}(u'_1) = A$ and $\operatorname{Sta}(u'_2) = B$. Hence, U is of **Type 4**.

Similarly, $\deg(v_{i-1}) = 2$. It now follows that $\{v_{i-2}, v_{i+2}\} \subseteq S$.

Suppose both v_{i-2} and v_{i+2} lie on **R3** paths. To avoid contradicting Observations 2 and 3, vertices v_{i-2} and v_{i+2} cannot lie on an **R1** or **R2** path.

Suppose n = 3q + 1 where $q \ge 2$. Observation 3 holds for U'. Thus, $\operatorname{Sta}(B)$ is an independent $\gamma_r(U')$ -set, and so $\{v_{i-2}, v_{i+2}\} \subseteq \operatorname{Sta}(B)$, whence $\{v_{i-1}, v_{i+1}\} \subseteq \operatorname{Sta}(A)$. By applying \mathcal{O}_3 once, and setting $\operatorname{Sta}(v_i)$ and $\operatorname{Sta}(u_1) = B$, we see that U is of **Type 4**.

Suppose n = 3q + 2 where $q \ge 2$. Then U' has order n - 2 = 3q, and |S'| = q. Thus, $U' \in \mathcal{C}$ and U' must be of **Type 1**. It follows again that $\{v_{i-1}, v_{i+1}\} \subseteq \text{Sta}(A)$. By applying \mathcal{O}_3 once, and setting $\text{Sta}(v_i) = A$ and $\text{Sta}(u_1) = B$, we see that U is of **Type 3**.

We may assume that either v_{i-2} or v_{i+2} has degree 2 – suppose deg $(v_{i+2}) = 2$.

Suppose deg $(v_{i+3}) \ge 3$. Then Property 3 of Observation 2 holds, S is independent, and so $v_{i+3} \notin S$. If v_{i+3} lies on an **R1** path, then $|N(v_{i+3}) \cap S| \ge 2$, which is a contradiction. Thus, v_{i+3} lies on a **R2** path v_{i+1}, u'_1, u'_2 . Let $U'' = U - u'_1 - u'_2$, and $S'' = S - \{u'_2\}$. Then S'' is a $\gamma_r(U'')$ -set of size $\lceil \frac{n-2}{3} \rceil$, and so $U'' \in \mathcal{E}$. By the induction hypothesis, $U'' \in \mathcal{C}$. As $n \equiv 1 \mod 3$, U'' is of **Type 3.** Observation 3 holds for U'', and so $\operatorname{Sta}(B)$ is an independent set, whence $v_i \notin \operatorname{Sta}(B)$, while $N(v_i) \cap \operatorname{Sta}(B) = \{u_1\}$. Thus, $\operatorname{Sta}(v_{i+1}) = A$, $\operatorname{Sta}(v_{i+2}) = B$, while $\operatorname{Sta}(v_{i+3}) = A$. We obtain U by attaching u'_1 to v_{i+3} , and setting $\operatorname{Sta}(u'_1) = A$ and $\operatorname{Sta}(u'_2) = B$. Hence, U is of **Type 4**.

Consider the path $v_i, v_{i+1}, v_{i+2}, v_{i+3}, v_{i+4}$, where $v_{i+2} \in S$ and $v_i, v_{i+1}, v_{i+3}, v_{i+4} \notin S$. We form U''' by removing the vertices $v_{i+1}, v_{i+2}, v_{i+3}$ and joining v_i and v_{i+4} . The set $S''' = S - \{v_{i+2}\}$ is a $\gamma_r(U''')$ -set of size $\lceil \frac{n(U''')}{3} \rceil \rceil$, and so $U''' \in \mathcal{E}$. By the induction hypothesis, $U''' \in \mathcal{C}$ and U''' is of any type except of **Type 1**. By Observations 2 and 3, $\{v_i, v_{i+4}\} \not\subseteq \text{Sta}(B)$. Thus, $\text{Sta}(v_i) = \text{Sta}(v_{i+4}) = A$, $\text{Sta}(v_i) = B$ and $\text{Sta}(v_{i+4}) = A$ or $\text{Sta}(v_i) = A$ and $\text{Sta}(v_{i+4}) = B$. U can now be obtained by reinserting the path $v_{i+1}, v_{i+2}, v_{i+3}$ and labeling the vertices consecutively by either (1) A,B,A (2) A,A,B or (3) B, A, A, and so we have applied \mathcal{O}_2 to U'''. Thus, U is of any type except of **Type 1**.

Therefore, we may assume that U has no **R1** paths.

Suppose U has at least one **R2** path v_i, u_1, u_2 . By Claim 1, $u_1 \notin S$, and so $v_i \notin S$. Without loss of generality, assume $v_{i-1} \in S$. By Observations 1, 2 and 3, U can have at most two **R2** paths. Then Observation 2 or 3 holds. If U has a cycle of three or five vertices, then we are done. If U has a cycle of four vertices, we have a contradiction. Thus, U has a cycle on at least six vertices.

Suppose U has exactly two **R2** paths, and let v_j, u'_1, u'_2 be the other **R2** path. Then, as before, $v_j, u'_1 \notin S$. Thus, Property 3 of Observation 2 holds, and so n = 3q + 1 where $q \ge 3$. Moreover, $v_{i+1} \notin S$, and so $v_{i+2} \in S$, $v_{i+3}, v_{i+4} \notin S$, while $v_{i+5} \in S$. Note that $v_{i-1} = v_{i+5}$ is possible.

Suppose j = i + 1. Let r' $(0 \le r' \le 1)$ denote the number of **R3** paths attached to v_{i+2} . We form U' by removing the vertices $v_{i+2}, v_{i+3}, v_{i+4}$, and the 3r' vertices of the possible **R3** path, and then joining v_{i+1} and v_{i+5} . Then the order of U' is n - 3 - 3r' = 3(q - r' - 1) + 1, and $\gamma_r(U') = q - r'$. Thus, $U' \in \mathcal{E}$ and Observation 2 holds. Hence, $v_{i+1}, v_i, u'_1 \in \text{Sta}(A)$, and therefore $\text{Sta}(v_{i+5}) = B$. Then U' must be of **Type i**, where $\mathbf{i} \in \{2, 4, 5, 6\}$. Remove the edge $v_{i+1}v_{i+5}$, reinsert the path $v_{i+2}, v_{i+3}, v_{i+4}$ and label the vertices consecutively B, A, A. By applying \mathcal{O}_1 to v_{i+2} (if necessary), we obtain U. Hence, U is of **Type i**, where $\mathbf{i} \in \{2, 4, 5, 6\}$.

Thus, v_{i+1} is not on an **R2** path.

Suppose v_{i+2} is not on an **R3** path, and suppose j = i + 3. We form U' by removing the vertices $v_{i+1}, v_{i+2}, v_{i+3}, u'_1, u'_2$, and then joining v_i and v_{i+4} . Then the order of U' is n-5 = 3(q-2)+2, and $\gamma_r(U') = q-1$. Thus, $U' \in \mathcal{E}$, U' is of **Type 3**, and Observation 3 holds. Thus, $\text{Sta}(v_i) = A$.

Suppose that $\operatorname{Sta}(v_{i+4}) = B$. Remove the edge $v_i v_{i+4}$, reinsert the path $v_{i+1}, v_{i+2}, v_{i+3}$ and label the vertices consecutively B, A, A. We obtain U by attaching u'_1 to v_{i+3} , and setting $\operatorname{Sta}(u'_1) = A$ and $\operatorname{Sta}(u'_2) = B$. Hence, U is of **Type 4**.

Thus, $\operatorname{Sta}(v_{i+4}) = A$. Remove the edge $v_i v_{i+4}$, reinsert the path $v_{i+1}, v_{i+2}, v_{i+3}$ and label the vertices consecutively A, B, A. We obtain U by attaching u'_1 to v_{i+3} , and setting $\operatorname{Sta}(u'_1) = A$ and $\operatorname{Sta}(u'_2) = B$. Hence, U is of **Type 4**.

Thus, $j \neq i+3$. We form U' by removing the vertices $v_{i+1}, v_{i+2}, v_{i+3}$, and then joining v_i and v_{i+4} . The order of U' is n-3 = 3(q-1)+1, and $\gamma_r(U') = q$. Thus, $U' \in \mathcal{E}$, U' is of **Type i**, where $\mathbf{i} \in \{2, 4, 5, 6\}$. By Property 3 of Observation 2, $\operatorname{Sta}(v_i) = A$. Suppose $\operatorname{Sta}(v_{i+4}) = B$. Remove the edge $v_i v_{i+4}$, reinsert the path $v_{i+1}, v_{i+2}, v_{i+3}$ and label the vertices consecutively B, A, A. Thus, U is of **Type i**, where $\mathbf{i} \in \{2, 4, 5, 6\}$.

Thus, $\text{Sta}(v_{i+4}) = A$. Remove the edge $v_i v_{i+4}$, reinsert the path $v_{i+1}, v_{i+2}, v_{i+3}$ and label the vertices consecutively A, B, A. Thus, U is of **Type i**, where $\mathbf{i} \in \{2, 4, 5, 6\}$.

Now, suppose that v_{i+2} is on an **R3** path

Suppose $j \in \{i+3, i+4\}$. Let $U' = U - u'_1 - u'_2$. Then the order of U' is n-2 = 3q-1 = 3(q-1)+2, and $\gamma_r(U') = q$. Thus, $U' \in \mathcal{E}$, U' is of **Type 3**, and Observation 3 holds. Hence, $\operatorname{Sta}(v_{i+2}) = B$, and so $\operatorname{Sta}(v_{i+1}) = \operatorname{Sta}(v_{i+3}) = A$, whence $\operatorname{Sta}(v_{i+4}) = A$. We obtain U by attaching u'_1 to v_j , and setting $\operatorname{Sta}(u'_1) = A$ and $\operatorname{Sta}(u'_2) = B$. Hence, U is of **Type 4**.

Thus, $j \notin \{i+3, i+4\}$. Let $r' \ (0 \le r' \le 1)$ denote the number of **R3** paths attached to v_{i+5} . We form U' by removing the vertices $v_{i+3}, v_{i+4}, v_{i+5}$, and the 3r' vertices of the **R3** paths on v_{i+5} , and then joining v_{i+2} and v_{i+6} . Note that $v_{i+6} \ne v_i$, since $j \notin \{i, \ldots, i+5\}$. Now, the order of U' is n-3-3r'=3(q-1-r')+1 and $\gamma_r(U')=q-r'$. Thus, $U' \in \mathcal{E}$, U' is of **Type i**, where $\mathbf{i} \in \{2, 4, 5, 6\}$, and Property 3 of Observation 2 holds. Hence, $\operatorname{Sta}(v_{i+2}) = B$, and so $\operatorname{Sta}(v_{i+1}) = \operatorname{Sta}(v_{i+6}) = A$. Remove the edge $v_{i+2}v_{i+6}$, reinsert the path $v_{i+3}, v_{i+4}, v_{i+5}$, and label the vertices consecutively A, A, B. By applying \mathcal{O}_1 to v_{i+5} (if necessary), we obtain U. Hence, U is of **Type i**, where $\mathbf{i} \in \{2, 4, 5, 6\}$.

Thus, v_i, u_1, u_2 is the only **R2** path of U.

Suppose n = 3q + 2 for some $q \ge 2$, and so Observation 3 holds. Since $v_{i-1} \in S$, $v_{i+1} \notin S$, and so $v_{i+2} \in S$, $v_{i+3} \notin S$, $v_{i+4} \notin S$, while $v_{i+5} \in S$. Note that $v_{i-1} = v_{i+5}$ is possible.

Suppose v_{i+2} is not on an **R3** path. We form U' by removing the vertices $v_{i+1}, v_{i+2}, v_{i+3}$, and then joining v_i and v_{i+4} . The order of U' is n-3 = 3(q-1)+2, and $\gamma_r(U') = q$. Thus, $U' \in \mathcal{E}$, U' is of **Type 3**. By Observation 3, $\operatorname{Sta}(v_i) = A$. Suppose $\operatorname{Sta}(v_{i+4}) = B$. Remove the edge $v_i v_{i+4}$, reinsert the path $v_{i+1}, v_{i+2}, v_{i+3}$ and label the vertices consecutively B, A, A. Thus, U is of **Type 3**. Hence, $\operatorname{Sta}(v_{i+4}) = A$. Remove the edge $v_i v_{i+4}$, reinsert the path $v_{i+1}, v_{i+2}, v_{i+3}$ and label the vertices consecutively A, A. Thus, U is of **Type 3**.

So suppose v_{i+2} is on an **R3** path. Let $r' (0 \le r' \le 1)$ denote the number of **R3** paths attached to v_{i+5} . We form U' by removing the vertices $v_{i+3}, v_{i+4}, v_{i+5}$, and the 3r' vertices of the **R3** paths on v_{i+5} , and then joining v_{i+2} and v_{i+6} . Note that $v_{i+6} = v_i$ is possible. Now, the order of U' is n-3-3r'=3(q-1-r')+2 and $\gamma_r(U')=q-r'$. Thus, $U' \in \mathcal{E}$, U' is of **Type 3**, and Observation 3 holds. Hence, $\operatorname{Sta}(v_{i+2}) = B$, and so $\operatorname{Sta}(v_{i+1}) = \operatorname{Sta}(v_{i+6}) = A$. Remove the edge $v_{i+2}v_{i+6}$, reinsert the path $v_{i+3}, v_{i+4}, v_{i+5}$, and label the vertices consecutively A, A, B. By applying \mathcal{O}_1 to v_{i+5} (if necessary), we obtain U. Hence, U is of **Type 3**.

Suppose n = 3q + 1 for some $q \ge 2$, and so Property 2 of Observation 2 holds. Consider the path $v_i, v_{i+1}, v_{i+2}, v_{i+3}, v_{i+4}$, where $\{v_{i+1}, v_{i+4}\} \subseteq S$ and $\{v_i, v_{i+2}, v_{i+3}\} \cap S = \emptyset$. Let $r' \ (0 \le r' \le 1)$ denote the number of **R3** paths on v_{i+1} . We form U' by removing the vertices $v_{i+1}, v_{i+2}, v_{i+3}$, and the 3r' vertices of the **R3** paths, and then joining v_i and v_{i+4} . The order of U' is n - 3 - 3r' = 3(q - r' - 1) + 1 and $\gamma_r(U') = q - r'$. Thus, $U' \in \mathcal{E}$, Property 2 of Observation 2 holds, while U' is of **Type i**, where $\mathbf{i} \in \{2, 4, 5, 6\}$. Thus, $\operatorname{Sta}(v_i) = A$, and $\operatorname{Sta}(v_{i-1}) = B = \operatorname{Sta}(v_{i+4})$. Remove the edge $v_i v_{i+4}$, reinsert the path $v_{i+1}, v_{i+2}, v_{i+3}$, and label the vertices consecutively B, A, A. By applying \mathcal{O}_1 to v_{i+1} (if necessary), we obtain U. Thus, U is of **Type i**, where $\mathbf{i} \in \{2, 4, 5, 6\}$.

Thus, we may assume that U has only **R3** paths, and so V - S has only degree two vertices. Therefore, Observation 1 or Observation 2 holds, respectively. So n = 3q + 1 (3q, respectively), where $q \ge 2$. If U has a cycle on three, four or six vertices, then we are done. If U has a cycle on five vertices, then we reach a contradiction. Let v_i be a vertex that lies on an **R3** path. Consider the path $v_i, v_{i+1}, v_{i+2}, v_{i+3}, v_{i+4}$, where $v_{i+1} \notin S, v_{i+2} \notin S$ and $v_{i+3} \in S$. Let r' ($0 \le r' \le 1$) be the number of **R3** paths attached to v_{i+3} . We form U' by removing $v_{i+1}, v_{i+2}, v_{i+3}$, and the 3r' vertices on the **R3** paths on v_{i+3} , and then joining v_i and v_{i+4} . Then U' has order n - 3 - 3r' = 3(q - r' - 1) + 1 (n - 3 - 3r' = 3(q - r' - 1), respectively), and $\gamma_r(U') = q - r' (\gamma_r(U') = q - r' - 1$, respectively). Thus, $U' \in \mathcal{E}$, and U' is of **Type i**, where $\mathbf{i} \in \{2, 4, 5, 6\}$ (**Type 1**, respectively). Thus, Observation 2 (Observation 1, respectively) holds. Hence, $\operatorname{Sta}(v_i) = B$. Remove the edge $v_i v_{i+4}$, reinsert the path $v_{i+1}, v_{i+2}, v_{i+3}$, and label the vertices consecutively A, A, B. Thus, U is of **Type i**, where $\mathbf{i} \in \{2, 4, 5, 6\}$, or U is of **Type 1** and the proof is complete. \Box

References

- G. Chartrand and L. Lesniak, Graphs & Digraphs: Fourth Edition, Chapman & Hall, Boca Raton, FL, 2005.
- [2] P. Dankelmann, D. Day, J.H. Hattingh, M. A. Henning, L R. Markus and H. C. Swart, On equality in an upper bound for the restrained and total domination numbers of a graph. To appear in *Discrete Math.*
- [3] P. Dankelmann, J.H. Hattingh, M.A. Henning and H.C. Swart, Trees with equal domination and restrained domination numbers. J. Global Optim. 34 (2006), 597-607.
- [4] G.S. Domke, J.H. Hattingh, S.T. Hedetniemi, and L.R. Markus, Restrained domination in trees. Discrete Math. 211 (2000) 1–9.
- [5] G.S. Domke, J.H. Hattingh, M.A. Henning, and L.R. Markus, Restrained domination in graphs with minimum degree two. J. Combin. Math. Combin. Comput. 35 (2000) 239–254.
- [6] G.S. Domke, J.H. Hattingh, S.T. Hedetniemi, R.C. Laskar, and L.R. Markus, Restrained domination in graphs. *Discrete Math.* 203 (1999), 61–69.
- [7] J.H. Hattingh and M.A. Henning, Restrained domination excellent trees. To appear in Ars Combin.
- [8] J.H. Hattingh, E. Jonck, E. J. Joubert and A.R. Plummer, Nordhaus-Gaddum results for restrained domination and total restrained domination in graphs. To appear in *Discrete Math.*
- [9] J.H. Hattingh and A.R. Plummer, A note on restrained domination in trees. To appear in Ars Combin.
- [10] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1997.
- [11] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater (eds), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1997.
- M.A. Henning, Graphs with large restrained domination number. Discrete Math. 197/198 (1999) 415-429.
- [13] B. Zelinka, Remarks on restrained and total restrained domination in graphs, Czechoslovak Math. J. 55 (130) (2005) 393–396.