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Abstract
As a child acquires language, he or she: perceives acous-

tic information in his or her surrounding environment; identi-
fies portions of the ambient acoustic information as language-
related; and associates that language-related information with
his or her perception of his or her own language-related acous-
tic productions. The present work models the third task. We
use a semisupervised alignment algorithm based on manifold
learning. We discuss the concepts behind this approach, andthe
application of the algorithm to this task. We present experimen-
tal evidence indicating the usefulness of manifold alignment in
learning speaker normalization.
Index Terms: speaker normalization, manifold alignment, lan-
guage acquisition

1. Introduction
As infants acquire language, they: perceive acoustic informa-
tion in their surrounding environment; identify portions of the
ambient acoustic information as language-related; and associate
that language-related information with their perception of their
own language-related acoustic productions. The present work
focuses on the third action, called theassociation task, com-
posed of the following subtasks:

• GROUPING. Infants need to group together adult signals
they perceive as similar. Infants also need to group to-
gether their own signals that they perceive as similar.

• MAPPING. Infants need to map groups of adult signals
to groups of infant signals in a reasonable way. For ex-
ample, an adult/a/ must be mapped to an infant/a/.

In this paper we describe an acquisition model that incorpo-
rates both GROUPINGand MAPPING. That is, we provide a full
model of the association task, focusing primarily on MAPPING.

Prior acquisition models address GROUPING, whereas
MAPPING is treated in preprocessing, or simply omitted. For
example, [1] uses a neural network-based approach wherein in-
fant and adult acoustic productions are modeled using a neural
map. The map is trained on synthetic data intended to represent
the babbling of an infant, and acoustic data derived from vowels
segmented from actual adult speech. Peaks in the babbling out-
put more or less coincide with peaks in the adult input. Sincethe
synthesized data ranges over the adult vowel space, the natural
differences between infant acoustics and adult acoustics are not
accounted for. That is, MAPPING is omitted from the model.
The acquisition model in [2], which builds on [1], models dis-
joint infant and adult vowel spaces using a preprocessing nor-
malization step that maps the two spaces into a common space.
That is, MAPPING is treated prior to learning.

The difficulty of the MAPPING task appears in other do-
mains, such as speech recognition and sociophonetics [3, 4],
that handle data drawn from multiple speakers. Typically, a
normalization algorithm is applied to the acoustic data before
analysis is carried out. The fact of cross-language differences in
speaker effects indicates that normalization is a learned process
[5]. In this light, MAPPING is performing speaker normaliza-
tion. The challenge is to model the learning of this process.

We approach this challenge using recent developments in
manifold learning in speech analysis [6, 7, 8]. We conceptual-
ize the adult and infant vowel spaces as geometrically similar
low-dimensional manifolds (Section 2), and use a manifold-
based laplacian classifier [9] to perform the GROUPING task
(Section 3). Given the geometric similarity of the adult and
infant spaces, we model MAPPINGas a continuous transforma-
tion using a semisupervised manifold alignment algorithm [10]
(Section 3). We describe a model that incorporates both com-
ponents of the association task in vowel acquisition (Section 4).
Finally, we measure the model’s potential usefulness and dis-
cuss improvements and feasible expansions on the present work
(Section 5).

We conclude this section by formalizing the (semisuper-
vised) association task. We make the following simplifyingas-
sumptions: (i) The ambient acoustic information is only that
produced by an adult woman (adult) and a six-month-old in-
fant. (ii) The acoustic information is vocalic (thus GROUPING

yields groups of vowels). (iii) The number of adult and infant
vowel groups is the same. (iv) Geometric relationships between
adult vowel groups are preserved by MAPPING. This ensures
that adult vowel groups are reasonably mapped to infant vowel
groups. (v) There is a set of exemplar adult acoustic vectors,
each corresponding to an infant acoustic vector.

We assume two distinct articulatory systemsA andI that
output signals. The systemA represents an adult female articu-
latory system, andI an infant articulatory system. Our data set
is a collection of vectors of acoustic information derived from
vocalic signalss output byA andI as follows:

• Given a vocalic signals, we recover formant values F1,
F2, F3, and F4 (in Barks) froms at a single point in time.

• We denote the formant values asfs
1 , fs

2 , fs
3 , fs

4 (usually
omitting the superscript), and use them to form a vector
〈f1, f2, f3, f4〉.

The vectors derived from vocalic signals are calledacoustic
vectors. Theadult vowel spaceVA is the collection of acoustic
vectors derived fromA. Similarly, theinfant vowel spaceVI is
the collection of acoustic vectors derived fromI . Both spaces
are represented in Figure 1a).

We focus on acoustic vectors with four formant values
〈f1, f2, f3, f4〉, and simplified acoustic vectors with values for
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Figure 1: The adult and infant acoustic vectors in magenta and blue, respectively. a) depicts the simplified adult and infant vowel spaces.
b) depicts the simplified spaces collapsed into the F1 and F2 space, and the significant lack of overlap. c) depicts the two-dimensional
adult (blue) and infant (magenta) vowel manifolds in a normalized F1 and F2 space. We use their similar geometry to align them (red).

only the first three formants〈f1, f2, f3〉, Given this data repre-
sentation, we formulate the subtasks of GROUPINGand MAP-
PING as follows:

• Group the acoustic vectors inVA into v-many categories
a1, . . . , av, called adult vowel categories. Group the
acoustic vectors inVI into v-many categoriesi1, . . . , iv,
calledinfant vowel categories.

• Map the categoriesa1, . . . , av to the categories
i1, . . . , iv , preserving local geometric relationships.
That is, achieve a reasonable correspondence between
a1, . . . , av andi1, . . . , iv (using exemplar pairs).

2. Manifolds
We briefly present the conceptual basis for the manifold learn-
ing approach we intend to use. For a detailed introduction to
manifolds see [11]. Intuitively, amanifold is a subset of a
higher-dimensional space that is similar to a lower-dimensional
Euclidean space. For example, the surface of a sphere in three-
dimensional space, though not perfectly flat, is similar to the
Euclidean plane (we say that the surface is atwo-dimensional
manifold). This similarity yields useful lower-dimensional
representations of the higher-dimensional data. For example,
the approximately spherical Earth is represented using two-
dimensional (planar) maps. The simplified vowel spacesVI

andVA (Figure 1a)) are situated in three-dimensional space, yet
they are both similar to the Euclidean plane (i.e., they are two-
dimensional manifolds). We want to take advantage of their
lower-dimensional representations, depicted in Figure 1c), for
GROUPINGand MAPPING.

Consider the manifoldVA. Being similar to the plane
means that there is a family of functions onVA, each smoothly
mapping a portion ofVA to the Euclidean plane. In practice, we
do not have these smooth functions immediately in hand.

1. We need a way to approximate these smooth,
dimensionality-reducing functions, as well as other
smooth functions defined on our manifolds,

2. We need a way to measure the smoothness of these ap-
proximations.

For details on the mathematical development of these desider-
ata, see [12]. We briefly recount the needed components. De-
note by L2(VA) the set of smooth functions onVA. The
laplace-beltrami operatoris defined as the divergence of the
gradient (∆f = div(grad(f))) of functionsf ∈ L2(VA). This
operator yields both a simple approximation of smooth func-

tions onVA, and a simple method for measuring their smooth-
ness.

For computational purposes,VA is discretely modeled by
a weighted graphG. Points inVA are represented by the ver-
tices ofG. The weight between verticesi andj represents the
closeness of those points on the manifold. The laplace-beltrami
operator is discretely modeled asL = D − W where:

• W is the weight matrix ofG,

• D is the diagonal matrix withDii =
P

j
Wij .

The matrixL is the calledgraph Laplacianof G.
The graph Laplacian yields a smoothness measure as fol-

lows. Assume the vertices ofG are numbered1, . . . , n, and let
f = (f1, . . . , fn) be a function onG. Supposewij is large
(i.e.,i andj are close). Forf to be smooth, we want(fi − fj)

2

to be very small. That is, we wantwij(fi − fj)
2 ≈ 0 for each

i, j. Define the smoothness measure off onG as:

SG(f) =
X

i∼j

wij(fi − fj)
2 = fLfT (1)

A functionf is smoothif SG(f) ≈ 0. The alignment algorithm
we use to model MAPPINGcrucially depends on the smoothness
measure, since it measures the preservation of local geometry
onVA.

3. Algorithms
We present the manifold algorithms used in our model. We be-
gin with a simple laplacian classifier [9] used to model GROUP-
ING. We present the algorithm for a general vowel space
V ⊆ R

n with vowel categoriesz1, . . . , zv. Let x1, . . . xk ∈ V
and let the natural numbers1, . . . , v represent the categories
z1, . . . , zv. We assume that the categories of the firsts < k
points are known, and denote the category ofxi asbi (i ≤ s).
The algorithm is as follows:

1. Construct a weighted graphG which hask vertices rep-
resenting the pointsx1, . . . , xk. Compute the graph
LaplacianL of G.

2. LetL1 be as × s matrix,L2 a s × (k − s) matrix, and
L3 a (k − s) × (k − s) matrix such that

L =

„

L1 L2

LT
2 L3

«

(2)

3. Compute b̄ = L−1
3 LT

2 (b1, . . . , bs)
T . Then b̄ =

(b̄1, . . . , b̄k−s), and the category ofxs+j is b̄j .



The theoretical aspects of this algorithm, and comparisonsto
other semisupervised approaches to data classification arepre-
sented in [9]. Manifold-based classification of speech sounds is
also analyzed in [8, 7].

For the MAPPING task, we want to learn a transformation
T from VA to VI , that preserves the similarities of their geome-
tries. Rather than learningT directly, we learn afactorization
of T . We factorT into composite functionsf andg, with an
intermediate spaceVZ , wheref : VA → VZ andg : VI → VZ .
Conceptually, we are collapsing the manifoldsVI andVA onto
another manifoldVZ (see Figure 1c)). We then learnT by learn-
ing f andg.

We learnf andg using the semisupervised manifold align-
ment algorithm in [10]. Suppose we have a set of exemplar
vectorsVX ⊆ VA that correspond to a set of vectorsVY ⊆ VI ,
both of cardinalityℓ. We assume this correspondence is a bijec-
tion xi 7→ yi betweenVX andVY that is representative of the
geometry-preserving transformationT . We want to factorT in
functionsf andg. Sincexi corresponds toyi, we wantfi close
to gi, that is, we want(fi − gi)

2 to be small. Moreover, we
want local geometries to be preserved; that is, we wantf to be
smooth onVA, andg to be smooth onVI . Let LA, andLI be
the laplacian on the graphical representation ofVA andVI . We
use the smoothness measure in (1) to minimize:

C(f, g) =def µ

ℓ
X

i=1

(fi − gi)
2 + fLAfT + gLIg

T (3)

whereµ is a weight indicating the importance of the alignment.
To properly minimize (3), we need it to be invariant under si-
multaneous scaling off andg. Thus, we minimize:

C̄(f, g) =def

C(f, g)

fT f + gT g
(4)

Let {x1, . . . , xk} = VA ⊆ R
n and{y1, . . . , yq} = VI ⊆

R
n such thatxi corresponds toyi for 1 ≤ i ≤ ℓ and ℓ <

min(k, q). The algorithm is as follows:

1. DefineUαβ as anα × β matrix such that

Uαβ
ij =

(

µ i = j ≤ ℓ

0 otherwise.
(5)

2. Compute the laplaciansLA andLI , and let

LZ =

„

LA + Ukk −Ukq

−Uqk LI + Uqq

«

(6)

3. Compute the eigenvectorsh of LZ , where h =
[fT gT ]T , which is equivalent to minimizing (4).

4. Leth1, . . . , hr be the eigenvectors corresponding to the
r smallest non-zero eigenvalues ofLZ . We have the fol-
lowing factorization:

xi ∈ VA 7→ 〈f1(i), . . . , fr(i)〉
yi ∈ VI 7→ 〈g1(i), . . . , gr(i)〉

The number of eigenvectors used (r) depends on the precision
desired in approximatingf andg (and thusT ).

4. Data and model
Our model requires representation of acoustic productionsof
both an infant and an adult woman. We use data correspond-
ing to the following two subcomponents of the Variable Linear
Articulatory Model (VLAM, [13]): (1) the formant frequencies
yielded by simulation of a six-month-old male vocal tract, and
(2) the formant frequencies yielded by the simulation of a 16-
year-old male vocal tract, which corresponds to the range of
vowels that an adult woman might produce. Each data set con-
tains approximately 4000 acoustic data points which are vectors
whose components are the first four formant frequencies (F1,
F2, F3, F4). We convert all of the formant values into the Bark
scale to approximate their psychoacoustic value.

The exemplar data we use for semisupervised learning were
perceptually categorized [14]. The stimuli were 408 synthe-
sized vowels. These represented 38 tokens generated by the
VLAM model for each of seven different vocal tract growth
stages. These included the six-month-old and 16-year-old vocal
tracts which yielded the data sets described above. The 38 to-
kens were meant to represent 38 commonly occurring acoustic
prototypes, as determined by previous cross-linguistic surveys.
Each of these was fit to an appropriate location in the maximal
vowel space for each vocal-tract stage.

21 Greek listeners, 20 Korean listeners, and 21 English-
speaking listeners were tested by a same-language-speaking re-
search assistant, with all instructions translated to the native lan-
guage. Stimuli were blocked by vocal-tract age. Presentation
was randomized within blocks, and block order was random-
ized. On each trial, the listener heard a vowel, then clickedon a
vowel category label on a computer screen to indicate the cho-
sen vowel type. The number of labels reflected the number of
monophthongal vowels in the language (i.e., 5 for Greek, 7 for
Korean, and 12 for English). The labels were then replaced bya
line visual analog scale, on which the listener clicked to record
the “goodness” or confidence in the identification. A data point
received a consensus label (reflecting the “community norm”)
if inter-listener agreement on that label was above chance on a
binomial test and there were no ties for the top-ranked choice.

We take the adult VLAM data to beVA, and the infant
VLAM data to beVI . Let VX = {xA

1 , . . . , xA
38} andVY =

{yI
1 , . . . , yI

38} be the set of perceptually categorized adult and
infant exemplar vectors. Letaj

i be the category ofxA
j , and letiji

be the category ofyI
j .

1. For eachxA
j , compute itsn nearest neighbors inVA and

assign them categoryaj
i . Call the derived set of catego-

rized adult acoustic vectorsAcat. Carry this process out
for eachyI

i , and call the derived set of categorized infant
acoustic vectorsIcat.

2. Run the laplacian classifier (GROUPING) on VA using
Acat as training data. Similarly, run GROUPING on VI

usingIcat as training data.

3. For each adult vowel categoryai, let Aai

cat be the set of
adult acoustic vectors inAcat with categoryai. Com-
pute the mean of eachAai

cat, and compute them nearest
neighbors of this mean. Call this set of nearest neighbors
Aai

align. In similar fashion, compute eachI ii

align. Let

Aalign =

0

B

@

Aa1

align

...
Aav

align

1

C

A
Ialign =

0

B

B

@

I i1

align

...
I iv

align

1

C

C

A

(7)



4. Run the semisupervised alignment algorithm (MAP-
PING) on VA andVI , usingAalign andIalign for align-
ment training.

5. Results and discussion
The perceptual data yields three sets of categorized exemplar
data, allowing us three sets of experiments. The model algo-
rithm was run using the Greek, Korean, and English perceptual
data, in turn, asVX andVY . The Greek perceptual categoriza-
tion yielded five adult and infant vowel categories. The Korean
perceptual categorization yielded seven adult vowel categories,
and five infant vowel categories. In some cases, a category
had only one representative point. We excluded such points,
resulting in a simplified categorization, with four adult and in-
fant vowel categories. The English perceptual categorization
yielded ten adult vowel categories, and seven infant vowel cate-
gories. Again, in some cases a category had only one represen-
tative point. We excluded such points, resulting in a simplified
categorization, with four adult and infant vowel categories (di-
viding the vowel spaces in a different way from the four cate-
gories of the simplified Korean grouping).

We performed the experiments in two phases, one using
acoustic vectors with three formant components〈f1, f2, f3〉,
the other using acoustic vectors with four formant components
〈f1, f2, f3, f4〉. In both cases, training parameters were as fol-
lows: we computed the five nearest neighbors of each vector in
Step 1., and 100 nearest neighbors in Step 3. In testing, we use
‘leave-one-out’ cross-validation onVX (the perceptually cate-
gorized adult data) for each language. Both GROUPING and
MAPPING were tested on the held-out vector. For GROUPING,
we simply compared the known category of the held-out vector
against the category assigned by the laplacian classifier. Cor-
rectness is defined as having the same category. Correctnessre-
sults for GROUPINGon vectors with three (four) formant values
were – Greek: 75% (75%); Korean: 88% (85%); English: 93%
(90%). These accuracy rates are likely to be a coarser represen-
tation of the infant’s sensory map than we are trying to model
with the two manifolds. We might achieve better GROUPINGif
we used individual results from the perception experiment in-
stead of consensus results and referred to the goodness ratings.
We might also need a more densely sampled set of perceptual
responses. The accuracies nevertheless seem high enough to
attempt an initial test of MAPPING.

Table 1:Mapping Results. Values indicate percent of correctly
mapped test cases.

Eigenvectors Greek Korean English
2 54 51 67 58 60 83
3 64 51 64 67 80 63
4 62 67 58 67 80 67

Num. of Formants 3 4 3 4 3 4

For MAPPING, we use the manifoldVZ (the space in which
VA andVI are aligned), and the functionsf : VA → VZ and
g : VI → VZ learned by the alignment algorithm. We usef to
map the held-out vector to a pointz onVZ . We then computed
the 15 nearest neighbors ofz in VZ , mapped these back toVI

using the inverse ofg, recovered their categories assigned by
the laplacian classifier, selected the mode category, and com-
pared it to that of the held-out point. Correctness is definedas
for GROUPING. Correctness results for MAPPINGare shown in

Table 1. The numberr of smallest non-constant eigenvectors
used in the alignment algorithm determines the precision ofthe
approximationsf andg.

Usingr > 4 did not improve performance. The coarseness
of GROUPING likely precludes improved performance of finer-
grained approximations of MAPPING. Although these accuracy
rates are considerably lower than what we might expect from
adult perception of vowels in isolation (e.g. [15]), they are a
promising start. Using more eigenvectors would almost surely
result in greater accuracy but requires a more densely sampled
perceptual space. We are currently obtaining more perceptually
categorized data.
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