Total restrained domination in unicyclic graphs

¹Johannes H. Hattingh, ²Ernst J. Joubert, ²Elizabeth Jonck and ³Andrew R. Plummer

> ¹Department of Mathematics and Statistics Georgia State University Atlanta, GA 30303-3083, USA

> > ²Department of Mathematics University of Johannesburg PO Box 524 Auckland Park 2006, South Africa

> > ³Department of Linguistics The Ohio State University 222 Oxley Hall, 1712 Neil Avenue Columbus, OH 43210, USA

Abstract

Let G = (V, E) be a graph. A set $S \subseteq V$ is a total restrained dominating set if every vertex in V is adjacent to a vertex in S and every vertex of V - S is adjacent to a vertex in V - S. The total restrained domination number of G, denoted by $\gamma_{tr}(G)$, is the minimum cardinality of a total restrained dominating set of G. A unicyclic graph is a connected graph that contains precisely one cycle. We show that if U is a unicyclic graph of order n, then $\gamma_{tr}(U) \ge \lceil \frac{n}{2} \rceil$, and provide a characterization of graphs achieving this bound.

Keywords: Total restrained domination; Unicyclic graph MSC: 05C69

1 Introduction

In this paper, we follow the notation of [1]. Specifically, let G = (V, E) be a graph with vertex set V and edge set E. A set $S \subseteq V$ is a *dominating* set (**DS**) of G if every vertex in V - S is adjacent to a vertex in S. The *domination number* of G, denoted by $\gamma(G)$, is the minimum cardinality of a **DS** of G. The concept of domination in graphs, with its many variations, is now well studied in graph theory. The recent book of Chartrand and Lesniak [1] includes a chapter on domination. A thorough study of domination appears in [6, 7].

In this paper, we continue the study of a variation of the domination theme, namely that of total restrained domination - see [2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14].

A set $S \subseteq V$ is a total restrained dominating set (**TRDS**) if every vertex in V is adjacent to a vertex in S and every vertex in V - S is adjacent to a vertex in V - S. Every graph without isolated vertices has a **TRDS**, since S = V is such a set. The total restrained domination number of G, denoted by $\gamma_{tr}(G)$, is the minimum cardinality of a **TRDS** of G. A **TRDS** set of G of cardinality $\gamma_{tr}(G)$ is called a γ_{tr} -set of G.

Throughout, n and m denote the order and size of G, respectively. A unicyclic graph U of order n is a connected graph that contains exactly one cycle. Thus, U has size n. A vertex of degree one will be called a *leaf*, while a vertex adjacent to a leaf will be called a *remote vertex*. The *open neighborhood* of a vertex u, denoted N(u), is the set $\{v \in V | v \text{ is adjacent to } u\}$, while the *closed neighborhood* of u, denoted N[u], is defined as $N(u) \cup \{u\}$.

A graph G is status labeled if every vertex in V is labeled either A or B such that every vertex with label A is adjacent to a vertex with label A and to a vertex with label B, while every vertex with label B is adjacent to a vertex with label B. A vertex $v \in V$ has status A (B, respectively) if v is labeled A (B, respectively). The status of a vertex v will be denoted $\operatorname{Sta}(v)$. We define $\operatorname{Sta}(A)$ ($\operatorname{Sta}(B)$, respectively) as the set of vertices in V with status A (B, respectively).

The following result is due to Cyman and Raczek [3].

Theorem 1 Let G be a connected graph of order n and size m. Then $\gamma_{tr}(G) \geq \frac{3n}{2} - m$.

Proof. Let S be a γ_{tr} -set of G and consider $H = \langle V - S \rangle$ and $J = \langle S \rangle$. Let

 n_1 and m_1 be the order and size of H, respectively. Moreover, let n_2 and m_2 be the order and size of J, respectively. Thus $m_1 = \frac{1}{2} \sum_{v \in V-S} \deg_H(v) \ge \frac{1}{2}(n - \gamma_{tr}(G))$ and $m_2 = \frac{1}{2} \sum_{v \in S} \deg_J(v) \ge \frac{1}{2}\gamma_{tr}(G)$. Let m_3 denote the number of edges between S and V - S. Since S is a **DS**, every vertex in V - S is adjacent to at least one vertex in S. Thus, $m_3 \ge n - \gamma_{tr}(G)$. Hence, $m = m_1 + m_2 + m_3 \ge \frac{1}{2}(n - \gamma_{tr}(G)) + \frac{1}{2}\gamma_{tr}(G) + n - \gamma_{tr}(G)$, which implies that $\gamma_{tr}(G) \ge \frac{3n}{2} - m$. \Box

The following known result of [4] is an immediate consequence of Theorem 1.

Corollary 2 Let T be a tree of order n. Then $\gamma_{tr}(T) \geq \lceil \frac{n+2}{2} \rceil$.

In similar fashion, we derive our first main result.

Corollary 3 Let U be a unicyclic graph of order n. Then $\gamma_{tr}(U) \geq \lfloor \frac{n}{2} \rfloor$.

Hattingh et al. [4] provided a constructive characterization of trees achieving the lower bound given in Corollary 2, independent of γ_{tr} -set consideration. In the sequel, we constructively characterize unicyclic graphs achieving the lower bound given in Corollary 3, utilizing constructive operations governed by status labeling.

2 Unicylic graphs U of order n with $\gamma_{tr}(U) = \begin{bmatrix} \frac{n}{2} \end{bmatrix}$

Let \mathcal{E} denote the class of all unicyclic graphs U of order n such that $\gamma_{tr}(U) = \left\lceil \frac{n}{2} \right\rceil$. In order to provide the characterization, we state and prove a few observations.

Let $U \in \mathcal{E}$ and let S be a γ_{tr} -set of U.

Observation 1 If n is even, then every vertex of V - S is adjacent to exactly one vertex of S and adjacent to exactly one vertex of V - S, while every vertex in S is adjacent to exactly one vertex of S.

Proof. Assume *n* is even and consider the vertex *v*. If *v* is a leaf, then $v \in S$. Thus deg $(v) \ge 2$ for all $v \in V - S$. Now, let $v \in V - S$. Suppose $|N(v) \cap S| \ge 2$. Then $n = m \ge \frac{1}{2}(n - \gamma_{tr}(U)) + \frac{1}{2}\gamma_{tr}(U) + n - \gamma_{tr}(U) + \frac{1}{2}\gamma_{tr}(U) + \frac{1}{2}\gamma_$

1, which implies that $\gamma_{tr}(U) \geq \frac{n+2}{2} > \lceil \frac{n}{2} \rceil$, a contradiction. Suppose $|N(v) \cap (V-S)| \geq 2$. Then $n = m \geq \frac{1}{2}(n - \gamma_{tr}(U) + 1) + \frac{1}{2}\gamma_{tr}(U) + n - \gamma_{tr}(U)$, which implies that $\gamma_{tr}(U) \geq \lceil \frac{n+1}{2} \rceil > \lceil \frac{n}{2} \rceil$, a contradiction. Thus, every vertex in V - S is adjacent to exactly one vertex of S and adjacent to exactly one vertex of V - S.

Suppose there is a vertex $y \in S$ such that $|N(y) \cap S| \geq 2$. Then $n = m \geq \frac{1}{2}(n - \gamma_{tr}(G)) + \frac{1}{2}(\gamma_{tr}(G) + 1) + n - \gamma_{tr}(G)$, which implies that $\gamma_{tr}(U) \geq \lceil \frac{n+1}{2} \rceil > \lceil \frac{n}{2} \rceil$, a contradiction. Thus, every vertex in S is adjacent to exactly one vertex of S. \diamond

Observation 2 If n is odd, then S has exactly one of the following properties:

- 1. Every vertex in V S has degree 2, and there is exactly one vertex $y \in S$ such that $|N(y) \cap S| = 2$, while every other vertex of S is adjacent to exactly one vertex of S.
- 2. There is exactly one vertex $v \in V S$ such that $\deg(v) = 3$ and $|N(v) \cap (V S)| = 2$. Furthermore, every vertex in $V S \{v\}$ has degree 2, while every vertex in S is adjacent to exactly one vertex of S.

Proof. Assume *n* is odd. Let $v \in V - S$ such that $\deg(v) \geq 3$. If $|N(v) \cap S| \geq 2$, then $n = m \geq \frac{1}{2}(n - \gamma_{tr}(U)) + \frac{1}{2}\gamma_{tr}(U) + n - \gamma_{tr}(U) + 1$, and so $\gamma_{tr}(U) \geq \left\lceil \frac{n+2}{2} \right\rceil > \left\lceil \frac{n}{2} \right\rceil$, a contradiction. Thus, $|N(v) \cap S| = 1$. Suppose $\deg(v) \geq 4$. Then $|N(v) \cap (V - S)| \geq 3$. Thus, $n = m \geq \frac{1}{2}(n - \gamma_{tr}(U) + 2) + \frac{1}{2}\gamma_{tr}(U) + n - \gamma_{tr}(U)$, and so $\gamma_{tr}(U) \geq \left\lceil \frac{n+2}{2} \right\rceil > \left\lceil \frac{n}{2} \right\rceil$, a contradiction. Hence, $\deg(v) = 3$ and $|N(v) \cap (V - S)| = 2$. Moreover, every vertex in $V - S - \{v\}$ has degree 2. Suppose $y \in S$ such that $|N(y) \cap S| \geq 2$. Then $n = m \geq \frac{1}{2}(n - \gamma_{tr}(U) + 1) + \frac{1}{2}(\gamma_{tr}(U) + 1) + n - \gamma_{tr}(U)$, and so $\gamma_{tr}(U) \geq \left\lceil \frac{n+2}{2} \right\rceil > \left\lceil \frac{n}{2} \right\rceil$, a contradiction. Thus, $|N(y) \cap S| = 1$ for every vertex $y \in S$, and Property 2 holds.

We may assume that V - S has only degree 2 vertices.

Suppose $|N(y) \cap S| = 1$ for every vertex $y \in S$. Then, both S and V - S induce matchings, and so n is even, which is a contradiction. Thus, there is a vertex $y \in S$ such that $|N(y) \cap S| \geq 2$. Suppose $|N(y) \cap S| \geq 3$. Then $n = m \geq \frac{1}{2}(n - \gamma_{tr}(U)) + \frac{1}{2}\gamma_{tr}(U) + 1 + n - \gamma_{tr}(U)$. Hence, $\gamma_{tr}(U) \geq \lfloor \frac{n+2}{2} \rfloor > \lfloor \frac{n}{2} \rfloor$, a contradiction. If $|N(y') \cap S| \geq 2$ for $y' \in S - \{y\}$, we again reach a contradiction. Thus $|N(y) \cap S| = 2$ for exactly one vertex $y \in S$. Therefore, Property 1 holds. \diamond

Let P_{ABB} be the status labeled graph obtained from the path P_3 with consecutive vertices p_1, p_2, p_3 by setting $\operatorname{Sta}(p_1) = A$ and $\operatorname{Sta}(p_2) = \operatorname{Sta}(p_3) = B$.

Furthermore, let P_{AABB} be the status labeled graph obtained from the path P_4 with consecutive vertices p_1, p_2, p_3, p_4 by setting $\operatorname{Sta}(p_1) = \operatorname{Sta}(p_2) = A$ and $\operatorname{Sta}(p_3) = \operatorname{Sta}(p_4) = B$. Similarly, let P_{ABBA} be the status labeled graph obtained from the path P_4 with consecutive vertices p_1, p_2, p_3, p_4 by setting $\operatorname{Sta}(p_2) = \operatorname{Sta}(p_3) = B$ and $\operatorname{Sta}(p_1) = \operatorname{Sta}(p_4) = A$. Lastly, let P_{BAAB} be the status labeled graph obtained from the status labeled graph obtained from the path P_4 with consecutive vertices p_1, p_2, p_3, p_4 by setting $\operatorname{Sta}(p_4) = A$. Lastly, let P_{BAAB} be the status labeled graph obtained from the path P_4 with consecutive vertices p_1, p_2, p_3, p_4 by setting $\operatorname{Sta}(p_1) = \operatorname{Sta}(p_4) = B$ and $\operatorname{Sta}(p_2) = \operatorname{Sta}(p_3) = A$.

The following status labeled graphs will serve as the basis for our characterization.

Let B_1 be the status labeled graph obtained from C_4 with consecutive vertices v_1, v_2, v_3, v_4, v_1 by setting $\operatorname{Sta}(v_1) = \operatorname{Sta}(v_2) = B$ and $\operatorname{Sta}(v_3) = \operatorname{Sta}(v_4) = A$.

Let B_2 be the status labeled graph obtained from C_3 with consecutive vertices v_1, v_2, v_3, v_1 by joining v_1 to a vertex w of K_1 and setting $\operatorname{Sta}(v_1) = \operatorname{Sta}(w) = B$ and $\operatorname{Sta}(v_2) = \operatorname{Sta}(v_3) = A$.

Note that if $U \cong B_i$ for $i \in \{1, 2\}$, then $\operatorname{Sta}(B)$ is a γ_{tr} -set of U of cardinality $\left\lceil \frac{n}{2} \right\rceil$.

Let U be a status labeled unicyclic graph. Define the following operations on U:

 \mathcal{O}_1 : Suppose v is a vertex of U such that $\operatorname{Sta}(v) = B$. Join v to the vertex p_1 of P_{AABB} .

 \mathcal{O}_2 : Suppose uv is an edge of U. One of the following is performed:

- 1. If $\operatorname{Sta}(u) = B$ and $\operatorname{Sta}(v) = A$, then delete the edge uv and join u (v, respectively) to vertex p_1 (p_3 or p_4 , respectively) of P_{AABB} .
- 2. If $\operatorname{Sta}(u) = A$ and $\operatorname{Sta}(v) = A$, then delete the edge uv and join u (v, respectively) to vertex p_1 (p_4 , respectively) of P_{ABBA} .
- 3. If $\operatorname{Sta}(u) = B$ and $\operatorname{Sta}(v) = B$, then delete the edge uv and join u (v, respectively) to vertex p_1 (p_4 , respectively) of P_{BAAB} .

 \mathcal{O}_3 : Suppose uv is an edge of U, and suppose $\operatorname{Sta}(u) = B$. Delete the edge uv, and join u and v to a vertex w of K_1 , setting $\operatorname{Sta}(w) = B$.

 \mathcal{O}_4 : Suppose uv is an edge of U, and suppose $\operatorname{Sta}(u) = \operatorname{Sta}(v) = A$. Delete the edge uv, and join u and v to vertex p_1 of P_{ABB} .

Observation 3 If U' is the status labeled graph obtained by applying one of the above operations on U, then Sta(B) is a **TRDS** of U'.

Let C be the family of status labeled graphs U, where U is one of the following four types:

Type 1: U is obtained from B_1 or B_2 by $\ell \ge 0$ applications of \mathcal{O}_1 or \mathcal{O}_2 .

Type 2: U is obtained from:

- 1. B_1 or B_2 by exactly one application of \mathcal{O}_4 , followed by $\ell \geq 0$ applications of \mathcal{O}_1 or \mathcal{O}_2 .
- 2. a **Type 1** graph by joining some $v \in \text{Sta}(A)$ in this **Type 1** graph to vertex p_1 of P_{ABB} , followed by $\ell \geq 0$ applications of \mathcal{O}_1 or \mathcal{O}_2 .

Type 3: U is obtained from a **Type 1** graph by joining some $v \in \text{Sta}(B)$ in this **Type 1** graph to a vertex w of K_1 , setting Sta(w) = B, and then following this by $\ell \geq 0$ applications of \mathcal{O}_1 or \mathcal{O}_2 .

Type 4: U obtained from a **Type 1** graph by exactly one application of \mathcal{O}_3 , followed by $\ell \geq 0$ applications of \mathcal{O}_1 or \mathcal{O}_2 .

Observation 4 If U is in C, then Sta(B) is a γ_{tr} -set of U of cardinality $\left\lceil \frac{n}{2} \right\rceil$.

Proof. Suppose that U is in C. Then U is of **Type i**, where $1 \leq i \leq 4$. That $\operatorname{Sta}(B)$ is a **TRDS** of U follows from Observation 3, the fact that if an isolated vertex of status B is joined to any vertex of status B in a status labeled unicyclic graph in which $\operatorname{Sta}(B)$ is a **TRDS**, then in the resulting unicyclic graph $\operatorname{Sta}(B)$ is still a **TRDS**, and the fact that if the vertex p_1 of P_{ABB} is joined to any vertex of status A in a status labeled unicyclic graph in which $\operatorname{Sta}(B)$ is a **TRDS**, then in the resulting unicyclic graph is a **TRDS**.

If U is a **Type 1** graph, then $n(U) \equiv 0 \mod 4$ and $|\operatorname{Sta}(B)| = \frac{n}{2}$, since B_1 or B_2 contribute two vertices out of four to $\operatorname{Sta}(B)$, while each of the $\ell \geq 0$ applications of \mathcal{O}_1 or \mathcal{O}_2 contributes two vertices out of four to $\operatorname{Sta}(B)$.

Suppose U is a **Type 2** graph, and suppose U is obtained from the **Type 1** graph U' by joining a vertex $v \in \text{Sta}(A)$ in U' to the vertex p_1 of P_{ABB} , and then following this by $\ell \geq 0$ applications of \mathcal{O}_1 or \mathcal{O}_2 .

Then $n(U') \equiv 0 \mod 4$ and U' has exactly $\frac{n(U')}{2}$ vertices of status B, and so $n(U) \equiv 3 \mod 4$ and $|\operatorname{Sta}(B)| = \frac{n(U)-3}{2} + 2 = \frac{n+1}{2}$, since P_{ABB} contributes two vertices to $\operatorname{Sta}(B)$ and three to n(U), while each of the applications of \mathcal{O}_1 or \mathcal{O}_2 contributes two vertices out of four to $\operatorname{Sta}(B)$. As $n \equiv 3 \mod 4$, we have $\lceil \frac{n}{2} \rceil = \frac{n+1}{2}$, and so $|\operatorname{Sta}(B)| = \lceil \frac{n}{2} \rceil$.

Now, suppose U is obtained from B_1 or B_2 by exactly one application of \mathcal{O}_4 , followed by $\ell \geq 0$ applications of \mathcal{O}_1 or \mathcal{O}_2 . Again, we have $|\operatorname{Sta}(B)| = \frac{n(U)-3}{2} + 2 = \frac{n+1}{2}$, and as $n \equiv 3 \mod 4$, we have $\lceil \frac{n}{2} \rceil = \frac{n+1}{2}$, and so $|\operatorname{Sta}(B)| = \lceil \frac{n}{2} \rceil$.

For graphs of **Type 3** and **Type 4**, $n \equiv 1 \mod 4$, while $|\operatorname{Sta}(B)| = \frac{n-1}{2} + 1 = \frac{n+1}{2} = \lceil \frac{n}{2} \rceil$.

Let U be a unicyclic graph and denote its unique cycle by C. A reference path of U is a path $v = u_0, u_1, \ldots, u_t$, where $v \in V(C)$, u_t is a leaf, and $u_i \notin V(C)$ for $i = 1, \ldots, t$. We say a reference path $v = u_0, u_1, \ldots, u_t$ is maximal if for every reference path $v = u_0, u_1, u'_2, \ldots, u'_s$ we have that $s \leq t$. We are now ready to state our characterization.

Theorem 4 Let U be a unicyclic graph of order $n \ge 4$. Then U is in \mathcal{E} if and only if U can be status labeled in such a way that it is in \mathcal{C} .

Proof. Suppose that $U \in \mathcal{C}$. By Observation 4, $U \in \mathcal{E}$.

Now, assume that $U \in \mathcal{E}$ and let S be a γ_{tr} -set of U. We proceed by induction on n. Suppose n = 4. If $U = C_4$, then it can be status labeled as B_1 which is in \mathcal{C} . If U is the graph obtained from C_3 by joining an isolated vertex to any vertex of C_3 , then it can be status labeled as B_2 which is in \mathcal{C} . Therefore, assume $n \geq 5$ and, for all $U' \in \mathcal{E}$ such that $4 \leq n(U') < n, U'$ can be status labeled so that it is in \mathcal{C} . (Henceforth, we will abuse notation slightly by just saying that $U' \in \mathcal{C}$.) Suppose U is a cycle. If n is even, then Observation 1 holds, implying that $n \equiv 0 \mod 4$. If n is odd, then Property 1 of Observation 2 holds, and so $n \equiv 1 \mod 4$. Thus U is of **Type 1** or **Type 4**.

Hence, there exists $v \in V(U)$ such that $\deg(v) \ge 3$.

Claim 1 Suppose $v' = w_0, w_1, \ldots, w_s$ is a maximal reference path of U. If w_{s-1} is adjacent to a vertex $w'_s \in S - \{w_s\}$, then U is of **Type 3**.

Proof. Note that possibly $w'_s = w_{s-2}$, and that $\{w_{s-1}, w_s, w'_s\} \subseteq S$. By contraposition of Observation 1, n = 2q + 1, where $q \ge 2$, and Property 1 of Observation 2 holds. Let $U' = U - w_s$, and notice that $S' = S - \{w_s\}$ is a **TRDS** of U', while n(U') = 2q. Moreover, S' is a **TRDS** of U' of size $\lceil \frac{2q+1}{2} \rceil - 1 = q$, whence $q = \frac{2q}{2} \le \gamma_r(U') \le |S'| = q$. Thus, $U' \in \mathcal{E}$, and by the induction assumption $U' \in \mathcal{C}$. Since n(U') is even, $n(U') \equiv 0 \mod 4$, and so U' is of **Type 1**. Since $w_{s-1} \in \operatorname{Sta}(B)$ in U', U can be obtained from U' by joining w_s to w_{s-1} , and setting $\operatorname{Sta}(w_s) = B$. Hence U is of **Type 3**. \diamond

By Claim 1, we conclude that if $v' = w_0, w_1, \ldots, w_s$ is a maximal reference path of U, then $w_{s-1} \in S$ and $\deg(w_{s-1}) = 2$.

Let C denote the unique cycle of U. Among all vertices $v \in C$ such that $\deg(v) \geq 3$, choose the reference path $P : v = u_0, u_1, \ldots, u_t$ for which t is as large as possible. Note that P is necessarily a maximal reference path.

We call a reference path an **R**t path if $\deg(v) = 3$ and $\deg(u_i) = 2$ for $i = 1, \ldots, t - 1$. We begin by reducing reference paths to either **R1**, **R2**, **R3** or **R4**.

Case 1. $t \geq 2$.

By Claim 1, $\deg(u_{t-1}) = 2$ and $u_{t-1} \in S$.

We first show that $\deg(u_{t-2}) = 3$ if t = 2, while $\deg(u_{t-2}) = 2$ if $t \ge 3$. Suppose, to the contrary, that $\deg(u_{t-2}) \ge 4$ if t = 2 and $\deg(u_{t-2}) \ge 3$ if $t \ge 3$. If $u_{t-2} \in S$, then, since $|N(u_{t-2}) \cap S| = |N(u_{t-1}) \cap S| = 2$, Observations 1 and 2 are contradicted. Thus, $u_{t-2} \notin S$ and u_{t-2} is not a remote vertex. But then $|N(u_{t-2}) \cap S| \ge 2$, contradicting Observations 1 and 2.

Thus, if t = 2, then $\deg(v) = 3$, while if $t \ge 3$, then $\deg(u_{t-2}) = 2$.

Suppose t = 3. Then (cf. Claim 1), we have $u_1 \notin S$, and so $v \notin S$. If $\deg(v) \ge 4$, then Observations 1 and 2 are contradicted. Thus $\deg(v) = 3$.

Suppose $t \ge 4$. We first show that $\deg(u_{t-3}) = 2$. Suppose, to the contrary, that $\deg(u_{t-3}) \ge 3$. Since $u_{t-2} \notin S$, it follows that $u_{t-3} \notin S$. If $\deg(u_{t-3}) \ge 4$, then Observations 1 and 2 are contradicted. Thus $\deg(u_{t-3}) = 3$. By contraposition of Observation 1, n = 2q + 1 for some positive integer $q \ge 3$, and Property 2 of Observation 2 must hold. Let $U' = U - u_{t-2} - u_{t-1} - u_t$, and notice that $S' = S - \{u_{t-1}, u_t\}$ is a **TRDS** of U'. Thus, U' has order n-3 = 2(q-1) and |S'| = q-1. Hence, $U' \in \mathcal{E}$, and U' is of **Type 1**. Furthermore, Observation 1 holds for U', and so $\operatorname{Sta}(u_{t-3}) = A$. By joining u_{t-3} to u_{t-2} of $\langle \{u_{t-2}, u_{t-1}, u_t\} \rangle$ in U and setting $\operatorname{Sta}(u_{t-2}) = A$

and $\operatorname{Sta}(u_{t-1}) = \operatorname{Sta}(u_t) = B$, we have that U is of **Type 2**. Therefore, if $t \ge 4$, then $\operatorname{deg}(u_{t-3}) = 2$.

Suppose t = 4. We show that $\deg(v) = 3$. Suppose, to the contrary, that $\deg(v) \ge 4$. Since $u_2 \notin S$ and $\deg(u_2) = \deg(u_1) = 2$, it follows that $v \in S$. Suppose v is a remote vertex. Let $U' = U - u_1 - u_2 - u_3 - u_4$, and notice that $S' = S - \{u_3, u_4\}$ is a **TRDS** of U'. Then U' has order n - 4, while $|S'| = \lceil \frac{n-4}{2} \rceil$. Thus, $U' \in \mathcal{E}$, and U' is of **Type i**, where $1 \le \mathbf{i} \le 4$. Since v is a remote vertex, $\operatorname{Sta}(v) = B$ in U'. By joining v to u_1 of $\langle \{u_1, u_2, u_3, u_4\} \rangle$ in U, and setting $\operatorname{Sta}(u_1) = \operatorname{Sta}(u_2) = A$ and $\operatorname{Sta}(u_3) = \operatorname{Sta}(u_4) = B$, U is of **Type i**, where $1 \le \mathbf{i} \le 4$.

Suppose v lies on the maximal reference path v, u'_1, u'_2 . As $\{v, u'_1, u'_2\} \subseteq S$, Claim 1 implies that $U \in C$.

If v lies on the maximal reference path v, u'_1, u'_2, u'_3 , then, as $\{v, u'_2, u'_3\} \subseteq S$, Observations 1 and 2 are contradicted. Therefore, v lies exclusively on at least two maximal reference paths whose vertices induce P_4 . Let $U' = U - u_1 - u_2 - u_3 - u_4$, and notice that $S' = S - \{u_3, u_4\}$ is a **TRDS** of U'. Then U' has order n - 4, while $|S'| = \lceil \frac{n-4}{2} \rceil$. Hence, $U' \in \mathcal{E}$ and U' is of **Type i**, where $1 \leq \mathbf{i} \leq 4$. Suppose $\operatorname{Sta}(u'_2) = B$. Then Property 1 of Observation 2 must hold, and so $\operatorname{Sta}(u'_1) = \operatorname{Sta}(v) = A$, while $\deg_{U'}(u'_1) = \deg_{U'}(v) = 2$. But then $\deg_U(v) = 3$, which is a contradiction. Thus, $\operatorname{Sta}(v) = B$. By joining v to u_1 of $\langle \{u_1, u_2, u_3, u_4\} \rangle$ in U, and setting $\operatorname{Sta}(u_1) = \operatorname{Sta}(u_2) = A$ and $\operatorname{Sta}(u_3) = \operatorname{Sta}(u_4) = B$, it follows that U is of **Type i**, where $1 \leq \mathbf{i} \leq 4$. Hence, $\deg(v) = 3$.

Suppose $t \geq 5$. Repeating the arguments above, we may assume $u_{t-4} \in S$ and $\langle \{u_{t-3}, u_{t-2}, u_{t-1}, u_t\} \rangle \cong P_4$. Suppose $\deg(u_{t-4}) \geq 3$. Then u_{t-4} lies exclusively on disjoint paths of the form $u_{t-4}, u_{t-3}^k, u_{t-2}^k, u_{t-1}^k, u_t^k$, where $\langle \{u_{t-3}^k, u_{t-2}^k, u_{t-1}^k, u_t^k\} \rangle \cong P_4, u_{t-3}^k \in N(u_{t-4}) - \{u_{t-5}, u_{t-3}\}$ and $1 \leq k \leq$ $|N(u_{t-4})| - 2$. We form U' by removing each u_{t-j} and u_{t-j}^k where $0 \leq j \leq 3$. Then $U' \in \mathcal{E}$, and U' is of **Type i**, where $1 \leq \mathbf{i} \leq 4$. Since u_{t-4} is a leaf of U', it follows that $\operatorname{Sta}(u_{t-4}) = B$ in U'. By re-attaching each path, and labeling the vertices on each path consecutively A, A, B, B, it follows that U is of **Type i**.

Therefore, if $t \ge 4$, then t = 4 and $\deg(u_{t-3}) = 2$.

Case 2. t = 1. By Claim 1, deg(v) = 3, since otherwise $U \in C$. Thus, if t = 1, then deg(v) = 3.

We have now reduced P to either an **R1**, **R2**, **R3** or **R4** path. We may therefore assume that each reference path of U is either an **R1**, **R2**, **R3** or **R4**.

Suppose that U has an **R2** path v_i, u_1, u_2 . We may assume that $v_i \notin S$ and $u_1, u_2 \in S$.

Then n = 2q + 1 where $q \ge 1$, and Property 2 of Observation 2 must hold. Thus, $N[v_i] \cap S = \{u_1\}$. If U has a cycle on four, five, or seven vertices, then we are done. If U has a cycle on six vertices, then we reach a contradiction. Thus, U has a cycle on at least eight vertices.

Consider the path $v_{i-2}, v_{i-1}, v_i, v_{i+1}, \ldots, v_{i+5}$ on C, where $v_{i-1}, v_i, v_{i+1} \notin S$ and $v_{i+2}, v_{i-2} \in S$. By symmetry, without loss of generality, suppose v_{i-2} lies on an **R4** or **R1** path.

First consider the case when $v_{i+3} \in S$. Then, by Property 2 of Observation 2, it follows that $v_{i+4} \notin S$, while neither v_{i+2} nor v_{i+3} are on any **Ri** paths for $1 \leq i \leq 3$. Thus $v_{i+5} \notin S$. Let $r \ (0 \leq r \leq 2)$ be the number of **R4** paths originating from v_{i+2} and v_{i+3} . We form U' by removing $v_{i+1}, v_{i+2}, v_{i+3}, v_{i+4}$, and the 4r vertices of the **R4** paths, and then joining v_i and v_{i+5} . Then U has order n-4-4r=2(q-2r-2)+1, and $\gamma_{tr}(U')=$ q-2r-1. Thus, $U' \in \mathcal{E}$ and U' is of **Type i**, where $\mathbf{i} \in \{2, 3, 4\}$. Moreover, Observation 2 holds, and so $Sta(v_{i-2}) = B$ (since otherwise v_{i-2} is on the **R4** path $v_{i-2}, u'_1, u'_2, u'_3, u'_4$ where $\{u'_2, u'_3, u'_4\} \subseteq \text{Sta}(B)$, which contradicts Property 2 of Observation 2). If $Sta(v_i) = B$, then $\{v_{i-1}, v_i, u_1, u_2\} \subseteq$ $\operatorname{Sta}(B)$, contradicting Observation 2. Thus, $\operatorname{Sta}(v_i) = A$, and Property 2 of Observation 2 holds, and so $\operatorname{Sta}(v_{i+5}) = \operatorname{Sta}(v_{i-1}) = A$. Delete the edge $v_i v_{i+5}$, join v_i (v_{i+5} , respectively) to v_{i+1} (v_{i+4} , respectively) of $\langle \{v_{i+1}, v_{i+2}, v_{i+3}, v_{i+4}\} \rangle$ in U, and set $Sta(v_{i+1}) = Sta(v_{i+4}) = A$ and $\operatorname{Sta}(v_{i+2}) = \operatorname{Sta}(v_{i+3}) = B$. By applying \mathcal{O}_1 (if necessary) to v_{i+2} and v_{i+3} , we obtain U. Thus, U is of **Type i**, where $\mathbf{i} \in \{2, 3, 4\}$.

Next consider the case when $v_{i+3} \notin S$. Then v_{i+2} must lie on an **R1** path v_{i+2}, u'_1 . Furthermore, $v_{i+3}, v_{i+4} \notin S$, and $v_{i+5} \in S$. We form U' by removing $v_{i+2}, v_{i+3}, v_{i+4}, u'_1$, and then joining v_{i+1} and v_{i+5} . Then U' has order n-4 = 2(q-2) + 1 and $\gamma_{tr}(U') = q-1$. Thus, $U' \in \mathcal{E}$ and U' is of **Type i**, where $\mathbf{i} \in \{2,3,4\}$. Moreover, Observation 2 holds, and $\operatorname{Sta}(v_{i-2}) = B$. If $\operatorname{Sta}(v_i) = B$, then $\{v_i, v_{i-1}, u_1, u_2\} \subseteq \operatorname{Sta}(B)$, contradicting Observation 2. Thus, $\operatorname{Sta}(v_i) = A$, and by Property 2 of Observation 2, $\operatorname{Sta}(v_{i+1}) = \operatorname{Sta}(v_{i-1}) = A$. Furthermore, $\operatorname{Sta}(v_{i+5}) = B$. Delete the edge $v_{i+1}v_{i+5}$, and join v_{i+1} (v_{i+5} , respectively) to v_{i+2} (v_{i+4} , respectively) of $\langle \{v_{i+2}, v_{i+3}, v_{i+4}, u'_1\} \rangle$ in U, and set $\operatorname{Sta}(v_{i+3}) = \operatorname{Sta}(v_{i+4}) = A$ and $\operatorname{Sta}(v_{i+2}) = \operatorname{Sta}(u'_1) = B$. Thus, U is of **Type i**, where $\mathbf{i} \in \{2,3,4\}$.

We may assume that neither v_{i-2} nor v_{i+2} lies on an **R1** or **R4** path. Then the cycle of U has length as least nine. We now consider the path $v_{i-1}, v_i, v_{i+1}, \ldots, v_{i+6}$, where $v_{i+2}, v_{i+3} \in S$ and $v_{i+4}, v_{i+5} \notin S$. Let r $(0 \le r \le 1)$ be the number of **R4** paths on v_{i+3} . We form U' by removing $v_{i+2}, v_{i+3}, v_{i+4}, v_{i+5}$, and the 4r vertices of the possible **R4** paths, and then joining v_{i+1} and v_{i+6} . Then U' has order n - 4 - 4r = 2(q - 2r - 2) + 1, and $\gamma_{tr}(U') = q - 2r - 1$. Thus, $U' \in \mathcal{E}$, and U' is of **Type i**, where $\mathbf{i} \in \{2, 3, 4\}$. Moreover, Observation 2 holds. Suppose $\operatorname{Sta}(v_i) = B$. By Observation 2, $\operatorname{Sta}(v_{i+1}) = \operatorname{Sta}(v_{i-1}) = A$, and so $\operatorname{Sta}(v_{i+6}) = A$. Delete the edge $v_{i+1}v_{i+6}$, and join v_{i+1} (v_{i+6} , respectively) to v_{i+2} (v_{i+5} , respectively) in $\langle \{v_{i+2}, v_{i+3}, v_{i+4}, v_{i+5}\}\rangle$, and set $\operatorname{Sta}(v_{i+2}) = \operatorname{Sta}(v_{i+5}) = A$ and $\operatorname{Sta}(v_{i+3}) = \operatorname{Sta}(v_{i+4}) = B$. By applying \mathcal{O}_1 (if necessary) to v_{i+3} , it follows that U is of **Type i**, where $\mathbf{i} \in \{2, 3, 4\}$. Suppose $\operatorname{Sta}(v_i) = A$. By Observation 2, $\operatorname{Sta}(v_{i-1}) = \operatorname{Sta}(v_{i+1}) = A$. Furthermore, $\operatorname{Sta}(v_{i+6}) = B$. Delete the edge $v_{i+1}v_{i+6}$, and join v_{i+1} (v_{i+6} , respectively) to v_{i+2} (v_{i+5} , respectively) in $\langle \{v_{i+2}, v_{i+3}, v_{i+4}, v_{i+5}\}\rangle$, and set $\operatorname{Sta}(v_{i+4}) = \operatorname{Sta}(v_{i+6}) = B$. Delete the edge $v_{i+1}v_{i+6}$, and join v_{i+1} (v_{i+6} , respectively) to v_{i+2} (v_{i+5} , respectively) in $\langle \{v_{i+2}, v_{i+3}, v_{i+4}, v_{i+5}\}\rangle$, and set $\operatorname{Sta}(v_{i+4}) = \operatorname{Sta}(v_{i+5}) = A$ and $\operatorname{Sta}(v_{i+2}) = \operatorname{Sta}(v_{i+3}) = B$. By applying \mathcal{O}_1 (if necessary) to v_{i+3} , it follows that U is of **Type i**, where $\mathbf{i} \in \{2, 3, 4\}$.

We may assume that U has no **R2** paths.

Suppose that U has an **R1** path v_i, u_1 . If U has a cycle on three or four vertices, then we are done. Thus, U has a cycle on more than four vertices. Let v_{i-1} and v_{i+1} be neighbors of v_i that lie C. If $\{v_{i-1}, v_{i+1}\} \subseteq S$, then $|N(v_i) \cap S| = 3$, contradicting Observations 1 and 2. Without loss of generality, suppose that $v_{i+1} \notin S$. If U has a cycle on five vertices, then we reach a contradiction. If U has a cycle on six vertices, then we are done. Thus, U has a cycle on at least seven vertices. Consider the path $v_i, v_{i+1}, \ldots, v_{i+6}$, on C. If $v_{i+2} \in S$, then deg $(v_{i+1}) = 3$ and $|N(v_{i+1}) \cap S| = 2$, contradicting Observations 1 and 2. Thus, $v_{i+2} \notin S$, and since U has no **R2** paths, $v_{i+3} \in S$.

Case 2.1 $v_{i+4} \in S$.

Case 2.1.1 $v_{i+5} \in S$.

By contraposition of Observation 1, n = 2q + 1 where $q \ge 3$. Moreover, as Property 1 of Observation 2 holds, $v_{i+6} \notin S$, $\deg(v_{i+1}) = \deg(v_{i+2}) = 2$, while v_{i+3}, v_{i+4} and v_{i+5} do not lie on either an **R1** path or an **R3** path. Let r ($0 \le r \le 3$) be the number of **R4** paths on v_{i+3}, v_{i+4} and v_{i+5} . We form U' by removing $v_{i+1}, v_{i+2}, v_{i+3}, v_{i+4}$ and v_{i+5} , and the 4r vertices of the aforementioned **R4** paths, and then joining v_i to v_{i+6} . Then U' has order n-5-4r = 2(q-2r-2) and $\gamma_{tr}(U') = q-2r-2$. Hence, $U' \in \mathcal{E}$ and U' is of **Type 1**. By Observation 1, $\operatorname{Sta}(v_i) = B$, and so $\operatorname{Sta}(v_{i+6}) = A$. Delete the edge $v_i v_{i+6}$, and join v_i (v_{i+6} , respectively) to vertex v_{i+1} (v_{i+5} , respectively) of the path P_4 with consecutive vertices $v_{i+1}, v_{i+2}, v_{i+3}, v_{i+5}$, and set $\operatorname{Sta}(v_{i+1}) = \operatorname{Sta}(v_{i+2}) = A$ and $\operatorname{Sta}(v_{i+3}) = \operatorname{Sta}(v_{i+5}) = B$. Delete the edge $v_{i+3}v_{i+5}$, and join v_{i+3} and v_{i+5} to v_{i+4} , and set $\operatorname{Sta}(v_{i+4}) = B$. By applying \mathcal{O}_1 (if necessary) to v_{i+3}, v_{i+4} and v_{i+5} , it follows that U is of **Type 4**.

Case 2.1.2 $v_{i+5} \notin S$.

At most one of v_{i+1} and v_{i+2} can lie on an **R3** path. Without loss of generality, suppose that v_{i+1} lies on an **R3** path. Thus, n = 2q + 1 where $q \ge 3$ and Property 2 of Observation 2 holds. Moreover, neither v_{i+3} nor v_{i+4} lies on an **R1** path. Let $r \ (0 \le r \le 2)$ be the number of **R4** paths on v_{i+3} and v_{i+4} . We form U' by removing $v_{i+1}, v_{i+2}, v_{i+3}$ and v_{i+4} , the 4r vertices of the possible **R4** paths, and the three vertices from the **R3** path, and then joining v_i to v_{i+5} . Then U' has order n - 4r - 7 = 2(q - 2r - 3) and $\gamma_{tr}(U') = q - 2r - 3$. Thus $U' \in \mathcal{E}$ and U' is of **Type 1**. As Observation 1 holds, $\operatorname{Sta}(v_i) = B$, and so $\operatorname{Sta}(v_{i+5}) = A$. Delete the edge $v_i v_{i+5}$ and join v_i $(v_{i+5}, \text{ respectively})$ to v_{i+1} $(v_{i+4}, \text{ respectively})$ in $\langle \{v_{i+1}, v_{i+2}, v_{i+3}, v_{i+4}\} \rangle$ of U, and set $\operatorname{Sta}(v_{i+1}) = \operatorname{Sta}(v_{i+2}) = A$ and $\operatorname{Sta}(v_{i+3}) = \operatorname{Sta}(v_{i+4}) = B$. Then, join v_{i+1} to vertex p_1 of P_{ABB} . By applying \mathcal{O}_1 (if necessary) to v_{i+3} and v_{i+4} , it follows that U is of **Type 2**.

Thus, v_{i+1} and v_{i+2} do not lie on an **R3** path, and therefore $\deg(v_{i+1}) = \deg(v_{i+2}) = 2$. At most one of v_{i+3} and v_{i+4} lies on an **R1** path. Without loss of generality, suppose that v_{i+3} lies on an **R1** path. Then n = 2q + 1 where $q \geq 3$, and Property 1 of Observation 2 holds. Let $r \ (0 \leq r \leq 1)$ denote the number of **R4** paths on v_{i+4} . We form U by removing $v_{i+1}, v_{i+2}, v_{i+3}$ and v_{i+4} , the 4r vertices of the possible **R4** paths, and the one vertex from the **R1** path, and then joining v_i to v_{i+5} . Then U has order n - 4r - 5 = 2(q - 2r - 2) and so $\gamma_{tr}(U') = q - 2r - 2$, whence $U' \in \mathcal{E}$. Furthermore, U' must be of **Type 1**. As Observation 1 holds, $\operatorname{Sta}(v_i) = B$, and so $\operatorname{Sta}(v_{i+5}) = A$. Delete the edge $v_i v_{i+5}$ and join v_i (v_{i+5} , respectively) to v_{i+1} (v_{i+4} , respectively) in $\langle \{v_{i+1}, v_{i+2}, v_{i+3}, v_{i+4}\} \rangle$, and set $\operatorname{Sta}(v_{i+1}) = \operatorname{Sta}(v_{i+2}) = A$ and $\operatorname{Sta}(v_{i+3}) = \operatorname{Sta}(v_{i+4}) = B$. Then join v_{i+3} to a vertex w of K_1 and set $\operatorname{Sta}(w) = B$. By applying \mathcal{O}_1 (if necessary) to v_{i+4} , it follows that U is of **Type 3**.

Suppose that neither v_{i+3} nor v_{i+4} lies on an **R1** path. Let $r (0 \le r \le 2)$ denote the number of **R4** paths on v_{i+3} and v_{i+4} . We form U' by removing $v_{i+1}, v_{i+2}, v_{i+3}$ and v_{i+4} , and the 4r vertices of the possible **R4** paths, and then joining v_i to v_{i+5} . Again, $U' \in \mathcal{E}$, and U' is of **Type i**, where $1 \le \mathbf{i} \le 4$. Notice that $\operatorname{Sta}(v_i) = B$. Suppose $\operatorname{Sta}(v_{i+5}) = B$. Delete the edge $v_i v_{i+5}$ and join $v_i (v_{i+5}, \operatorname{respectively})$ to $v_{i+1} (v_{i+4}, \operatorname{respectively})$ in $\langle \{v_{i+1}, v_{i+2}, v_{i+3}, v_{i+4}\} \rangle$, and set $\operatorname{Sta}(v_{i+1}) = \operatorname{Sta}(v_{i+2}) = A$ and $\operatorname{Sta}(v_{i+3}) = \operatorname{Sta}(v_{i+4}) = B$. By applying \mathcal{O}_1 (if necessary) on v_{i+3} and v_{i+4} , it follows that $\operatorname{Sta}(B)$ is a γ_{tr} -set of U that contains v_{i+5} , and so

we have **Case 1.1** above. We may assume that $\operatorname{Sta}(v_{i+5}) = A$. Delete the edge $v_i v_{i+5}$ and join v_i (v_{i+5} , respectively) to v_{i+1} (v_{i+4} , respectively) in $\langle \{v_{i+1}, v_{i+2}, v_{i+3}, v_{i+4}\} \rangle$ of U, and set $\operatorname{Sta}(v_{i+1}) = \operatorname{Sta}(v_{i+2}) = A$ and $\operatorname{Sta}(v_{i+3}) = \operatorname{Sta}(v_{i+4}) = B$. By applying \mathcal{O}_1 (if necessary) to v_{i+3} and v_{i+4} , it follows that U is of **Type i**.

Case 2.2 $v_{i+4} \notin S$.

Then v_{i+3} lies on an **R1** path v_{i+3}, u'_1 . Assume first that v_{i+1} and v_{i+2} do not lie on an **R3** path. We form U' by removing $v_{i+1}, v_{i+2}, v_{i+3}$, and u'_1 , and then joining v_i and v_{i+4} . Then $U' \in \mathcal{E}$ and U' is of **Type i**, where $1 \leq \mathbf{i} \leq 4$. Notice that $\operatorname{Sta}(v_i) = B$. Suppose $\operatorname{Sta}(v_{i+4}) = B$. Delete the edge $v_i v_{i+4}$ and join v_i (v_{i+4} , respectively) to v_{i+1} (v_{i+3} , respectively) in $\langle \{v_{i+1}, v_{i+2}, v_{i+3}, u'_1\} \rangle$, and set $\operatorname{Sta}(v_{i+1}) = \operatorname{Sta}(v_{i+2}) = A$ and $\operatorname{Sta}(v_{i+3}) = \operatorname{Sta}(u'_1) = B$. It follows that $\operatorname{Sta}(B)$ is a γ_{tr} -set of U that contains v_{i+4} , and so we have **Case 1** of this proof. Thus, $\operatorname{Sta}(v_{i+4}) = A$. By similar reasoning to that above, it follows that U is of **Type i**.

Now, at most one of v_{i+1} and v_{i+2} lies on an **R3** path. Without loss of generality, suppose that v_{i+1} lies on an **R3** path. Then n = 2q + 1where $q \ge 2$, and Property 2 of Observation 2 holds. We form U' by removing $v_{i+1}, v_{i+2}, v_{i+3}, u'_1$, and the three vertices from the **R3** path, and then joining v_i and v_{i+4} . Then U' has order n-7 = 2(q-3), and $\gamma_{tr}(U') =$ q-3. Thus $U' \in \mathcal{E}$ and U' must be of **Type 1**. By Observation 1, $\operatorname{Sta}(v_i) = B$, and so $\operatorname{Sta}(v_{i+4}) = A$. Delete the edge $v_i v_{i+4}$ and join v_i $(v_{i+4}, \text{ respectively})$ to v_{i+1} $(v_{i+3}, \text{ respectively})$ in $\langle \{v_{i+1}, v_{i+2}, v_{i+3}, u'_1\} \rangle$, and set $\operatorname{Sta}(v_{i+1}) = \operatorname{Sta}(v_{i+2}) = A$ and $\operatorname{Sta}(v_{i+3}) = \operatorname{Sta}(u'_1) = B$. Then join v_{i+1} to vertex p_1 of P_{ABB} . It follows that U is of **Type 2**.

We may assume that U has no **R1** paths.

Assume that U has an **R3** path v, u_1, u_2, u_3 . Since $v \notin S$, Property 2 of Observation 2 holds. Moreover, U has exactly one **R3** path, $u_1 \notin S$, and $u_2, u_3 \in S$. Let $C = v, v_1, \ldots, v_{N-1}, v_N, v$ denote the cycle of U, and notice that $n(\langle C \rangle) \equiv 0 \mod 4$. Without loss of generality suppose $v_N \in S$, and notice that $v_i \in S$ for each and only each $i \equiv 2$ or $3 \mod 4$ $(1 \le i \le N)$.

Let r be the number of **R4** paths on vertices of C, which emanate only from vertices on $C \cap S$. We form U' by removing the 4r vertices of the aforementioned **R4** paths, v_1, \ldots, v_{N-3} (if $N \ge 7$) and u_1, u_2, u_3 , and then joining v to v_{N-2} . By setting $\operatorname{Sta}(v) = \operatorname{Sta}(v_{N-2}) = A$ and $\operatorname{Sta}(v_N) =$ $\operatorname{Sta}(v_{N-1}) = B$, it follows that $U' \cong B_1$, whence U' is of **Type 1**. Join v to u_1 of $\langle \{u_1, u_2, u_3\} \rangle$, setting $\operatorname{Sta}(u_1) = A$ and $\operatorname{Sta}(u_2) = \operatorname{Sta}(u_3) = B$, and so the resulting graph is of **Type 2**. Then delete the edge vv_{N-2} and re-insert v_1, \ldots, v_{N-3} (by applying \mathcal{O}_2 zero or more times), setting $\operatorname{Sta}(v_i) = A$ for $i \equiv 0$ or 1 mod 4, and $\operatorname{Sta}(v_i) = B$ for $i \equiv 2$ or 3 mod 4. Finally, by re-attaching the **R4** paths with the natural labeling A, A, B, B, it follows that U is of **Type 2**.

Thus, assume that U has only **R4** paths. These paths emanate only from vertices on $C \cap S$, where $C = v, v_1, \ldots, v_{N-1}, v_N, v$ denote the cycle of U. Note that $n(\langle C \rangle) \equiv 0$ or 1 mod 4. Without loss of generality, suppose $v_{N-1}, v_N \in S$.

First, suppose that $n(\langle C \rangle) \equiv 0 \mod 4$. Then $v \notin S$, and $v_i \in S$ for each and only each $i \equiv 2$ or 3 mod 4 $(1 \leq i \leq N)$. Let r be the number of **R4** paths on vertices of C. We form U' by removing the 4r vertices of the aforementioned **R4** paths, and v_1, \ldots, v_{N-3} (if $N \geq 7$), and then joining v to v_{N-2} . By setting $\operatorname{Sta}(v) = \operatorname{Sta}(v_{N-2}) = A$ and $\operatorname{Sta}(v_N) =$ $\operatorname{Sta}(v_{N-1}) = B$, it follows that $U' \cong B_1$, whence U' is of **Type 1**. Delete the edge vv_{N-2} and re-insert v_1, \ldots, v_{N-3} (by applying \mathcal{O}_2 zero or more times), setting $\operatorname{Sta}(v_i) = A$ for $i \equiv 0$ or 1 mod 4, and $\operatorname{Sta}(v_i) = B$ for $i \equiv 2$ or 3 mod 4. Finally, by re-attaching the **R4** paths with the natural labeling, it follows that U is of **Type 1**.

Now consider the case when $n(\langle C \rangle) \equiv 1 \mod 4$. Since U has only **R4** paths, all degree three vertices of U are in S. Thus Property 1 of Observation 2 holds. Without loss of generality suppose $v_{N-2} \in S$. Then $v \notin S$, and $v_i \in S$ for each and only each $i \equiv 2$ or $3 \mod 4$ $(1 \leq i \leq N)$. Let r be the number of **R4** paths on vertices of C. We form U' by removing the 4r vertices of the aforementioned **R4** paths, v_1, \ldots, v_{i-4} (if $N \geq 8$), the vertex v_{N-1} , and then joining v to v_{N-3} and v_{N-2} to v_N . By setting $\operatorname{Sta}(v) = \operatorname{Sta}(v_{N-3}) = A$ and $\operatorname{Sta}(v_N) = \operatorname{Sta}(v_{N-2}) = B$, it follows that $U' \cong B_1$, whence U' is of **Type 1**. Delete the edge $v_{N-2}v_N$, and join the vertex v_{N-1} to the vertices v_{N-2} and v_N . By setting $\operatorname{Sta}(v_{N-1}) = B$, the resulting graph is of **Type 4**. Delete the edge vv_{N-3} and re-insert v_1, \ldots, v_{N-4} (by applying \mathcal{O}_2 zero or more times), setting $\operatorname{Sta}(v_i) = A$ for $i \equiv 0$ or 1 mod 4, and $\operatorname{Sta}(v_i) = B$ for $i \equiv 2$ or 3 mod 4. Finally, by re-attaching the **R4** paths with the natural labeling, it follows that U is of **Type 4**. As we have shown that $U \in C$, the proof is complete. \Box

References

- G. Chartrand and L. Lesniak, Graphs & Digraphs: Fourth Edition, Chapman & Hall, Boca Raton, FL, 2005.
- [2] X.G. Chen, D.X. Ma and L. Sun, On total restrained domination in graphs. *Czechoslovak Mathematical Journal* 55(1) (2005) 165-173.

- [3] J. Cyman and J. Raczek, On the total restrained domination number of a graph. Australas. J. Combin. 36 (2006) 91-100.
- [4] J.H. Hattingh, E. Jonck, E. J. Joubert and A.R. Plummer, Total restrained domination in trees. *Discrete Math.* **307** (2007) 1643-1650.
- [5] J.H. Hattingh, E. Jonck, E. J. Joubert and A.R. Plummer, Nordhaus-Gaddum results for restrained domination and total restrained domination in graphs. *Discrete Math.* **308** (2008) 1080-1087.
- [6] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1997.
- [7] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater (eds), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1997.
- [8] M.A. Henning and J.E. Maritz, Simultaneous stratification and domination in graphs with minimum degree two. *Quaestiones Math.* 29 (2006) 1-16.
- [9] M.A. Henning and J.E. Maritz, Total restrained domination in graphs with minimum degree two. *Discrete Math.* 308 1909-1920.
- [10] N. Jafari Rad, Results on total restrained domination in graphs. Int. J. Contemp. Math. Sci. 3 (2008) 383-387.
- [11] J. Raczek, Trees with equal restrained domination and total restrained domination numbers. Discuss. Math. Graph Theory 27 (2007) 83-91.
- [12] J. Raczek, Total restrained domination number of trees. *Discrete Math.* 308 44-50.
- [13] J.A. Telle and A. Proskurowski, Algorithms for vertex partioning problems on partial k-trees. SIAM J. Discrete Math. 10 (1997) 529-550.
- [14] B. Zelinka, Remarks on restrained and total restrained domination in graphs, *Czechoslovak Math. J.* 55 (130) (2005) 165–173.