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Abstract

Let G = (V, E) be a graph. A set S ⊆ V is a total restrained dom-
inating set if every vertex in V is adjacent to a vertex in S and every
vertex of V −S is adjacent to a vertex in V −S. The total restrained
domination number of G, denoted by γtr(G), is the minimum cardi-
nality of a total restrained dominating set of G. A unicyclic graph is
a connected graph that contains precisely one cycle. We show that
if U is a unicyclic graph of order n, then γtr(U) ≥ dn

2
e, and provide

a characterization of graphs achieving this bound.
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1 Introduction

In this paper, we follow the notation of [1]. Specifically, let G = (V,E) be
a graph with vertex set V and edge set E. A set S ⊆ V is a dominating
set (DS) of G if every vertex in V − S is adjacent to a vertex in S. The
domination number of G, denoted by γ(G), is the minimum cardinality of
a DS of G. The concept of domination in graphs, with its many variations,
is now well studied in graph theory. The recent book of Chartrand and Les-
niak [1] includes a chapter on domination. A thorough study of domination
appears in [6, 7].

In this paper, we continue the study of a variation of the domination theme,
namely that of total restrained domination - see [2, 3, 4, 5, 8, 9, 10, 11, 12,
13, 14].

A set S ⊆ V is a total restrained dominating set (TRDS) if every vertex
in V is adjacent to a vertex in S and every vertex in V −S is adjacent to a
vertex in V −S. Every graph without isolated vertices has a TRDS, since
S = V is such a set. The total restrained domination number of G, denoted
by γtr(G), is the minimum cardinality of a TRDS of G. A TRDS set of
G of cardinality γtr(G) is called a γtr-set of G.

Throughout, n and m denote the order and size of G, respectively. A
unicyclic graph U of order n is a connected graph that contains exactly
one cycle. Thus, U has size n. A vertex of degree one will be called a
leaf, while a vertex adjacent to a leaf will be called a remote vertex. The
open neighborhood of a vertex u, denoted N(u), is the set {v ∈ V | v is
adjacent to u}, while the closed neighborhood of u, denoted N [u], is defined
as N(u) ∪ {u}.

A graph G is status labeled if every vertex in V is labeled either A or B
such that every vertex with label A is adjacent to a vertex with label A
and to a vertex with label B, while every vertex with label B is adjacent
to a vertex with label B. A vertex v ∈ V has status A (B, respectively) if
v is labeled A (B, respectively). The status of a vertex v will be denoted
Sta(v). We define Sta(A) (Sta(B), respectively) as the set of vertices in V
with status A (B, respectively).

The following result is due to Cyman and Raczek [3].

Theorem 1 Let G be a connected graph of order n and size m. Then
γtr(G) ≥ 3n

2 −m.

Proof. Let S be a γtr-set of G and consider H = 〈V − S〉 and J = 〈S〉. Let
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n1 and m1 be the order and size of H, respectively. Moreover, let n2 and m2

be the order and size of J , respectively. Thus m1 = 1
2

∑
v∈V−S degH(v) ≥

1
2 (n − γtr(G)) and m2 = 1

2

∑
v∈S degJ(v) ≥ 1

2γtr(G). Let m3 denote the
number of edges between S and V − S. Since S is a DS, every vertex in
V − S is adjacent to at least one vertex in S. Thus, m3 ≥ n − γtr(G).
Hence, m = m1 + m2 + m3 ≥ 1

2 (n− γtr(G)) + 1
2γtr(G) + n− γtr(G), which

implies that γtr(G) ≥ 3n
2 −m. 2

The following known result of [4] is an immediate consequence of Theorem 1.

Corollary 2 Let T be a tree of order n. Then γtr(T ) ≥ dn+2
2 e.

In similar fashion, we derive our first main result.

Corollary 3 Let U be a unicyclic graph of order n. Then γtr(U) ≥ dn
2 e.

Hattingh et al. [4] provided a constructive characterization of trees achiev-
ing the lower bound given in Corollary 2, independent of γtr-set considera-
tion. In the sequel, we constructively characterize unicyclic graphs achiev-
ing the lower bound given in Corollary 3, utilizing constructive operations
governed by status labeling.

2 Unicylic graphs U of order n with γtr(U) =⌈
n
2

⌉
Let E denote the class of all unicyclic graphs U of order n such that γtr(U) =⌈

n
2

⌉
. In order to provide the characterization, we state and prove a few

observations.

Let U ∈ E and let S be a γtr-set of U .

Observation 1 If n is even, then every vertex of V − S is adjacent to
exactly one vertex of S and adjacent to exactly one vertex of V − S, while
every vertex in S is adjacent to exactly one vertex of S.

Proof. Assume n is even and consider the vertex v. If v is a leaf, then
v ∈ S. Thus deg(v) ≥ 2 for all v ∈ V − S. Now, let v ∈ V − S. Suppose
|N(v) ∩ S| ≥ 2. Then n = m ≥ 1

2 (n − γtr(U)) + 1
2γtr(U) + n − γtr(U) +
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1, which implies that γtr(U) ≥ n+2
2 > dn

2 e, a contradiction. Suppose
|N(v) ∩ (V − S)| ≥ 2. Then n = m ≥ 1

2 (n − γtr(U) + 1) + 1
2γtr(U) + n −

γtr(U), which implies that γtr(U) ≥
⌈

n+1
2

⌉
> dn

2 e, a contradiction. Thus,
every vertex in V − S is adjacent to exactly one vertex of S and adjacent
to exactly one vertex of V − S.

Suppose there is a vertex y ∈ S such that |N(y) ∩ S| ≥ 2. Then n = m ≥
1
2 (n − γtr(G)) + 1

2 (γtr(G) + 1) + n − γtr(G), which implies that γtr(U) ≥⌈
n+1

2

⌉
> dn

2 e, a contradiction. Thus, every vertex in S is adjacent to
exactly one vertex of S. �

Observation 2 If n is odd, then S has exactly one of the following properties:

1. Every vertex in V − S has degree 2, and there is exactly one vertex
y ∈ S such that |N(y) ∩ S| = 2, while every other vertex of S is
adjacent to exactly one vertex of S.

2. There is exactly one vertex v ∈ V − S such that deg(v) = 3 and
|N(v) ∩ (V − S)| = 2. Furthermore, every vertex in V − S − {v} has
degree 2, while every vertex in S is adjacent to exactly one vertex of
S.

Proof. Assume n is odd. Let v ∈ V − S such that deg(v) ≥ 3. If
|N(v) ∩ S| ≥ 2, then n = m ≥ 1

2 (n − γtr(U)) + 1
2γtr(U) + n − γtr(U) + 1,

and so γtr(U) ≥
⌈

n+2
2

⌉
>

⌈
n
2

⌉
, a contradiction. Thus, |N(v) ∩ S| = 1.

Suppose deg(v) ≥ 4. Then |N(v) ∩ (V − S)| ≥ 3. Thus, n = m ≥
1
2 (n− γtr(U) + 2) + 1

2γtr(U) + n− γtr(U), and so γtr(U) ≥
⌈

n+2
2

⌉
>

⌈
n
2

⌉
,

a contradiction. Hence, deg(v) = 3 and |N(v) ∩ (V − S)| = 2. More-
over, every vertex in V − S − {v} has degree 2. Suppose y ∈ S such that
|N(y) ∩ S| ≥ 2. Then n = m ≥ 1

2 (n−γtr(U)+1)+ 1
2 (γtr(U)+1)+n−γtr(U),

and so γtr(U) ≥
⌈

n+2
2

⌉
>

⌈
n
2

⌉
, a contradiction. Thus, |N(y) ∩ S| = 1 for

every vertex y ∈ S, and Property 2 holds.

We may assume that V − S has only degree 2 vertices.

Suppose |N(y) ∩ S| = 1 for every vertex y ∈ S. Then, both S and V − S
induce matchings, and so n is even, which is a contradiction. Thus, there
is a vertex y ∈ S such that |N(y) ∩ S| ≥ 2. Suppose |N(y) ∩ S| ≥ 3. Then
n = m ≥ 1

2 (n − γtr(U)) + 1
2γtr(U) + 1 + n − γtr(U). Hence, γtr(U) ≥⌈

n+2
2

⌉
>

⌈
n
2

⌉
, a contradiction. If |N(y′) ∩ S| ≥ 2 for y′ ∈ S−{y}, we again

reach a contradiction. Thus |N(y) ∩ S| = 2 for exactly one vertex y ∈ S.
Therefore, Property 1 holds. �
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Let PABB be the status labeled graph obtained from the path P3 with con-
secutive vertices p1, p2, p3 by setting Sta(p1) = A and Sta(p2) = Sta(p3) =
B.

Furthermore, let PAABB be the status labeled graph obtained from the path
P4 with consecutive vertices p1, p2, p3, p4 by setting Sta(p1) = Sta(p2) = A
and Sta(p3) = Sta(p4) = B. Similarly, let PABBA be the status labeled
graph obtained from the path P4 with consecutive vertices p1, p2, p3, p4

by setting Sta(p2) = Sta(p3) = B and Sta(p1) = Sta(p4) = A. Lastly,
let PBAAB be the status labeled graph obtained from the path P4 with
consecutive vertices p1, p2, p3, p4 by setting Sta(p1) = Sta(p4) = B and
Sta(p2) = Sta(p3) = A.

The following status labeled graphs will serve as the basis for our charac-
terization.

Let B1 be the status labeled graph obtained from C4 with consecutive
vertices v1, v2, v3, v4, v1 by setting Sta(v1) = Sta(v2) = B and Sta(v3) =
Sta(v4) = A.

Let B2 be the status labeled graph obtained from C3 with consecutive
vertices v1, v2, v3, v1 by joining v1 to a vertex w of K1 and setting Sta(v1) =
Sta(w) = B and Sta(v2) = Sta(v3) = A.

Note that if U ∼= Bi for i ∈ {1, 2}, then Sta(B) is a γtr-set of U of cardinality⌈
n
2

⌉
.

Let U be a status labeled unicyclic graph. Define the following operations
on U :

O1 : Suppose v is a vertex of U such that Sta(v) = B. Join v to the vertex
p1 of PAABB .

O2 : Suppose uv is an edge of U . One of the following is performed:

1. If Sta(u) = B and Sta(v) = A, then delete the edge uv and join u (v,
respectively) to vertex p1 (p3 or p4, respectively) of PAABB .

2. If Sta(u) = A and Sta(v) = A, then delete the edge uv and join u (v,
respectively) to vertex p1 (p4, respectively) of PABBA.

3. If Sta(u) = B and Sta(v) = B, then delete the edge uv and join u (v,
respectively) to vertex p1 (p4, respectively) of PBAAB .

O3 : Suppose uv is an edge of U , and suppose Sta(u) = B. Delete the edge
uv, and join u and v to a vertex w of K1, setting Sta(w) = B.
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O4 : Suppose uv is an edge of U , and suppose Sta(u) = Sta(v) = A. Delete
the edge uv, and join u and v to vertex p1 of PABB .

Observation 3 If U ′ is the status labeled graph obtained by applying one
of the above operations on U , then Sta(B) is a TRDS of U ′.

Let C be the family of status labeled graphs U , where U is one of the
following four types:

Type 1: U is obtained from B1 or B2 by ` ≥ 0 applications of O1 or O2.

Type 2: U is obtained from:

1. B1 or B2 by exactly one application of O4, followed by ` ≥ 0 appli-
cations of O1 or O2.

2. a Type 1 graph by joining some v ∈ Sta(A) in this Type 1 graph
to vertex p1 of PABB , followed by ` ≥ 0 applications of O1 or O2.

Type 3: U is obtained from a Type 1 graph by joining some v ∈ Sta(B)
in this Type 1 graph to a vertex w of K1, setting Sta(w) = B, and then
following this by ` ≥ 0 applications of O1 or O2.

Type 4: U obtained from a Type 1 graph by exactly one application of
O3, followed by ` ≥ 0 applications of O1 or O2.

Observation 4 If U is in C, then Sta(B) is a γtr-set of U of cardinality⌈
n
2

⌉
.

Proof. Suppose that U is in C. Then U is of Type i, where 1 ≤ i ≤ 4.
That Sta(B) is a TRDS of U follows from Observation 3, the fact that if
an isolated vertex of status B is joined to any vertex of status B in a status
labeled unicyclic graph in which Sta(B) is a TRDS, then in the resulting
unicyclic graph Sta(B) is still a TRDS, and the fact that if the vertex p1

of PABB is joined to any vertex of status A in a status labeled unicyclic
graph in which Sta(B) is a TRDS, then in the resulting unicyclic graph
Sta(B) is still a TRDS.

If U is a Type 1 graph, then n(U) ≡ 0 mod 4 and |Sta(B)| = n
2 , since B1

or B2 contribute two vertices out of four to Sta(B), while each of the ` ≥ 0
applications of O1 or O2 contributes two vertices out of four to Sta(B).
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Suppose U is a Type 2 graph, and suppose U is obtained from the Type
1 graph U ′ by joining a vertex v ∈ Sta(A) in U ′ to the vertex p1 of PABB ,
and then following this by ` ≥ 0 applications of O1 or O2.

Then n(U ′) ≡ 0 mod 4 and U ′ has exactly n(U ′)
2 vertices of status B, and so

n(U) ≡ 3 mod 4 and |Sta(B)| = n(U)−3
2 +2 = n+1

2 , since PABB contributes
two vertices to Sta(B) and three to n(U), while each of the applications of
O1 or O2 contributes two vertices out of four to Sta(B). As n ≡ 3 mod 4,
we have dn

2 e = n+1
2 , and so |Sta(B)| = dn

2 e.

Now, suppose U is obtained from B1 or B2 by exactly one application of
O4, followed by ` ≥ 0 applications of O1 or O2. Again, we have |Sta(B)| =
n(U)−3

2 + 2 = n+1
2 , and as n ≡ 3 mod 4, we have dn

2 e = n+1
2 , and so

|Sta(B)| = dn
2 e.

For graphs of Type 3 and Type 4, n ≡ 1 mod 4, while |Sta(B)| = n−1
2 +

1 = n+1
2 = dn

2 e. �

Let U be a unicyclic graph and denote its unique cycle by C. A reference
path of U is a path v = u0, u1, . . . , ut, where v ∈ V (C), ut is a leaf, and
ui 6∈ V (C) for i = 1, . . . , t. We say a reference path v = u0, u1, . . . , ut

is maximal if for every reference path v = u0, u1, u
′
2, . . . , u

′
s we have that

s ≤ t. We are now ready to state our characterization.

Theorem 4 Let U be a unicyclic graph of order n ≥ 4. Then U is in E if
and only if U can be status labeled in such a way that it is in C.

Proof. Suppose that U ∈ C. By Observation 4, U ∈ E .

Now, assume that U ∈ E and let S be a γtr-set of U . We proceed by
induction on n. Suppose n = 4. If U = C4, then it can be status labeled as
B1 which is in C. If U is the graph obtained from C3 by joining an isolated
vertex to any vertex of C3, then it can be status labeled as B2 which is in
C. Therefore, assume n ≥ 5 and, for all U ′ ∈ E such that 4 ≤ n(U ′) < n, U ′

can be status labeled so that it is in C. (Henceforth, we will abuse notation
slightly by just saying that U ′ ∈ C.) Suppose U is a cycle. If n is even, then
Observation 1 holds, implying that n ≡ 0 mod 4. If n is odd, then Property
1 of Observation 2 holds, and so n ≡ 1 mod 4. Thus U is of Type 1 or
Type 4.

Hence, there exists v ∈ V (U) such that deg(v) ≥ 3.

Claim 1 Suppose v′ = w0, w1, . . . , ws is a maximal reference path of U . If
ws−1 is adjacent to a vertex w′

s ∈ S − {ws}, then U is of Type 3.
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Proof. Note that possibly w′
s = ws−2, and that {ws−1, ws, w

′
s} ⊆ S. By

contraposition of Observation 1, n = 2q + 1, where q ≥ 2, and Property 1
of Observation 2 holds. Let U ′ = U −ws, and notice that S′ = S −{ws} is
a TRDS of U ′, while n(U ′) = 2q. Moreover, S′ is a TRDS of U ′ of size
d 2q+1

2 e − 1 = q, whence q = 2q
2 ≤ γr(U ′) ≤ |S′| = q. Thus, U ′ ∈ E , and

by the induction assumption U ′ ∈ C. Since n(U ′) is even, n(U ′) ≡ 0 mod
4, and so U ′ is of Type 1. Since ws−1 ∈ Sta(B) in U ′, U can be obtained
from U ′ by joining ws to ws−1, and setting Sta(ws) = B. Hence U is of
Type 3. �

By Claim 1, we conclude that if v′ = w0, w1, . . . , ws is a maximal reference
path of U , then ws−1 ∈ S and deg(ws−1) = 2.

Let C denote the unique cycle of U . Among all vertices v ∈ C such that
deg(v) ≥ 3, choose the reference path P : v = u0, u1, . . . , ut for which t is
as large as possible. Note that P is necessarily a maximal reference path.

We call a reference path an Rt path if deg(v) = 3 and deg(ui) = 2 for
i = 1, . . . , t − 1. We begin by reducing reference paths to either R1, R2,
R3 or R4.

Case 1. t ≥ 2.

By Claim 1, deg(ut−1) = 2 and ut−1 ∈ S.

We first show that deg(ut−2) = 3 if t = 2, while deg(ut−2) = 2 if t ≥ 3.
Suppose, to the contrary, that deg(ut−2) ≥ 4 if t = 2 and deg(ut−2) ≥ 3
if t ≥ 3. If ut−2 ∈ S, then, since |N(ut−2) ∩ S| = |N(ut−1) ∩ S| = 2,
Observations 1 and 2 are contradicted. Thus, ut−2 6∈ S and ut−2 is not a
remote vertex. But then |N(ut−2) ∩ S| ≥ 2, contradicting Observations 1
and 2.

Thus, if t = 2, then deg(v) = 3, while if t ≥ 3, then deg(ut−2) = 2.

Suppose t = 3. Then (cf. Claim 1), we have u1 6∈ S, and so v /∈ S. If
deg(v) ≥ 4, then Observations 1 and 2 are contradicted. Thus deg(v) = 3.

Suppose t ≥ 4. We first show that deg(ut−3) = 2. Suppose, to the contrary,
that deg(ut−3) ≥ 3. Since ut−2 /∈ S, it follows that ut−3 /∈ S. If deg(ut−3) ≥
4, then Observations 1 and 2 are contradicted. Thus deg(ut−3) = 3. By
contraposition of Observation 1, n = 2q +1 for some positive integer q ≥ 3,
and Property 2 of Observation 2 must hold. Let U ′ = U −ut−2−ut−1−ut,
and notice that S′ = S − {ut−1, ut} is a TRDS of U ′. Thus, U ′ has order
n − 3 = 2(q − 1) and |S′| = q − 1. Hence, U ′ ∈ E , and U ′ is of Type
1. Furthermore, Observation 1 holds for U ′, and so Sta(ut−3) = A. By
joining ut−3 to ut−2 of 〈{ut−2, ut−1, ut}〉 in U and setting Sta(ut−2) = A
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and Sta(ut−1) = Sta(ut) = B, we have that U is of Type 2. Therefore, if
t ≥ 4, then deg(ut−3) = 2.

Suppose t = 4. We show that deg(v) = 3. Suppose, to the contrary, that
deg(v) ≥ 4. Since u2 /∈ S and deg(u2) = deg(u1) = 2, it follows that v ∈ S.
Suppose v is a remote vertex. Let U ′ = U − u1 − u2 − u3 − u4, and notice
that S′ = S − {u3, u4} is a TRDS of U ′. Then U ′ has order n − 4, while
|S′| = dn−4

2 e. Thus, U ′ ∈ E , and U ′ is of Type i, where 1 ≤ i ≤ 4. Since v
is a remote vertex, Sta(v) = B in U ′. By joining v to u1 of 〈{u1, u2, u3, u4}〉
in U , and setting Sta(u1) = Sta(u2) = A and Sta(u3) = Sta(u4) = B, U is
of Type i, where 1 ≤ i ≤ 4.

Suppose v lies on the maximal reference path v, u′1, u
′
2. As {v, u′1, u

′
2} ⊆ S,

Claim 1 implies that U ∈ C.

If v lies on the maximal reference path v, u′1, u
′
2, u

′
3, then, as {v, u′2, u

′
3} ⊆ S,

Observations 1 and 2 are contradicted. Therefore, v lies exclusively on at
least two maximal reference paths whose vertices induce P4. Let U ′ =
U − u1 − u2 − u3 − u4, and notice that S′ = S − {u3, u4} is a TRDS
of U ′. Then U ′ has order n − 4, while |S′| = dn−4

2 e. Hence, U ′ ∈ E
and U ′ is of Type i, where 1 ≤ i ≤ 4. Suppose Sta(u′2) = B. Then
Property 1 of Observation 2 must hold, and so Sta(u′1) = Sta(v) = A, while
degU ′(u′1) = degU ′(v) = 2. But then degU (v) = 3, which is a contradiction.
Thus, Sta(v) = B. By joining v to u1 of 〈{u1, u2, u3, u4}〉 in U , and setting
Sta(u1) = Sta(u2) = A and Sta(u3) = Sta(u4) = B, it follows that U is of
Type i, where 1 ≤ i ≤ 4. Hence, deg(v) = 3.

Suppose t ≥ 5. Repeating the arguments above, we may assume ut−4 ∈ S
and 〈{ut−3, ut−2, ut−1, ut}〉 ∼= P4. Suppose deg(ut−4) ≥ 3. Then ut−4 lies
exclusively on disjoint paths of the form ut−4, u

k
t−3, u

k
t−2, uk

t−1, u
k
t , where

〈{uk
t−3, u

k
t−2, u

k
t−1, u

k
t }〉 ∼= P4, uk

t−3 ∈ N(ut−4) − {ut−5, ut−3} and 1 ≤ k ≤
|N(ut−4)|−2. We form U ′ by removing each ut−j and uk

t−j where 0 ≤ j ≤ 3.
Then U ′ ∈ E , and U ′ is of Type i, where 1 ≤ i ≤ 4. Since ut−4 is a leaf
of U ′, it follows that Sta(ut−4) = B in U ′. By re-attaching each path, and
labeling the vertices on each path consecutively A,A, B, B, it follows that
U is of Type i.

Therefore, if t ≥ 4, then t = 4 and deg(ut−3) = 2.

Case 2. t = 1. By Claim 1, deg(v) = 3, since otherwise U ∈ C. Thus, if
t = 1, then deg(v) = 3.

We have now reduced P to either an R1, R2, R3 or R4 path. We may
therefore assume that each reference path of U is either an R1, R2, R3 or
R4.
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Suppose that U has an R2 path vi, u1, u2. We may assume that vi /∈ S and
u1, u2 ∈ S.

Then n = 2q + 1 where q ≥ 1, and Property 2 of Observation 2 must hold.
Thus, N [vi]∩S = {u1}. If U has a cycle on four, five, or seven vertices, then
we are done. If U has a cycle on six vertices, then we reach a contradiction.
Thus, U has a cycle on at least eight vertices.

Consider the path vi−2, vi−1, vi, vi+1, . . . , vi+5 on C, where vi−1, vi, vi+1 /∈ S
and vi+2, vi−2 ∈ S. By symmetry, without loss of generality, suppose vi−2

lies on an R4 or R1 path.

First consider the case when vi+3 ∈ S. Then, by Property 2 of Observa-
tion 2, it follows that vi+4 6∈ S, while neither vi+2 nor vi+3 are on any Ri
paths for 1 ≤ i ≤ 3. Thus vi+5 /∈ S. Let r (0 ≤ r ≤ 2) be the number
of R4 paths originating from vi+2 and vi+3. We form U ′ by removing
vi+1, vi+2, vi+3, vi+4, and the 4r vertices of the R4 paths, and then joining
vi and vi+5. Then U has order n−4−4r = 2(q−2r−2)+1, and γtr(U ′) =
q−2r−1. Thus, U ′ ∈ E and U ′ is of Type i, where i ∈ {2, 3, 4}. Moreover,
Observation 2 holds, and so Sta(vi−2) = B (since otherwise vi−2 is on the
R4 path vi−2, u

′
1, u

′
2, u

′
3, u

′
4 where {u′2, u′3, u′4} ⊆ Sta(B), which contradicts

Property 2 of Observation 2). If Sta(vi) = B, then {vi−1, vi, u1, u2} ⊆
Sta(B), contradicting Observation 2. Thus, Sta(vi) = A, and Property
2 of Observation 2 holds, and so Sta(vi+5) = Sta(vi−1) = A. Delete
the edge vivi+5, join vi (vi+5, respectively) to vi+1 (vi+4, respectively)
of 〈{vi+1, vi+2, vi+3, vi+4}〉 in U , and set Sta(vi+1) = Sta(vi+4) = A and
Sta(vi+2) = Sta(vi+3) = B. By applying O1 (if necessary) to vi+2 and vi+3,
we obtain U . Thus, U is of Type i, where i ∈ {2, 3, 4}.

Next consider the case when vi+3 /∈ S. Then vi+2 must lie on an R1
path vi+2, u

′
1. Furthermore, vi+3, vi+4 /∈ S, and vi+5 ∈ S. We form U ′

by removing vi+2, vi+3, vi+4, u
′
1, and then joining vi+1 and vi+5. Then U ′

has order n − 4 = 2(q − 2) + 1 and γtr(U ′) = q − 1. Thus, U ′ ∈ E and
U ′ is of Type i, where i ∈ {2, 3, 4}. Moreover, Observation 2 holds, and
Sta(vi−2) = B. If Sta(vi) = B, then {vi, vi−1, u1, u2} ⊆ Sta(B), contradict-
ing Observation 2. Thus, Sta(vi) = A, and by Property 2 of Observation 2,
Sta(vi+1) = Sta(vi−1) = A. Furthermore, Sta(vi+5) = B. Delete the
edge vi+1vi+5, and join vi+1 (vi+5, respectively) to vi+2 (vi+4, respectively)
of 〈{vi+2, vi+3, vi+4, u

′
1}〉 in U , and set Sta(vi+3) = Sta(vi+4) = A and

Sta(vi+2) = Sta(u′1) = B. Thus, U is of Type i, where i ∈ {2, 3, 4}.

We may assume that neither vi−2 nor vi+2 lies on an R1 or R4 path.
Then the cycle of U has length as least nine. We now consider the path
vi−1, vi, vi+1, . . . , vi+6, where vi+2, vi+3 ∈ S and vi+4, vi+5 /∈ S. Let r
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(0 ≤ r ≤ 1) be the number of R4 paths on vi+3. We form U ′ by removing
vi+2, vi+3, vi+4, vi+5, and the 4r vertices of the possible R4 paths, and
then joining vi+1 and vi+6. Then U ′ has order n − 4 − 4r = 2(q − 2r −
2) + 1, and γtr(U ′) = q − 2r − 1. Thus, U ′ ∈ E , and U ′ is of Type i,
where i ∈ {2, 3, 4}. Moreover, Observation 2 holds. Suppose Sta(vi) = B.
By Observation 2, Sta(vi+1) = Sta(vi−1) = A, and so Sta(vi+6) = A.
Delete the edge vi+1vi+6, and join vi+1 (vi+6, respectively) to vi+2 (vi+5,
respectively) in 〈{vi+2, vi+3, vi+4, vi+5}〉, and set Sta(vi+2) = Sta(vi+5) = A
and Sta(vi+3) = Sta(vi+4) = B. By applying O1 (if necessary) to vi+3, it
follows that U is of Type i, where i ∈ {2, 3, 4}. Suppose Sta(vi) = A. By
Observation 2, Sta(vi−1) = Sta(vi+1) = A. Furthermore, Sta(vi+6) = B.
Delete the edge vi+1vi+6, and join vi+1 (vi+6, respectively) to vi+2 (vi+5,
respectively) in 〈{vi+2, vi+3, vi+4, vi+5}〉, and set Sta(vi+4) = Sta(vi+5) = A
and Sta(vi+2) = Sta(vi+3) = B. By applying O1 (if necessary) to vi+3, it
follows that U is of Type i, where i ∈ {2, 3, 4}.

We may assume that U has no R2 paths.

Suppose that U has an R1 path vi, u1. If U has a cycle on three or four
vertices, then we are done. Thus, U has a cycle on more than four vertices.
Let vi−1 and vi+1 be neighbors of vi that lie C. If {vi−1, vi+1} ⊆ S, then
|N(vi) ∩ S| = 3, contradicting Observations 1 and 2. Without loss of gener-
ality, suppose that vi+1 /∈ S. If U has a cycle on five vertices, then we reach
a contradiction. If U has a cycle on six vertices, then we are done. Thus, U
has a cycle on at least seven vertices. Consider the path vi, vi+1, . . . , vi+6,
on C. If vi+2 ∈ S, then deg(vi+1) = 3 and |N(vi+1) ∩ S| = 2, contradict-
ing Observations 1 and 2. Thus, vi+2 /∈ S, and since U has no R2 paths,
vi+3 ∈ S.

Case 2.1 vi+4 ∈ S.

Case 2.1.1 vi+5 ∈ S.

By contraposition of Observation 1, n = 2q + 1 where q ≥ 3. Moreover, as
Property 1 of Observation 2 holds, vi+6 /∈ S, deg(vi+1) = deg(vi+2) = 2,
while vi+3, vi+4 and vi+5 do not lie on either an R1 path or an R3 path.
Let r (0 ≤ r ≤ 3) be the number of R4 paths on vi+3, vi+4 and vi+5. We
form U ′ by removing vi+1, vi+2, vi+3, vi+4 and vi+5, and the 4r vertices of
the aforementioned R4 paths, and then joining vi to vi+6. Then U ′ has
order n−5−4r = 2(q−2r−2) and γtr(U ′) = q−2r−2. Hence, U ′ ∈ E and
U ′ is of Type 1. By Observation 1, Sta(vi) = B, and so Sta(vi+6) = A.
Delete the edge vivi+6, and join vi (vi+6, respectively) to vertex vi+1 (vi+5,
respectively) of the path P4 with consecutive vertices vi+1, vi+2, vi+3, vi+5,
and set Sta(vi+1) = Sta(vi+2) = A and Sta(vi+3) = Sta(vi+5) = B. Delete
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the edge vi+3vi+5, and join vi+3 and vi+5 to vi+4, and set Sta(vi+4) = B.
By applying O1 (if necessary) to vi+3, vi+4 and vi+5, it follows that U is of
Type 4.

Case 2.1.2 vi+5 /∈ S.

At most one of vi+1 and vi+2 can lie on an R3 path. Without loss of
generality, suppose that vi+1 lies on an R3 path. Thus, n = 2q + 1 where
q ≥ 3 and Property 2 of Observation 2 holds. Moreover, neither vi+3 nor
vi+4 lies on an R1 path. Let r (0 ≤ r ≤ 2) be the number of R4 paths on
vi+3 and vi+4. We form U ′ by removing vi+1, vi+2, vi+3 and vi+4, the 4r
vertices of the possible R4 paths, and the three vertices from the R3 path,
and then joining vi to vi+5. Then U ′ has order n−4r−7 = 2(q−2r−3) and
γtr(U ′) = q − 2r− 3. Thus U ′ ∈ E and U ′ is of Type 1. As Observation 1
holds, Sta(vi) = B, and so Sta(vi+5) = A. Delete the edge vivi+5 and join vi

(vi+5, respectively) to vi+1 (vi+4, respectively) in 〈{vi+1, vi+2, vi+3, vi+4}〉
of U , and set Sta(vi+1) = Sta(vi+2) = A and Sta(vi+3) =Sta(vi+4) = B.
Then, join vi+1 to vertex p1 of PABB . By applying O1 (if necessary) to
vi+3 and vi+4, it follows that U is of Type 2.

Thus, vi+1 and vi+2 do not lie on an R3 path, and therefore deg(vi+1) =
deg(vi+2) = 2. At most one of vi+3 and vi+4 lies on an R1 path. Without
loss of generality, suppose that vi+3 lies on an R1 path. Then n = 2q + 1
where q ≥ 3, and Property 1 of Observation 2 holds. Let r (0 ≤ r ≤
1) denote the number of R4 paths on vi+4. We form U by removing
vi+1, vi+2, vi+3 and vi+4, the 4r vertices of the possible R4 paths, and the
one vertex from the R1 path, and then joining vi to vi+5. Then U has
order n − 4r − 5 = 2(q − 2r − 2) and so γtr(U ′) = q − 2r − 2, whence
U ′ ∈ E . Furthermore, U ′ must be of Type 1. As Observation 1 holds,
Sta(vi) = B, and so Sta(vi+5) = A. Delete the edge vivi+5 and join vi

(vi+5, respectively) to vi+1 (vi+4, respectively) in 〈{vi+1, vi+2, vi+3, vi+4}〉,
and set Sta(vi+1) = Sta(vi+2) = A and Sta(vi+3) =Sta(vi+4) = B. Then
join vi+3 to a vertex w of K1 and set Sta(w) = B. By applying O1 (if
necessary) to vi+4, it follows that U is of Type 3.

Suppose that neither vi+3 nor vi+4 lies on an R1 path. Let r (0 ≤ r ≤ 2)
denote the number of R4 paths on vi+3 and vi+4. We form U ′ by re-
moving vi+1, vi+2, vi+3 and vi+4, and the 4r vertices of the possible R4
paths, and then joining vi to vi+5. Again, U ′ ∈ E , and U ′ is of Type
i, where 1 ≤ i ≤ 4. Notice that Sta(vi) = B. Suppose Sta(vi+5) = B.
Delete the edge vivi+5 and join vi (vi+5, respectively) to vi+1 (vi+4, re-
spectively) in 〈{vi+1, vi+2, vi+3, vi+4}〉, and set Sta(vi+1) = Sta(vi+2) = A
and Sta(vi+3) =Sta(vi+4) = B. By applying O1 (if necessary) on vi+3 and
vi+4, it follows that Sta(B) is a γtr-set of U that contains vi+5, and so
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we have Case 1.1 above. We may assume that Sta(vi+5) = A. Delete
the edge vivi+5 and join vi (vi+5, respectively) to vi+1 (vi+4, respectively)
in 〈{vi+1, vi+2, vi+3, vi+4}〉 of U , and set Sta(vi+1) = Sta(vi+2) = A and
Sta(vi+3) =Sta(vi+4) = B. By applying O1 (if necessary) to vi+3 and vi+4,
it follows that U is of Type i.

Case 2.2 vi+4 /∈ S.

Then vi+3 lies on an R1 path vi+3, u
′
1. Assume first that vi+1 and vi+2

do not lie on an R3 path. We form U ′ by removing vi+1, vi+2, vi+3, and
u′1, and then joining vi and vi+4. Then U ′ ∈ E and U ′ is of Type i,
where 1 ≤ i ≤ 4. Notice that Sta(vi) = B. Suppose Sta(vi+4) = B.
Delete the edge vivi+4 and join vi (vi+4, respectively) to vi+1 (vi+3, re-
spectively) in 〈{vi+1, vi+2, vi+3, u

′
1}〉, and set Sta(vi+1) = Sta(vi+2) = A

and Sta(vi+3) =Sta(u′1) = B. It follows that Sta(B) is a γtr-set of U that
contains vi+4, and so we have Case 1 of this proof. Thus, Sta(vi+4) = A.
By similar reasoning to that above, it follows that U is of Type i.

Now, at most one of vi+1 and vi+2 lies on an R3 path. Without loss
of generality, suppose that vi+1 lies on an R3 path. Then n = 2q + 1
where q ≥ 2, and Property 2 of Observation 2 holds. We form U ′ by
removing vi+1, vi+2, vi+3, u

′
1, and the three vertices from the R3 path, and

then joining vi and vi+4. Then U ′ has order n−7 = 2(q−3), and γtr(U ′) =
q − 3. Thus U ′ ∈ E and U ′ must be of Type 1. By Observation 1,
Sta(vi) = B, and so Sta(vi+4) = A. Delete the edge vivi+4 and join vi

(vi+4, respectively) to vi+1 (vi+3, respectively) in 〈{vi+1, vi+2, vi+3, u
′
1}〉,

and set Sta(vi+1) = Sta(vi+2) = A and Sta(vi+3) = Sta(u′1) = B. Then
join vi+1 to vertex p1 of PABB . It follows that U is of Type 2.

We may assume that U has no R1 paths.

Assume that U has an R3 path v, u1, u2, u3. Since v /∈ S, Property 2 of
Observation 2 holds. Moreover, U has exactly one R3 path, u1 /∈ S, and
u2, u3 ∈ S. Let C = v, v1, . . . , vN−1, vN , v denote the cycle of U , and notice
that n(〈C〉) ≡ 0 mod 4. Without loss of generality suppose vN ∈ S, and
notice that vi ∈ S for each and only each i ≡ 2 or 3 mod 4 (1 ≤ i ≤ N).

Let r be the number of R4 paths on vertices of C, which emanate only
from vertices on C ∩ S. We form U ′ by removing the 4r vertices of the
aforementioned R4 paths, v1, . . . , vN−3 (if N ≥ 7) and u1, u2, u3, and then
joining v to vN−2. By setting Sta(v) = Sta(vN−2) = A and Sta(vN ) =
Sta(vN−1) = B, it follows that U ′ ∼= B1, whence U ′ is of Type 1. Join v to
u1 of 〈{u1, u2, u3}〉, setting Sta(u1) = A and Sta(u2) = Sta(u3) = B, and so
the resulting graph is of Type 2. Then delete the edge vvN−2 and re-insert
v1, . . . , vN−3 (by applying O2 zero or more times), setting Sta(vi) = A for
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i ≡ 0 or 1 mod 4, and Sta(vi) = B for i ≡ 2 or 3 mod 4. Finally, by
re-attaching the R4 paths with the natural labeling A,A, B, B, it follows
that U is of Type 2.

Thus, assume that U has only R4 paths. These paths emanate only from
vertices on C ∩ S, where C = v, v1, . . . , vN−1, vN , v denote the cycle of U .
Note that n(〈C〉) ≡ 0 or 1 mod 4. Without loss of generality, suppose
vN−1, vN ∈ S.

First, suppose that n(〈C〉) ≡ 0 mod 4. Then v /∈ S, and vi ∈ S for each
and only each i ≡ 2 or 3 mod 4 (1 ≤ i ≤ N). Let r be the number
of R4 paths on vertices of C. We form U ′ by removing the 4r vertices
of the aforementioned R4 paths, and v1, . . . , vN−3 (if N ≥ 7), and then
joining v to vN−2. By setting Sta(v) = Sta(vN−2) = A and Sta(vN ) =
Sta(vN−1) = B, it follows that U ′ ∼= B1, whence U ′ is of Type 1. Delete
the edge vvN−2 and re-insert v1, . . . , vN−3 (by applying O2 zero or more
times), setting Sta(vi) = A for i ≡ 0 or 1 mod 4, and Sta(vi) = B for
i ≡ 2 or 3 mod 4. Finally, by re-attaching the R4 paths with the natural
labeling, it follows that U is of Type 1.

Now consider the case when n(〈C〉) ≡ 1 mod 4. Since U has only R4 paths,
all degree three vertices of U are in S. Thus Property 1 of Observation 2
holds. Without loss of generality suppose vN−2 ∈ S. Then v /∈ S, and
vi ∈ S for each and only each i ≡ 2 or 3 mod 4 (1 ≤ i ≤ N). Let r
be the number of R4 paths on vertices of C. We form U ′ by removing
the 4r vertices of the aforementioned R4 paths, v1, . . . , vi−4 (if N ≥ 8),
the vertex vN−1, and then joining v to vN−3 and vN−2 to vN . By setting
Sta(v) = Sta(vN−3) = A and Sta(vN ) = Sta(vN−2) = B, it follows that
U ′ ∼= B1, whence U ′ is of Type 1. Delete the edge vN−2vN , and join
the vertex vN−1 to the vertices vN−2 and vN . By setting Sta(vN−1) = B,
the resulting graph is of Type 4. Delete the edge vvN−3 and re-insert
v1, . . . , vN−4 (by applying O2 zero or more times), setting Sta(vi) = A for
i ≡ 0 or 1 mod 4, and Sta(vi) = B for i ≡ 2 or 3 mod 4. Finally, by
re-attaching the R4 paths with the natural labeling, it follows that U is of
Type 4. As we have shown that U ∈ C, the proof is complete. 2
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