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Abstract

Let G = (V,E) be a graph. A set S C V is a restrained dominating set if every
vertex not in S is adjacent to a vertex in S and to a vertex in V' — S. The restrained
domination number of G, denoted by ~,(G), is the smallest cardinality of a restrained
dominating set of G. Tt is known that if T is a tree of order n, then ~,.(T') > [(n+2)/3].
In this note we provide a simple constructive characterization of the extremal trees T
of order n achieving this lower bound.

1 Introduction

In this paper, we follow the notation of [1]. Specifically, let G = (V| E) be a graph with
vertex set V' and edge set E. Moreover, the notation P, will denote the path of order n. A
set S C V is a dominating set of G if every vertex not in S is adjacent to a vertex in S. The
domination number of G, denoted by v(G), is the minimum cardinality of a dominating set.
The concept of domination in graphs, with its many variations, is now well studied in graph
theory. The recent book of Chartrand and Lesniak [1] includes a chapter on domination. A
thorough study of domination appears in [5, 6].

In this paper, we continue the study of a variation of the domination theme, namely that
of restrained domination [2, 3, 4, 7, 8]. A set S C V is a restrained dominating set if every
vertex not in S is adjacent to a vertex in .S and to a vertex in V — S. Every graph has a
restrained dominating set, since S = V is such a set. The restrained domination number of
G, denoted by 7,(G), is the minimum cardinality of a restrained dominating set of G. A
restrained dominating set of cardinality v,(G) will be called a 7, (G) — set.

The concept of restrained domination was introduced by Telle and Proskurowski [8], albeit
indirectly, as a vertex partitioning problem. Here conditions are imposed on a set S, the
complementary set V' — .S and on edges between the sets S and V' — 5. For example, if we
require that every vertex in V' — S should be adjacent to some other vertex of V' — S (the
condition on the set V' — S) and to some vertex in S (the condition on edges between the
sets S and V — 9), then S is a restrained dominating set.



One application of domination is that of prisoners and guards. For security, each prisoner
must be seen by some guard; the concept is that of domination. However, in order to protect
the rights of prisoners, we may also require that each prisoner is seen by another prisoner;
the concept is that of restrained domination.

It is known [2] that if T" is a tree of order n, then ~,(T) > [(n + 2)/3].

We refer to a vertex of degree 1 in T as a leaf of T. A vertex adjacent to a leaf we call a
remote vertexr of T. For a vertex v of T', we shall use the expression, attach a P,, at v, to
refer to the operation of taking the union of 1" and a path F,, and joining one of the ends
of this path to v with an edge.

For n > 1, let 7, = {T' | T is a tree of order n such that v.(T) = [(n +2)/3]}. A
constructive characterization of the extremal trees T' of order n achieving this lower bound
were characterized in [2]. For the purpose of stating this characterization, we define a
type (1) operation on a tree T' as attaching a P, at v where v is a vertex of T' not
belonging to some minimum restrained dominating set of 7', and a type (2) operation as
attaching a P53 at v where v belongs to some minimum restrained dominating set of 7T'. For
i =1,2, let T; be the tree obtained from K (1,3) by subdividing i edges once.

Let Csp = {T | T is a tree of order 3k which can be obtained from the tree T» by a
finite sequence of operations of type (2)}. Let Cspy1 = {1 | T is a tree of order 3k + 1
which can be obtained from Pj by a finite sequence of operations of type (2)}. Finally, let
Cspyo ={T | T is a tree of order 3k 4+ 2 which can be obtained from P;5 or from the tree T}
by a finite sequence of operations of type (2)} U{T | T is a tree of order 3k + 2 which can
be constructed from the tree 75 by a finite sequence of operations of type (2), followed by
one operation of type (1) and then by a finite sequence of operations of type (2)}.

It was established in [2] that
Theorem 1 Forn >4, 7T, =C,.

The purpose of this note is to provide a simpler constructive characterization of the extremal
trees T' of order n achieving this lower bound.

We denote the set of leaves of a tree T by L(T). For v € V(T') and ¢ € L(T), the path
vxy ... 2l is called a v — L endpath if degx; = 2 for each i. If the vertex v need not be
specified, a v — L path is also called an endpath.

2 Extremal trees T with ~,.(T) = [(n + 2)/3]

Let 7 be the class of all trees T of order n such that (7)) = [242]. We will constructively
characterize the trees in 7. In order to state the characterization, we define three simple
operations on a tree T



O1. Join a leaf or a remote vertex, or a vertex v or x of T' on an endpath vzyz to a vertex
of K1, where n(T') = 1 mod 3.

02. Join a remote vertex, or a vertex v of 1" which lies on an endpath vzz to a leaf of Py,
where n(T") = 0 mod 3 or n(7") = 1 mod 3.

03. Join a leaf of T' to £ disjoint copies of P3 for some ¢ > 1.

Let C be the class of all trees obtained from P> or P, by a finite sequence of Operations
O1- 03.

We will show that T' € T if and only if T € C.

Let S be a v,.(T")-set of T” throughout the proofs of the following lemmas.

Lemma 2 Let T’ € T be a tree of order n = 1 mod 3. If T is obtained from T’ by Operation
O1, thenT € T.

Proof. Let u be a leaf or a remote vertex, or a vertex w or x on an endpath wxyz of T”,
and suppose T is formed by attaching the singleton v to w. Then S U {v} is a RDS of T,
and so [23] < ~,(T) < [%2] + 1. Since n = 1 mod 3, we have 7,(T) = (@} Thus,
TeT. O

Lemma 3 Let T € T be a tree of order n = 0mod 3 or n = 1 mod 3. If T is obtained
from T" by Operation O2, then T € T.

Proof. Suppose v is a remote vertex or v lies on the endpath vzz and T is obtained from
T’ by adding the path vyz’.

We show that v € S. First consider the case when v is a remote vertex adjacent to a leaf
z. Suppose v € S. Then §' = S — {z} isa RDS of 7" =T’ — z, and so [2}] < 4, (T") <
n+2

[%3=] — 1, which is a contradiction when n = 0 mod 3 or n =1 mod 3. Thus, v ¢ S.

In the case when v lies on the endpath vzz, one may show, as in the previous paragraph,
that z ¢ S. But then v € S, as required.

In both cases, the set SU{2'} is a RDS of T', and so [™4] < ;r Z) < [™32] 4+ 1. However,

(
as n = 0mod 3 or n =1 mod 3, we have v, (T) = [24*] = [n( 3)+ 1. Thus, T € 7.

The proof is complete. O

Lemma 4 Let T' € T be a tree of order n. If T is obtained from T' by the Operation O3,
then T € T.

Proof. Let S be a v,.(T")-set of T”, and suppose v is a leaf of T’. Then v € S. Let T be the
tree which is obtained from T by adding the paths vy, for i = 1,...,¢. Then SU_; {2}



is a RDS of T, and so [%@’2] < 7 (T) < [™2] + ¢. Consequently, v,(T) = [7”(:’;))“},
andsoT € 7. 0O

We are now in a position to prove the main result of this section.
Theorem 5 T € C if and only if T € T.

Proof. Suppose T' € C. We show that T" € 7, by using induction on s(7"), the number
of operations required to construct the tree 7. If s(T") = 0, then T = P» or T' = Py, both
of which are in 7. Assume, then, for all trees 77 € C with s(7”) < k, where &k > 1 is an
integer, that 7" is in 7. Let T € C be a tree with s(T') = k. Then T is obtained from some
tree T” by one of the Operations O1 — O3. But then 77 € C and s(T") < k. Applying the
inductive hypothesis to 7’, T is in 7. Hence, by Lemmas 2,3 or 4, T € 7.

To show that T € C for a nontrivial T € 7, we use induction on n, the order of the tree T
Ifn=2thenT =P, C. If n=3,then T ¢ 7. If n =4, then either T'= Py or T is a
star. If T'is a star then T'¢ 7. If T'= P, then T' € C. Let T' € 7 be a tree of order n > 5,
and assume for all trees 77 € T of order 4 < n’ < n, that 7" € C. Since n(T) > 5 and no
stars are in 7, diam(7") > 3.

If diam(7) = 3, then T is a double star of order 5, has a remote vertex adjacent to two
leaves, and is therefore constructible from Py by O1, whence T' € C. Thus, we may assume
diam(7) > 4.

Throughout S will be used to denote a v, (T)-set of T.

Claim 1 Suppose z is a leaf of T. If S —{z} is a RDS of T" =T — z, then n(T") = 1 mod
3and T €C.

Proof. Suppose S — {z} is a RDS of T’. Then [2=3%2] < ~,(7") < [%2] — 1. This
yields a contradiction when n = Omod 3 or n = 1 mod 3. Hence, n = 2mod 3, and
Y (T') = 1 = [%1 Thus, 77 € T, with n(T") =n — 1 = 1 mod 3. By the induction

assumption, 77 € C. ©

Suppose vzz or vz is an endpath of T. If v,z € S, then S — {2z} isa RDS of 7" =T — 2.
By Claim 1, the tree 7" = (T'— 2) € C and T can be constructed from 7" by Operation O1.
Thus, if vzz or vz is an endpath of T, we may assume v,z & S.

Suppose v is a remote vertex adjacent to at least two leaves, and let z be a leaf adjacent to
v. Then S—{z} isa RDS of 7" =T — z. By Claim 1, the tree 7" = (T'— z) € C and T can
be constructed from 7" by Operation O1. Thus, we may assume that every remote vertex
is adjacent to exactly one leaf.

Let T be rooted at a leaf r of a longest path.

Let v be any vertex on a longest path at distance diam(7") —2 from r. Suppose v lies on the
endpath vyz’. Then, by the above remark, v,y ¢ S. Suppose deg(v) > 3 and first assume v



is a remote vertex adjacent to a leaf u. Since diam(T) > 4, v has a parent vertex vg. Suppose
vg € S. If deg(v) > 4, since, by Claim 1, v is adjacent to one leaf only, x is on an endpath vz
where z ¢ S. Since vy € S, it follows that S’ =S —{u,z}isaRDSfor 7" =T —u—2x — 2.
Hence, [%1 < % (T'") < [%2] — 2, which is a contradiction. Hence deg(v) = 3.
Consider 7" = T — u. The vertex v in T” is on the endpath vgvyz’. Since vy € S, it follows
that S = S — {u} is a RDS for 7”. Thus, by Claim 1, 77 € C and T can be constructed
from T’ by Operation O1, whence T" € C. So suppose vg ¢ S. Then S’ = S — {2/} is a
RDS for 7" =T — y — 2’. Hence, [W} < 4 (T') < [%2] — 1, which is a contradiction

when n = 1 mod 3. Hence n = 0mod 3 or n = 2mod 3 and ,.(1") = [§] = ["(TQH]
Thus, 77 € T, with n(T") =n—2=0mod 3 or n(T") = n—2 =1 mod 3. By the induction
assumption, 7" € C. The tree T can now be constructed from 7' by applying Operation

02, whence T € C.

Hence we may assume v is not a remote vertex. Then v lies on the endpaths vzz and vyz'. It
follows that S’ = S —{z'} isa RDS for 7" = T'—y — 2’. Hence, by reasoning similar to that
in the previous paragraph, the tree T can be constructed from T” by applying Operation
02, whence T € C.

Thus, we assume each vertex on a longest path at distance diam(7") — 2 or diam(7") — 1
from r has degree two.

Let v be any vertex on a longest path at distance diam(7") — 3 from 7. Let vziy121 be an
endpath of T. Then z1,y1 € S, and so v € S.

Suppose deg(v) > 3. If v is on an endpath vzz, it follows that x,z € S. By the remark
following Claim 1, T' € C. Suppose v is a remote vertex adjacent to a leaf u. By Claim 1,
u is the only leaf adjacent to v. Moreover, S" = S — {u} is a RDS for 7" = T — u. Thus,
by Claim 1, 77 € C and T can be constructed from 7" by Operation O1, whence T € C.

So we may assume that v lies only on endpaths va;y;z;, for i = 1,...,¢. Let e be the edge
that joins v with its parent, and let T'(v) be the component of T'— e that contains v. Then
T'(v) consists of ¢ disjoint paths z;y;2; (i =1,...,¢) with v joined to x; fori =1,...,¢. Let
i €{1,...,¢}. Since z;y;z; is an endpath of T, we have z; € S, y; ¢ S and v € S. Then
S—Uf_{z}isaRDS of ' =T — (T(v) — {v}), and so [2=32] < ~,(T") < [242] — ¢,
whence 7, (T") = [%} Thus, 7" € 7, and by the induction assumption, 77 € C. Note
that v is a leaf of 7”. The tree T' can now be constructed from 7" by applying Operation
03, whence T € C. O
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