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Abstract

We argue that infants perform an abstraction over their
auditory representations of the vowels of individual
speakers, by mapping them to a mediating space of
speaker-independent representations, guided by vocal
imitative interaction with their caretakers, as a first step
in the phonological acquisition process. Furthermore,
we proffer a methodology for modeling this abstrac-
tion which involves the alignment of the cognitive struc-
tures, or manifolds, that the infant builds from the au-
ditory representations of the vowels of individual speak-
ers. As a demonstration of the methodology, we show
that higher-dimensional “excitation pattern” representa-
tions facilitate modeling of the influence of the imita-
tive process on perception and abstraction more so than
lower-dimensional formant representations.
Index Terms: vowel normalization, manifold alignment,
vocal imitation, phonological abstraction.

1. Introduction
Recent cognitive models of vowel normalization [1, 2, 3]
take the mapping between auditory representations of the
infant’s own vocalizations and those of a caretaker to be
a transformation that the infant builds during vocal imita-
tive interactions with the caretaker. The models make on-
tological commitments to an external or universalist, di-
rect transformation interpretation of the mapping, or that
of an internal, potentially idiosyncratic alignment-based
interpretation. That is, the “direct transformation” ap-
proach [1, 3] assumes that the infant learns a pre-specified
transformation, whereas the “alignment” approach [2]
uses a set of infant-caretaker auditory representation pairs
from which a full transformation is inferred.

In this paper, we extend a particular model [2] within
the alignment approach in two key ways: (i) by assigning
an interpretation to the given set of infant-caretaker pairs
that casts the need to abstract as an asset, rather than a li-
ability, and (ii) by using a more suitable model for the
infant’s representations of infant and caretaker vowels.
More generally, we proffer a methodology for investigat-
ing normalization that provides for the incorporation of
relevant biological and social phenomena.

2. Conceptual basis
We take vowel normalization to be a cognitive process
“in which interspeaker vowel variability is reduced in or-
der that perceptual vowel identification may then be per-
formed by reference to relative vowel quality rather than
absolute [psychophysical] parameters of vowels” [4, p.
230]. Vowel normalization in this sense can be viewed as
a particular instance of the more general notion of phono-
logical abstraction with respect to vowels (hereafter, sim-
ply phonological abstraction), defined as the computa-
tion of an abstract representation of a vowel, from one
(or more) of its perceptual representations, to facilitate
some further computation.

Recent work [5] suggests that phonological abstrac-
tion facilitates lexical processing. Specifically, “prelex-
ical phonemic categories are an essential part of word
recognition” since they “allow the listener to map distinct
acoustic events onto the same underlying lexical repre-
sentations” (pp. 93-4). This in turn suggests that phono-
logical abstraction is an integral component of the spoken
language acquisition process. Indeed, infants appear to
be reconciling the absolute differences between their per-
ceptual representations of adult vowels and their own by
six months of age [6, 7, 8, 9]. Vowel normalization is of-
ten taken to be the phonological abstraction by which this
is achieved [2, 10, 11, 12, 13, 14]. We likewise assume
that vowel normalization plays a significant role in the ab-
straction process, though we take it to be more complex
than is typically assumed.

More specifically, in contrast to previous models
[11, 12, 13, 14], our model is based on the following
two assumptions. First, vowel normalization is malleable
with respect to short-term contextual information [4, 15],
as well as long-term distributional and ontogenetic infor-
mation [16]. Second, we assume that the representational
structures or transforms that underpin normalization are
not pre-specified but are themselves learned, as part of ac-
quiring the phonology of a spoken language. The second
assumption is based on the following reasoning from evi-
dence about more general aspects of learning to perceive
others in relation to the self.

Experimental results in speech perception [17] and
pathology [18] suggest the importance of individual



Figure 1: Blue x’s represent the infant (left) and caretaker (right) vowel tokens generated by the VLAM (Vlab2007 version)
in F1-F2 space. The infant and caretaker o’s of the same color, corresponding to one another via an imitation process,
are used to guide the manifold alignment algorithm.

speaker identification, hence the representation of “other”
conspecifics, to the formation of more abstract phonetic
representations. More general modeling of the cogni-
tive development of intentional agents (e.g., the ‘like me’
framework [19]) adduces the need for a representation of
“self,” as distinct from others. The essential distinction
between self and others entails carrying out an abstrac-
tion process that “allows the infant to see the behavior
of others as commensurate with their own” [19, p. 26].
Applying the general model to the domain of spoken lan-
guage acquisition [20] suggests the importance of the dis-
tinction between self and others in vowel normalization.
This social component, along with vowel data demon-
strating the cross-language differences in the abstraction
process [21], strongly suggests that vowel normalization
is indeed learned.

The assumption that normalization is learned entails
that there is a process by which it is learned. We as-
sume that this process is social interaction between the
infant and a caretaker characterized by specific types of
vocal imitation [20, 22, 23, 24, 25]. Experimental re-
sults suggest that these vocal imitation interactions in-
volve: (i) structured turn-taking between the infant and
caretaker [22], and (ii) caretaker responses differentiated
according to the nature of infant vocalizations [24, 25].
These richly-structured individuated instances of vocal
imitation provide “evidence for [the child] to deduce a
correspondence between his output and the speech sound
equivalent within [the mother’s] L1 that she produces”
[20, (p. 87)].

3. Modeling framework
We make the simplifying assumption that the vowels ex-
perienced by the infant are restricted to those produced
by the infant and one caretaker. These vowels are mod-
eled as follows. The Variable Linear Articulatory Model
(VLAM, [26]) generates articulatory configurations and
their corresponding speech signals, simulating speech
productions of humans ranging in age from early in-

fancy to adulthood. We pseudorandomly generated 2,000
vowel signals using the VLAM set at 6 months of age (10
years of age, respectively) to represent the infant’s vowels
(caretaker’s vowels, respectively). We used the 10 year-
old setting to model the caretaker as it was perceived to be
most similar to a young female adult in a cross-language
perception study [27].

In demonstrating our method, we use two kinds of
representations for the infant and caretaker vowels: a
standard formant frequency representation, and an au-
ditory representation. Each vowel signal output by the
VLAM is synthesized using the first four formant fre-
quencies determined by the signal’s articulatory config-
uration. These formant representations for the infant and
caretaker vowels are depicted as blue x’s in Figure 1. The
auditory representations we use are “excitation patterns”
derived using the transformations described in [28] ap-
plied to the vowel signals generated by the VLAM. We
use the term vowel representation when distinguishing
between representation types is not needed.

Let V denote the set of vowel representations yielded
by the VLAM, and let VC and VI denote the partition
cells of V consisting of the caretaker and infant vowel
representations, respectively.

Vowel signals from the caretaker and infant vocal-
izations are taken to lie on “vowel manifolds” [29, 30].
These geometric structures are hypothesized to motivate
the infant’s formation of cognitive structures, called “per-
ceptual manifolds” [31], used for representation and nor-
malization. These perceptual manifolds are modeled as
weighted graphs, and their geometric properties are rep-
resented by the weights. A weighted graph is a triple
G = (N,E,W ) where N is a set of nodes, E is a set
of edges connecting nodes, and W is a weight function
which assigns a nonnegative value to each edge in E.

Exposed to the vowels in V , the infant creates percep-
tual manifolds MC and MI which are complete graphs
whose nodes are (in one-to-one correspondence with)
the representations in VC and VI , respectively. That is,



Figure 2: The speaker-independent latent manifold yielded by the alignment algorithm carried out over formant (left) and
excitation pattern (right) representations of tokens.

MC = 〈VC , EC ,WC〉 and MI = 〈VI , EI ,WI〉. The
geometric structure of the perceptual manifolds is deter-
mined by their weight functions

WC : EC → R+ WI : EI → R+.

We take both to be nearest-neighbor functions [32] based
on Euclidean distance, greatly simplifying MC and MI .

The model of vowel normalization is a mani-
fold alignment computation [33], implemented as a
correspondence-based algorithm that maps points on two
(or more) manifolds to a common “latent space” [34].
The alignment requires methods for (i) combining the ge-
ometric information of the manifolds to facilitate their
alignment, and (ii) populating equal-length arrays of
points from each manifold, such that, given an index, the
points in each array at that index correspond to each other
and guide the alignment.

Toward (i), let G be a weighted graph with weight
matrix W . The graph Laplacian of G is the matrix
L = D−W whereD is a diagonal matrix such thatDii =∑

j Wij . The graph Laplacian [35] is a discrete approx-
imation of the Laplace-Beltrami operator on a Rieman-
nian manifold [36]. The graph Laplacian L of a graph
G is a principled choice for approximating geometry-
preserving functions on G in terms of the eigenvectors
of L [32]. Let LC and LI be the graph Laplacians for
MC and MI , respectively. The algorithm [34] combines
LC andLI to facilitate the alignment ofMC andMI with
respect to a set of corresponding points drawn from VC
and VI .

The infant needs to populate this collection of infant-
caretaker representation pairs. To exposit the methodol-
ogy, we manually selected prototypes (the open circles
in Figure 1) representing productions of (i) an agent with
full command of a canonical 5-vowel system (right), and
(ii) the infant’s vocal imitations that receive contingent
response (left). Thus the infant tokens of a given color
are assumed to correspond to the caretaker tokens of the
same color via vocal imitative interaction between the
agents as described in Section 2. Although we manually
selected the imitation data, we can incorporate this selec-
tion process within the cognitive model as the algorithmic

determination of a characteristic function over VC × VI ,
denoted

χvoc : VC × VI → {0, 1}.

Essentially, χvoc models the identification of vocal imita-
tive interactive experience that affects normalization.

Finally, the infant computes the alignment ofMC and
MI . The alignment algorithm [34] constructs a “com-
bined Laplacian” from LC and LI , using χvoc, and infers
a normalization transformation

N(LC , LI , χvoc) : V → VZ .

from the vowel representations in V to a latent space VZ
whose points are “abstract representations” of the repre-
sentations in V .

4. Discussion
Using this modeling framework, we carried out two simu-
lations, one using formant representations, and the other
using auditory representations. In both simulations, the
infant-caretaker pairs guide the learning of a mapping
from the infant and caretaker manifolds to a “latent,”
speaker-independent space (see Figure 2). When higher-
dimensional auditory representations are used, the latent
space reflects the “>” shape of the given five-vowel sys-
tem (Figure 2, right), capturing the influence of the imita-
tive process on perception and abstraction. No such shape
is observed in the latent space derived from the lower-
dimensional formant representations (Figure 2, left).

The framework we proffered thus allows for investi-
gation of the effects of different vowel representations on
normalization. More generally, it allows for straightfor-
ward investigation of the effects of the following: (i) dif-
ferent weight functions, and thus different geometrical
structures over the vowel representations, (ii) different
methods of combining the graph Laplacians, and of com-
bining them with infant-caretaker pairs, and (iii) different
arrays of infant-caretaker pairs, which vary in number of
pairs, and in the characteristics of the pairs included. The
framework allows for all of these components to be mod-
ified in accordance with short-term contextual informa-



tion, long-term distributional and ontogenetic informa-
tion, and social development.
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