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Abstract

As a child acquires language, he or she: perceives acous-
tic information in his or her surrounding environment; itien
fies portions of the ambient acoustic information as languag
related; and associates that language-related informatith
his or her perception of his or her own language-related scou
tic productions. The present work models the third task. We
use a semisupervised alignment algorithm based on manifold
learning. We discuss the concepts behind this approactthand
application of the algorithm to this task. We present experni-
tal evidence indicating the usefulness of manifold alignine
learning speaker normalization.

Index Terms: speaker normalization, manifold alignment, lan-
guage acquisition

1. Introduction

As infants acquire language, they: perceive acoustic inéer
tion in their surrounding environment; identify portionkthe
ambient acoustic information as language-related; araté&ge
that language-related information with their perceptiétheir
own language-related acoustic productions. The preserik wo
focuses on the third action, called thssociation taskcom-
posed of the following subtasks:

e GROUPING Infants need to group together adult signals
they perceive as similar. Infants also need to group to-
gether their own signals that they perceive as similar.

e MAPPING. Infants need to map groups of adult signals
to groups of infant signals in a reasonable way. For ex-
ample, an adulfa/ must be mapped to an infajt/.

In this paper we describe an acquisition model that incorpo-
rates both @ourINGand MAPPING. That is, we provide a full
model of the association task, focusing primarily ommMPING.

Prior acquisition models addressRGUPING, whereas
MAPPING is treated in preprocessing, or simply omitted. For
example, [1] uses a neural network-based approach wherein i
fant and adult acoustic productions are modeled using aheur
map. The map is trained on synthetic data intended to represe
the babbling of an infant, and acoustic data derived fromalew
segmented from actual adult speech. Peaks in the babbltrg ou
put more or less coincide with peaks in the adult input. Sthee
synthesized data ranges over the adult vowel space, theahatu
differences between infant acoustics and adult acoustcsat
accounted for. That is, MPPING is omitted from the model.
The acquisition model in [2], which builds on [1], models-dis
joint infant and adult vowel spaces using a preprocessimg no
malization step that maps the two spaces into a common space.
That is, MAPPINGIs treated prior to learning.
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The difficulty of the MAPPING task appears in other do-
mains, such as speech recognition and sociophonetics ,[3, 4]
that handle data drawn from multiple speakers. Typically, a
normalization algorithm is applied to the acoustic dataokesf
analysis is carried out. The fact of cross-language diffees in
speaker effects indicates that normalization is a learmedgss
[5]. In this light, MAPPING is performing speaker normaliza-
tion. The challenge is to model the learning of this process.

We approach this challenge using recent developments in
manifold learning in speech analysis [6, 7, 8]. We concdptua
ize the adult and infant vowel spaces as geometrically amil
low-dimensional manifolds (Section 2), and use a manifold-
based laplacian classifier [9] to perform the(R@UPING task
(Section 3). Given the geometric similarity of the adult and
infant spaces, we model MPPING as a continuous transforma-
tion using a semisupervised manifold alignment algoritdo] [
(Section 3). We describe a model that incorporates both com-
ponents of the association task in vowel acquisition ($act).
Finally, we measure the model’s potential usefulness asd di
cuss improvements and feasible expansions on the present wo
(Section 5).

We conclude this section by formalizing the (semisuper-
vised) association task. We make the following simplifyasy
sumptions: (i) The ambient acoustic information is onlyttha
produced by an adult woman (adult) and a six-month-old in-
fant. (ii) The acoustic information is vocalic (thusRGUPING
yields groups of vowels). (iii) The number of adult and irtfan
vowel groups is the same. (iv) Geometric relationships betw
adult vowel groups are preserved byakPING. This ensures
that adult vowel groups are reasonably mapped to infant kowe
groups. (v) There is a set of exemplar adult acoustic vectors
each corresponding to an infant acoustic vector.

We assume two distinct articulatory systemdsand I that
output signals. The systerh represents an adult female articu-
latory system, and an infant articulatory system. Our data set
is a collection of vectors of acoustic information derivednh
vocalic signalss output by A and! as follows:

e Given a vocalic signas$, we recover formant values F1,
F2, F3, and F4 (in Barks) fromat a single pointin time.

e We denote the formant values 8, f5, f3, fi (usually
omitting the superscript), and use them to form a vector
<f17f27f37f4>'

The vectors derived from vocalic signals are calkzbustic
vectors Theadult vowel spacé’, is the collection of acoustic
vectors derived fromA. Similarly, theinfant vowel spacé’; is
the collection of acoustic vectors derived fram Both spaces
are represented in Figure 1a).

We focus on acoustic vectors with four formant values

(f1, f2, f, fa), and simplified acoustic vectors with values for
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Figure 1: The adult and infant acoustic vectors in magendsbaure, respectively. a) depicts the simplified adult andnbfowel spaces.
b) depicts the simplified spaces collapsed into the F1 ang&@es and the significant lack of overlap. c) depicts the dimoensional
adult (blue) and infant (magenta) vowel manifolds in a ndized F1 and F2 space. We use their similar geometry to atigmt(red).

only the first three formantéf:, f2, f3), Given this data repre-
sentation, we formulate the subtasks atd@PINGand MAP-
PING as follows:

e Group the acoustic vectors Iy into v-many categories
ai,...,ay, calledadult vowel categories Group the
acoustic vectors ifv; into v-many categorieg, . . .
calledinfant vowel categories

s v,y

Map the categoriesai,...,a, to the categories
i1,...,1lu, preserving local geometric relationships.
That is, achieve a reasonable correspondence between
ai,...,a, andiy, ..., i, (Using exemplar pairs).

2. Manifolds

We briefly present the conceptual basis for the manifoldnlear
ing approach we intend to use. For a detailed introduction to
manifolds see [11]. Intuitively, ananifold is a subset of a
higher-dimensional space that is similar to a lower-dineme
Euclidean space. For example, the surface of a sphere ie-thre
dimensional space, though not perfectly flat, is similarite t
Euclidean plane (we say that the surface isva-dimensional
manifold. This similarity yields useful lower-dimensional
representations of the higher-dimensional data. For el@amp
the approximately spherical Earth is represented using two
dimensional (planar) maps. The simplified vowel spates
andV4 (Figure 1a)) are situated in three-dimensional space, yet
they are both similar to the Euclidean plane (i.e., they ane t
dimensional manifolds). We want to take advantage of their
lower-dimensional representations, depicted in Figune for
GROUPINGand MAPPING.

Consider the manifold/4. Being similar to the plane
means that there is a family of functions &, each smoothly
mapping a portion o¥/4 to the Euclidean plane. In practice, we
do not have these smooth functions immediately in hand.

1. We need a way to approximate these smooth,
dimensionality-reducing functions, as well as other
smooth functions defined on our manifolds,

2. We need a way to measure the smoothness of these ap-
proximations.

For details on the mathematical development of these deside
ata, see [12]. We briefly recount the needed components. De-
note by £?(V4) the set of smooth functions oi4. The
laplace-beltrami operatoiis defined as the divergence of the
gradient A f = div(grad(f))) of functionsf € £2(V4). This
operator yields both a simple approximation of smooth func-

tions onV,4, and a simple method for measuring their smooth-
ness.

For computational purpose¥4 is discretely modeled by
a weighted grapltz. Points inV4 are represented by the ver-
tices of G. The weight between verticésand j represents the
closeness of those points on the manifold. The laplaceaeit
operator is discretely modeled &s= D — W where:

e IV is the weight matrix ofZ,
e Dis the diagonal matrix wittD;; = >~ Wi;.

The matrixL is the calledyraph Laplacianof G.

The graph Laplacian yields a smoothness measure as fol-
lows. Assume the vertices 6f are numbered, ..., n, and let
f = (f1,..., fn) be a function onG. Supposew;; is large
(i.e.,7 andyj are close). Foff to be smooth, we wargtf; — f;)?
to be very small. That is, we waat;; (f; — f;)* ~ 0 for each
i, j. Define the smoothness measurefafn G as:

Sa(f) =D wii(fi — f;)° = FLI"

i~

)

A function f is smoothif S¢(f) ~ 0. The alignment algorithm
we use to model MpPINGcrucially depends on the smoothness
measure, since it measures the preservation of local gepmet
onVa.

3. Algorithms

We present the manifold algorithms used in our model. We be-
gin with a simple laplacian classifier [9] used to model @ pr-

ING. We present the algorithm for a general vowel space
vV C R™ with vowel categoriegs, ..., z,. Letzq,...xx € V

and let the natural numbers ..., v represent the categories
z1,...,Zy. We assume that the categories of the first &
points are known, and denote the categorygpbsb; (i < s).

The algorithm is as follows:

1. Construct a weighted gragh which hask vertices rep-
resenting the points1,...,zx. Compute the graph

LaplacianL of G.

. LetL; be as x s matrix, L» as x (k — s) matrix, and
Lz a(k — s) x (k — s) matrix such that

(4 1)

e L3'L3 (by,...,bs)". Thenb
., bk—s), and the category af,4; is b;.
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The theoretical aspects of this algorithm, and comparigons
other semisupervised approaches to data classificatioprese
sented in [9]. Manifold-based classification of speech deus
also analyzed in [8, 7].

For the MAPPING task, we want to learn a transformation
T from V4 to V7, that preserves the similarities of their geome-
tries. Rather than learning directly, we learn dactorization
of T'. We factorT" into composite functiong’ and g, with an
intermediate spac®z, wheref : Va4 — Vz andg : Vi — V3.
Conceptually, we are collapsing the manifoldsandV4 onto
another manifold’z (see Figure 1c)). We then ledfhby learn-
ing f andg.

We learnf andg using the semisupervised manifold align-
ment algorithm in [10]. Suppose we have a set of exemplar
vectorsVx C V4 that correspond to a set of vectdrs C V7,
both of cardinality?. We assume this correspondence is a bijec-
tion x; — y; betweenVx andVy that is representative of the
geometry-preserving transformati@h We want to factofl" in
functionsf andg. Sincex; corresponds tg;, we wantf; close
to g;, that is, we want(f; — gi)2 to be small. Moreover, we
want local geometries to be preserved; that is, we vfatat be
smooth onV4, andg to be smooth orV;. Let L4, andL; be
the laplacian on the graphical representatiovefandV;. We
use the smoothness measure in (1) to minimize:

£
C(f,9) =des 11y _(fi—9)° + fLaf" +gLig"  (3)
=1

wherey is a weight indicating the importance of the alignment.
To properly minimize (3), we need it to be invariant under si-
multaneous scaling of andg. Thus, we minimize:

2 C f7
C(1.9) =aes D @
Let{xl,...,xk} =Vs CR" and{yl,...,yq} =V C

R™ such thatz; corresponds ta; for 1 < ¢ < fand? <
min(k, q). The algorithm is as follows:

1. DefineU%? as anw x 3 matrix such that

i<y
s =B eI s 5
R {0 otherwise. ®)
2. Compute the laplacians4 and L, and let
LA + Ukk _qu
Lz = < —U* LU ©)

3. Compute the eigenvectors of Lz, where h =
[f*¢")*, which is equivalent to minimizing (4).

4. Leth,...,h, be the eigenvectors corresponding to the
r smallest non-zero eigenvaluesiof. We have the fol-
lowing factorization:

, fr(4))

T, € VA <f1(2)7
i), 90(4))

yi € Vi = (g1(4),...

The number of eigenvectors useg flepends on the precision
desired in approximating andg (and thusr’).

4. Data and model

Our model requires representation of acoustic productmins
both an infant and an adult woman. We use data correspond-
ing to the following two subcomponents of the Variable Linea
Articulatory Model (VLAM, [13]): (1) the formant frequenes
yielded by simulation of a six-month-old male vocal tragtda

(2) the formant frequencies yielded by the simulation of a 16
year-old male vocal tract, which corresponds to the range of
vowels that an adult woman might produce. Each data set con-
tains approximately 4000 acoustic data points which areovec
whose components are the first four formant frequencies (F1,
F2, F3, F4). We convert all of the formant values into the Bark
scale to approximate their psychoacoustic value.

The exemplar data we use for semisupervised learning were
perceptually categorized [14]. The stimuli were 408 synthe
sized vowels. These represented 38 tokens generated by the
VLAM model for each of seven different vocal tract growth
stages. These included the six-month-old and 16-yearaudlv
tracts which yielded the data sets described above. The-38 to
kens were meant to represent 38 commonly occurring acoustic
prototypes, as determined by previous cross-linguistigests.
Each of these was fit to an appropriate location in the maximal
vowel space for each vocal-tract stage.

21 Greek listeners, 20 Korean listeners, and 21 English-
speaking listeners were tested by a same-language-sgaakin
search assistant, with all instructions translated to #iwalan-
guage. Stimuli were blocked by vocal-tract age. Presantati
was randomized within blocks, and block order was random-
ized. On each trial, the listener heard a vowel, then clicked
vowel category label on a computer screen to indicate the cho
sen vowel type. The number of labels reflected the number of
monophthongal vowels in the language (i.e., 5 for Greek,r7 fo
Korean, and 12 for English). The labels were then replaceal by
line visual analog scale, on which the listener clicked tmord
the “goodness” or confidence in the identification. A datanpoi
received a consensus label (reflecting the “community nprm”
if inter-listener agreement on that label was above chanca o
binomial test and there were no ties for the top-ranked ehoic

We take the adult VLAM data to b&,4, and the infant
VLAM data to beV;. LetVx = {zf,...,z4} andVy =
{yi,...,yls} be the set of perceptually categorized adult and
infant exemplar vectors. Leﬁf be the category of#', and Ieti{
be the category of; .

1. For eachc;-“, compute its: nearest neighbors 4 and

assign them categon;{ . Call the derived set of catego-
rized adult acoustic vectord..;. Carry this process out
for eachy!, and call the derived set of categorized infant
acoustic vectorgcat .

2. Run the laplacian classifier E®UPING) on V4 using
Acat @s training data. Similarly, run @UPINGON V;
usingl..: as training data.

3. For each adult vowel categosy, let A% be the set of
adult acoustic vectors idl..; with categorya;,. Com-
pute the mean of each?’,, and compute the: nearest

neighbors of this mean. Call this set of nearest neighbors

a; H H H ]
Allign- In similar fashion, compute eadty,, . Let
al i
Aalign Ialign
Aalign = : Ialign == : (7)
ay i
Aalign Ialfign



4. Run the semisupervised alignment algorithm A@v
PING) on V4 and V7, using Aaiign and Laign for align-
ment training.

5. Results and discussion

The perceptual data yields three sets of categorized exempl
data, allowing us three sets of experiments. The model algo-
rithm was run using the Greek, Korean, and English percéptua
data, in turn, a¥’x andVy . The Greek perceptual categoriza-
tion yielded five adult and infant vowel categories. The kaore
perceptual categorization yielded seven adult vowel caieg,
and five infant vowel categories. In some cases, a category
had only one representative point. We excluded such points,
resulting in a simplified categorization, with four adultdaim-
fant vowel categories. The English perceptual categadzat
yielded ten adult vowel categories, and seven infant voais-c
gories. Again, in some cases a category had only one represen
tative point. We excluded such points, resulting in a sifrgdi
categorization, with four adult and infant vowel categsridi-
viding the vowel spaces in a different way from the four cate-
gories of the simplified Korean grouping).

We performed the experiments in two phases, one using
acoustic vectors with three formant componefifs, f2, f3),
the other using acoustic vectors with four formant compdsien
(f1, f2, f3, fa). In both cases, training parameters were as fol-
lows: we computed the five nearest neighbors of each vector in
Step 1., and 100 nearest neighbors in Step 3. In testing, &e us
‘leave-one-out’ cross-validation ovix (the perceptually cate-
gorized adult data) for each language. BotRA®PING and
MAPPING were tested on the held-out vector. FORG@UPING,
we simply compared the known category of the held-out vector
against the category assigned by the laplacian classifier: C
rectness is defined as having the same category. Correctiess
sults for GRouPINGoON vectors with three (four) formant values
were — Greek: 75% (75%); Korean: 88% (85%); English: 93%
(90%). These accuracy rates are likely to be a coarser epres
tation of the infant’s sensory map than we are trying to model
with the two manifolds. We might achieve betteRGUPINGIf
we used individual results from the perception experimant i
stead of consensus results and referred to the goodnesgsati

We might also need a more densely sampled set of perceptual
responses. The accuracies nevertheless seem high enough to

attempt an initial test of MPPING.

Table 1:Mapping ResultsValues indicate percent of correctly
mapped test cases.

Eigenvectors Greek | Korean | English
2 54 | 51| 67| 58| 60| 83
3 64 | 51| 64| 67| 80| 63
4 62 | 67| 58| 67| 80| 67

[ Num.of Formants] 3 [ 4] 3[4]3] 4]

For MAPPING, we use the manifoldz (the space in which
V4 andV; are aligned), and the functions: Va4 — Vz and
g : Vi — Vz learned by the alignment algorithm. We ug¢o
map the held-out vector to a poiaton Vz. We then computed
the 15 nearest neighbors efin Vz, mapped these back ¢
using the inverse of, recovered their categories assigned by
the laplacian classifier, selected the mode category, and co
pared it to that of the held-out point. Correctness is defamed
for GROUPING. Correctness results for MPING are shown in

Table 1. The number of smallest non-constant eigenvectors
used in the alignment algorithm determines the precisidh®f
approximationsf andg.

Usingr > 4 did not improve performance. The coarseness
of GRouPINGlikely precludes improved performance of finer-
grained approximations of MPPING. Although these accuracy
rates are considerably lower than what we might expect from
adult perception of vowels in isolation (e.g. [15]), they &
promising start. Using more eigenvectors would almostlgure
result in greater accuracy but requires a more densely sampl
perceptual space. We are currently obtaining more peraéptu
categorized data.
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