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Abstract

Let G = (V,E) be a graph. A set S ⊆ V is a restrained dominating set if every
vertex not in S is adjacent to a vertex in S and to a vertex in V − S. The restrained
domination number of G, denoted by γr(G), is the smallest cardinality of a restrained
dominating set of G. It is known that if T is a tree of order n, then γr(T ) ≥ d(n+2)/3e.
In this note we provide a simple constructive characterization of the extremal trees T
of order n achieving this lower bound.

1 Introduction

In this paper, we follow the notation of [1]. Specifically, let G = (V,E) be a graph with
vertex set V and edge set E. Moreover, the notation Pn will denote the path of order n. A
set S ⊆ V is a dominating set of G if every vertex not in S is adjacent to a vertex in S. The
domination number of G, denoted by γ(G), is the minimum cardinality of a dominating set.
The concept of domination in graphs, with its many variations, is now well studied in graph
theory. The recent book of Chartrand and Lesniak [1] includes a chapter on domination. A
thorough study of domination appears in [5, 6].

In this paper, we continue the study of a variation of the domination theme, namely that
of restrained domination [2, 3, 4, 7, 8]. A set S ⊆ V is a restrained dominating set if every
vertex not in S is adjacent to a vertex in S and to a vertex in V − S. Every graph has a
restrained dominating set, since S = V is such a set. The restrained domination number of
G, denoted by γr(G), is the minimum cardinality of a restrained dominating set of G. A
restrained dominating set of cardinality γr(G) will be called a γr(G)− set.

The concept of restrained domination was introduced by Telle and Proskurowski [8], albeit
indirectly, as a vertex partitioning problem. Here conditions are imposed on a set S, the
complementary set V − S and on edges between the sets S and V − S. For example, if we
require that every vertex in V − S should be adjacent to some other vertex of V − S (the
condition on the set V − S) and to some vertex in S (the condition on edges between the
sets S and V − S), then S is a restrained dominating set.
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One application of domination is that of prisoners and guards. For security, each prisoner
must be seen by some guard; the concept is that of domination. However, in order to protect
the rights of prisoners, we may also require that each prisoner is seen by another prisoner;
the concept is that of restrained domination.

It is known [2] that if T is a tree of order n, then γr(T ) ≥ d(n + 2)/3e.

We refer to a vertex of degree 1 in T as a leaf of T . A vertex adjacent to a leaf we call a
remote vertex of T . For a vertex v of T , we shall use the expression, attach a Pm at v, to
refer to the operation of taking the union of T and a path Pm and joining one of the ends
of this path to v with an edge.

For n ≥ 1, let Tn = {T | T is a tree of order n such that γr(T ) = d(n + 2)/3e }. A
constructive characterization of the extremal trees T of order n achieving this lower bound
were characterized in [2]. For the purpose of stating this characterization, we define a
type (1) operation on a tree T as attaching a P2 at v where v is a vertex of T not
belonging to some minimum restrained dominating set of T , and a type (2) operation as
attaching a P3 at v where v belongs to some minimum restrained dominating set of T . For
i = 1, 2, let Ti be the tree obtained from K(1, 3) by subdividing i edges once.

Let C3k = {T | T is a tree of order 3k which can be obtained from the tree T2 by a
finite sequence of operations of type (2)}. Let C3k+1 = {T | T is a tree of order 3k + 1
which can be obtained from P4 by a finite sequence of operations of type (2)}. Finally, let
C3k+2 = {T | T is a tree of order 3k + 2 which can be obtained from P5 or from the tree T1

by a finite sequence of operations of type (2)} ∪ {T | T is a tree of order 3k + 2 which can
be constructed from the tree T2 by a finite sequence of operations of type (2), followed by
one operation of type (1) and then by a finite sequence of operations of type (2)}.

It was established in [2] that

Theorem 1 For n ≥ 4, Tn = Cn.

The purpose of this note is to provide a simpler constructive characterization of the extremal
trees T of order n achieving this lower bound.

We denote the set of leaves of a tree T by L(T ). For v ∈ V (T ) and ` ∈ L(T ), the path
vx1 . . . xk` is called a v − L endpath if deg xi = 2 for each i. If the vertex v need not be
specified, a v − L path is also called an endpath.

2 Extremal trees T with γr(T ) = d(n + 2)/3e

Let T be the class of all trees T of order n such that γr(T ) = dn+2
3 e. We will constructively

characterize the trees in T . In order to state the characterization, we define three simple
operations on a tree T .
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O1. Join a leaf or a remote vertex, or a vertex v or x of T on an endpath vxyz to a vertex
of K1, where n(T ) ≡ 1 mod 3.

O2. Join a remote vertex, or a vertex v of T which lies on an endpath vxz to a leaf of P2,
where n(T ) ≡ 0 mod 3 or n(T ) ≡ 1 mod 3.

O3. Join a leaf of T to ` disjoint copies of P3 for some ` ≥ 1.

Let C be the class of all trees obtained from P2 or P4 by a finite sequence of Operations
O1- O3.

We will show that T ∈ T if and only if T ∈ C.

Let S be a γr(T ′)-set of T ′ throughout the proofs of the following lemmas.

Lemma 2 Let T ′ ∈ T be a tree of order n ≡ 1 mod 3. If T is obtained from T ′ by Operation
O1, then T ∈ T .

Proof. Let u be a leaf or a remote vertex, or a vertex w or x on an endpath wxyz of T ′,
and suppose T is formed by attaching the singleton v to u. Then S ∪ {v} is a RDS of T ,
and so dn+3

3 e ≤ γr(T ) ≤ dn+2
3 e + 1. Since n ≡ 1 mod 3, we have γr(T ) = dn(T )+2

3 e. Thus,
T ∈ T . 2

Lemma 3 Let T ′ ∈ T be a tree of order n ≡ 0 mod 3 or n ≡ 1 mod 3. If T is obtained
from T ′ by Operation O2, then T ∈ T .

Proof. Suppose v is a remote vertex or v lies on the endpath vxz and T is obtained from
T ′ by adding the path vyz′.

We show that v 6∈ S. First consider the case when v is a remote vertex adjacent to a leaf
z. Suppose v ∈ S. Then S′ = S − {z} is a RDS of T ′′ = T ′ − z, and so dn+1

3 e ≤ γr(T ′′) ≤
dn+2

3 e − 1, which is a contradiction when n ≡ 0 mod 3 or n ≡ 1 mod 3. Thus, v 6∈ S.

In the case when v lies on the endpath vxz, one may show, as in the previous paragraph,
that x 6∈ S. But then v 6∈ S, as required.

In both cases, the set S ∪{z′} is a RDS of T , and so dn+4
3 e ≤ γr(T ) ≤ dn+2

3 e+1. However,
as n ≡ 0 mod 3 or n ≡ 1 mod 3, we have γr(T ) = dn+4

3 e = dn(T )+2
3 e. Thus, T ∈ T .

The proof is complete. 2

Lemma 4 Let T ′ ∈ T be a tree of order n. If T is obtained from T ′ by the Operation O3,
then T ∈ T .

Proof. Let S be a γr(T ′)-set of T ′, and suppose v is a leaf of T ′. Then v ∈ S. Let T be the
tree which is obtained from T by adding the paths vxiyizi for i = 1, . . . , `. Then S∪`

i=1 {zi}
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is a RDS of T , and so dn+3`+2
3 e ≤ γr(T ) ≤ dn+2

3 e + `. Consequently, γr(T ) = dn(T )+2
3 e,

and so T ∈ T . 2

We are now in a position to prove the main result of this section.

Theorem 5 T ∈ C if and only if T ∈ T .

Proof. Suppose T ∈ C. We show that T ∈ T , by using induction on s(T ), the number
of operations required to construct the tree T . If s(T ) = 0, then T = P2 or T = P4, both
of which are in T . Assume, then, for all trees T ′ ∈ C with s(T ′) < k, where k ≥ 1 is an
integer, that T ′ is in T . Let T ∈ C be a tree with s(T ) = k. Then T is obtained from some
tree T ′ by one of the Operations O1 – O3. But then T ′ ∈ C and s(T ′) < k. Applying the
inductive hypothesis to T ′, T ′ is in T . Hence, by Lemmas 2,3 or 4, T ∈ T .

To show that T ∈ C for a nontrivial T ∈ T , we use induction on n, the order of the tree T .
If n = 2, then T = P2 ∈ C. If n = 3, then T /∈ T . If n = 4, then either T = P4 or T is a
star. If T is a star then T /∈ T . If T = P4 then T ∈ C. Let T ∈ T be a tree of order n ≥ 5,
and assume for all trees T ′ ∈ T of order 4 ≤ n′ < n, that T ′ ∈ C. Since n(T ) ≥ 5 and no
stars are in T , diam(T ) ≥ 3.

If diam(T ) = 3, then T is a double star of order 5, has a remote vertex adjacent to two
leaves, and is therefore constructible from P4 by O1, whence T ∈ C. Thus, we may assume
diam(T ) ≥ 4.

Throughout S will be used to denote a γr(T )-set of T .

Claim 1 Suppose z is a leaf of T . If S−{z} is a RDS of T ′ = T − z, then n(T ′) ≡ 1 mod
3 and T ′ ∈ C.

Proof. Suppose S − {z} is a RDS of T ′. Then dn−1+2
3 e ≤ γr(T ′) ≤ dn+2

3 e − 1. This
yields a contradiction when n ≡ 0 mod 3 or n ≡ 1 mod 3. Hence, n ≡ 2 mod 3, and
γr(T ′) = n+1

3 = dn(T ′)+2
3 e. Thus, T ′ ∈ T , with n(T ′) = n− 1 ≡ 1 mod 3. By the induction

assumption, T ′ ∈ C. �

Suppose vxz or vz is an endpath of T . If v, x ∈ S, then S − {z} is a RDS of T ′ = T − z.
By Claim 1, the tree T ′ = (T − z) ∈ C and T can be constructed from T ′ by Operation O1.
Thus, if vxz or vz is an endpath of T , we may assume v, x 6∈ S.

Suppose v is a remote vertex adjacent to at least two leaves, and let z be a leaf adjacent to
v. Then S−{z} is a RDS of T ′ = T − z. By Claim 1, the tree T ′ = (T − z) ∈ C and T can
be constructed from T ′ by Operation O1. Thus, we may assume that every remote vertex
is adjacent to exactly one leaf.

Let T be rooted at a leaf r of a longest path.

Let v be any vertex on a longest path at distance diam(T )−2 from r. Suppose v lies on the
endpath vyz′. Then, by the above remark, v, y 6∈ S. Suppose deg(v) ≥ 3 and first assume v
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is a remote vertex adjacent to a leaf u. Since diam(T) ≥ 4, v has a parent vertex v0. Suppose
v0 ∈ S. If deg(v) ≥ 4, since, by Claim 1, v is adjacent to one leaf only, x is on an endpath vxz
where x /∈ S. Since v0 ∈ S, it follows that S′ = S−{u, z} is a RDS for T ′ = T −u−x− z.
Hence, d (n−3)+2

3 e ≤ γr(T ′) ≤ dn+2
3 e − 2, which is a contradiction. Hence deg(v) = 3.

Consider T ′ = T − u. The vertex v in T ′ is on the endpath v0vyz′. Since v0 ∈ S, it follows
that S′ = S − {u} is a RDS for T ′. Thus, by Claim 1, T ′ ∈ C and T can be constructed
from T ′ by Operation O1, whence T ∈ C. So suppose v0 /∈ S. Then S′ = S − {z′} is a
RDS for T ′ = T − y− z′. Hence, d (n−2)+2

3 e ≤ γr(T ′) ≤ dn+2
3 e − 1, which is a contradiction

when n ≡ 1 mod 3. Hence n ≡ 0 mod 3 or n ≡ 2 mod 3 and γr(T ′) = dn
3 e = dn(T ′)+2

3 e.
Thus, T ′ ∈ T , with n(T ′) = n− 2 ≡ 0 mod 3 or n(T ′) = n− 2 ≡ 1 mod 3. By the induction
assumption, T ′ ∈ C. The tree T can now be constructed from T ′ by applying Operation
O2, whence T ∈ C.

Hence we may assume v is not a remote vertex. Then v lies on the endpaths vxz and vyz′. It
follows that S′ = S−{z′} is a RDS for T ′ = T −y−z′. Hence, by reasoning similar to that
in the previous paragraph, the tree T can be constructed from T ′ by applying Operation
O2, whence T ∈ C.

Thus, we assume each vertex on a longest path at distance diam(T ) − 2 or diam(T ) − 1
from r has degree two.

Let v be any vertex on a longest path at distance diam(T ) − 3 from r. Let vx1y1z1 be an
endpath of T . Then x1, y1 6∈ S, and so v ∈ S.

Suppose deg(v) ≥ 3. If v is on an endpath vxz, it follows that x, z ∈ S. By the remark
following Claim 1, T ∈ C. Suppose v is a remote vertex adjacent to a leaf u. By Claim 1,
u is the only leaf adjacent to v. Moreover, S′ = S − {u} is a RDS for T ′ = T − u. Thus,
by Claim 1, T ′ ∈ C and T can be constructed from T ′ by Operation O1, whence T ∈ C.

So we may assume that v lies only on endpaths vxiyizi, for i = 1, . . . , `. Let e be the edge
that joins v with its parent, and let T (v) be the component of T − e that contains v. Then
T (v) consists of ` disjoint paths xiyizi (i = 1, . . . , `) with v joined to xi for i = 1, . . . , `. Let
i ∈ {1, . . . , `}. Since xiyizi is an endpath of T , we have xi 6∈ S, yi 6∈ S and v ∈ S. Then
S − ∪`

i=1{zi} is a RDS of T ′ = T − (T (v)− {v}), and so dn−3`+2
3 e ≤ γr(T ′) ≤ dn+2

3 e − `,
whence γr(T ′) = dn(T ′)+2

3 e. Thus, T ′ ∈ T , and by the induction assumption, T ′ ∈ C. Note
that v is a leaf of T ′. The tree T can now be constructed from T ′ by applying Operation
O3, whence T ∈ C. 2
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