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Abstract

Let G = (V,E) be a graph. A set S ⊆ V is a total restrained dominating set if every
vertex is adjacent to a vertex in S and every vertex of V − S is adjacent to a vertex in
V −S. The total restrained domination number of G, denoted by γtr(G), is the smallest
cardinality of a total restrained dominating set of G. We show that if T is a tree of
order n, then γtr(T ) ≥ dn+2

2 e. Moreover, we show that if T is a tree of order n ≡ 0 mod
4, then γtr(T ) ≥ dn+2

2 e + 1. We then constructively characterize the extremal trees T
of order n achieving these lower bounds.

1 Introduction

In this paper, we follow the notation of [1]. Specifically, let G = (V,E) be a graph with
vertex set V and edge set E. Moreover, the notation Pn will denote the path of order n. A
set S ⊆ V is a dominating set of G if every vertex not in S is adjacent to a vertex in S. The
domination number of G, denoted by γ(G), is the minimum cardinality of a dominating set.
The concept of domination in graphs, with its many variations, is now well studied in graph
theory. The recent book of Chartrand and Lesniak [1] includes a chapter on domination. A
thorough study of domination appears in [3, 4].

In this paper, we continue the study of a variation of the domination theme, namely that
of total restrained domination. A set S ⊆ V is a total restrained dominating set (denoted
TRDS) if every vertex is adjacent to a vertex in S and every vertex in V −S is also adjacent
to a vertex in V −S. Every graph has a total restrained dominating set, since S = V is such
a set. The total restrained domination number of G, denoted by γtr(G), is the minimum
cardinality of a TRDS of G. A TRDS of cardinality γtr(G) will be called a γtr(G)-set.
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The concept of total restrained domination was introduced by Chen, Ma and Sun in [2],
and further studied by Zelinka in [6]. We may note that the concept of total restrained
domination was also introduced by Telle and Proskurowski [5], albeit indirectly, as a vertex
partitioning problem. Here conditions are imposed on a set S, the complementary set V −S
and on edges between the sets S and V −S. For example, if we require that every vertex in
V − S should be adjacent to some other vertex of V − S (the condition on the set V − S)
and to some vertex in S (the condition on edges between the sets S and V − S), and every
vertex in S is also adjacent to some vertex in S (the condition on edges among vertices of
S), then S is a TRDS.

We refer to a vertex of degree 1 in a tree T as a leaf of T . A vertex adjacent to a leaf we
call a remote vertex of T . For v ∈ V (T ) and a leaf ` of T , the path vx1 . . . xk` is called a
v−L path if deg xi = 2 for each i. If the vertex v need not be specified, a v−L path is also
called an endpath.

We show that if T is a tree of order n, then γtr(T ) ≥ dn+2
2 e. Moreover, we constructively

characterize the extremal trees T of order n achieving this lower bound. Lastly, we show
that if T is a tree of order n ≡ 0 mod 4, then γtr(T ) ≥ dn+2

2 e + 1, and also constructively
characterize the extremal trees T of order n achieving this lower bound.

2 The lower bound

The following result was established in [2], using a more cumbersome proof. As we shall
see, this result will be useful in establishing a sharp lower bound on the total restrained
domination number of a tree.

Proposition 1 If n ≥ 2 is an integer, then γtr(Pn) = n− 2bn−2
4 c.

Proof. Suppose S is a TRDS of Pn, whose vertex set is V = {v1, . . . , vn}. Note that
v1, v2 ∈ S. Moreover, any component of V − S is of size exactly two. Each component is
adjacent to a vertex of S, which, in turn, is adjacent to another vertex of S. Suppose there
are m such components. Then 2m + 2m + 2 ≤ n and so m ≤ bn−2

4 c. Thus |S| = n− 2m ≥
n−2bn−2

4 c. On the other hand, V −{vi | i ∈ {3, 4, 7, 8, . . . , 4bn−2
4 c−1, 4bn−2

4 c}} is a TRDS
of Pn, whence γtr(Pn) = n− 2bn−2

4 c. 2

Corollary 2 If n ≥ 2 is an integer, then γtr(Pn) ≥ dn+2
2 e.

Proof. Since n− 2bn−2
4 c ≥ dn+2

2 e, the result follows from Proposition 1. 2

Let T = (V,E) be a tree and v, a, b ∈ V such that deg v ≥ 3 and a, b ∈ N(v). Let `b be a
leaf of the component of T − v that contains b. Then the tree T ′ which arises from T by
deleting the edge va and joining a to `b is called a (v, a, b)-pruning of T .

Theorem 3 If T is a tree of order n ≥ 2, then γtr(T ) ≥ dn+2
2 e.
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Proof. We use induction on n. It is easy to check that the result is true for all trees T of
order n ≤ 8. Suppose, therefore, that the result is true for all trees of order less than n,
where n ≥ 9. Let γtr = min{γtr(T ) | T is a tree of order n}. We will show that γtr ≥ dn+2

2 e.

Let T = {T | T is a tree of order n such that γtr(T ) = γtr}. Among all trees in T , let T be
chosen so that the sum s(T ) of the degrees of its vertices of degree at least 3 is minimum.
If s(T ) = 0, then T ∼= Pn, and so γtr = γtr(Pn) ≥ dn+2

2 e. Suppose, therefore, that s(T ) ≥ 1.
Since s(T ) ≥ 1, there exists a vertex v such that deg(v) ≥ 3. Let S be a γtr(T )-set of T .

Claim 1 If v is a vertex of degree at least 3, then
(i) v 6∈ S,
(ii) v is adjacent to exactly one vertex of S,
(iii) deg(v) = 3.

Proof. Suppose v ∈ S. Then there exist a, b ∈ N(v) such that b ∈ S. Let T ′ be a
(v, a, b)-pruning of T . Then S is a TRDS of T ′, and so, by definition of γtr, we have
that γtr ≤ γtr(T ′) ≤ |S| = γtr. Hence, T ′ ∈ T . However, as s(T ′) < s(T ), we obtain a
contradiction.

Thus, assume v 6∈ S and let a, b ∈ N(v) such that a 6∈ S and b ∈ S. If c ∈ N(v) − {a, b}
is in S, then, by considering the (v, b, c)-pruning of T , we obtain a contradiction as before.
We therefore assume that b is the only vertex in S which is adjacent to v.

Suppose deg(v) ≥ 4, let {c1, . . . , cdeg(v)−2} = N(v) − {a, b}, let c = c1 and let `b be a leaf
of the component of T − v that contains b. Let T ′ be the tree which arises from T by
deleting the edges vci for i = 1, . . . ,deg(v) − 2 and joining c to `b, c2, . . . , cdeg(v)−2. Note
that degT ′(v) = degT ′(`b) = 2,degT ′(c) = deg(c) + deg(v) − 3 ≥ deg(c) + 1 ≥ 3, while all
other vertices have the same degree in T ′ as in T . On the one hand, if deg(c) = 2, then
s(T ′) = s(T ) − deg(v) + degT ′(c) = s(T ) − 1. On the other hand, if deg(c) ≥ 3, then
s(T ′) = s(T )− deg(v) + deg(v)− 3 = s(T )− 3. Then S is a TRDS of T ′. As T ′ ∈ T and
s(T ′) < s(T ), we obtain a contradiction in both cases. Thus, deg(v) = 3. �

Claim 2 No two vertices of degree 3 are adjacent.

Proof. Using the notation employed in Claim 1, b is the only neighbor of v in S. By
Claim 1, deg(b) ≤ 2. If deg(c) = 3, then, by Claim 1, c is adjacent to a vertex in V − S
(other than v). Let T ′ be the (v, c, b)-pruning of T . Then S is a TRDS of T ′, and so,
by definition of γtr, we have that γtr ≤ γtr(T ′) ≤ |S| = γtr. Hence, T ′ ∈ T . However, as
s(T ′) < s(T ), we obtain a contradiction. �

Using the notation employed in the proof of Claim 1, the vertex b ∈ S and, as it must be
adjacent to another vertex in S, deg(b) = 2 (cf. Claim 1). Let b′ ∈ S be the vertex adjacent
to b and suppose b′ is not a leaf. Then, by Claim 1, deg(b′) = 2 . Let b′′ be the neighbor of
b′ different from b. Then S is a TRDS of a tree T ′ obtained from T by deleting the edge
b′b′′ and joining the vertex b′′ to some leaf of the component of T − v containing c. Thus
T ′ ∈ T and b′ is a leaf of T ′. Hence we may assume that b′ is a leaf of T .
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By Claim 2, deg(a) = deg(c) = 2. Let a′(c′, respectively) be the neighbor of a (c, respec-
tively) which is different from v. Necessarily, a′, c′ ∈ S. Then deg(a′) = deg(c′) = 2 (cf.
Claim 1). As each vertex in S is adjacent to another vertex of S, there exist vertices a′′ and
c′′ in S which are adjacent to a′ and c′ respectively. We may assume, as we did for b′, that
a′′ is a leaf of T .

If n = 9, then γtr(T ) = 6 = dn+2
2 e. Suppose, therefore, that n ≥ 10. Let T ′ be the

component of T − cc′ containing c′. Then S∩V (T ′) is a TRDS of T ′, so that |S∩V (T ′)| ≥
γtr(T ′). Hence, |S| ≥ 4 + γtr(T ′). Applying the inductive hypothesis to the tree T ′ of
order n− 7, we have γtr(T ′) ≥ dn−5

2 e, and so γtr(T ) = |S| ≥ dn+3
2 e ≥ dn+2

2 e. 2

3 Extremal trees T with γtr(T ) = dn(T )+2
2 e

Let T be the class of all trees T of order n(T ) such that γtr(T ) = dn(T )+2
2 e. We will

constructively characterize the trees in T . In order to state the characterization, we define
four simple operations on a tree T .

O1. Join a leaf or a remote vertex of T to a vertex of K1, where n(T ) is even.

O2. Join a vertex v of T which lies on an endpath vxz to a leaf of P3, where n(T ) is even.

O3. Join a vertex v of T which lies on an endpath vx1x2z to a leaf of P3, where n(T ) is
even.

O4. Join a remote vertex or a leaf of T to a leaf of each of ` disjoint copies of P4 for some
` ≥ 1.

Let C be the class of all trees obtained from P2 by a finite sequence of Operations O1- O4.

We will show that T ∈ T if and only if T ∈ C.

Lemma 4 Let T ′ ∈ T be a tree of even order n(T ′). If T is obtained from T ′ by one of the
Operations O1-O3, then T ∈ T .

Proof. Let S be a γtr(T ′)-set of T ′ throughout the proof of this result.

Case 1. T is obtained from T ′ by Operation O1.

Let u be a leaf or a remote vertex of T ′, and suppose T is formed by attaching the singleton
v to u. Then S ∪{v} is a TRDS set of T , and so dn(T ′)+3

2 e ≤ γtr(T ) ≤ dn(T ′)+2
2 e+1. Since

n(T ′) is even, we have γtr(T ) = dn(T )+2
2 e. Thus, T ∈ T .

Case 2. T is obtained from T ′ by Operation O2 or Operation O3.

Suppose v lies on the endpath vxz or vx1x2z and T is obtained from T ′ by adding the path
y1y2z

′ to T ′ and joining y1 to v.
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We show that v 6∈ S. First consider the case when v lies on the endpath vxz. Suppose v ∈ S.
Then S′ = S−{z} is a TRDS of T ′′ = T ′−{z}, and so dn(T ′)+1

2 e ≤ γtr(T ′′) ≤ dn(T ′)+2
2 e−1.

However, as n(T ′) is even, we have n(T ′)+2
2 ≤ γtr(T ′′) ≤ n(T ′)+2

2 −1, which is a contradiction.
Thus, v 6∈ S.

In the case when v lies on the endpath vx1x2z, one may show, as in the previous paragraph,
that x1 6∈ S. But then v 6∈ S, as required.

In both cases, the set S∪{y2, z
′} is a TRDS of T , and so dn(T ′)+5

2 e ≤ γtr(T ) ≤ dn(T ′)+2
2 e+2.

However, as n(T ′) is even, we have γtr(T ) = n(T ′)+6
2 = dn(T )+2

2 e. Thus, T ∈ T .

The proof is complete. 2

Lemma 5 Let T ′ ∈ T be a tree of order n(T ′). If T is obtained from T ′ by the Operation
O4, then T ∈ T .

Proof. Let S be a γtr(T ′)-set of T ′, and suppose v is a remote vertex or a leaf of T ′.
Then v ∈ S. Let T be the tree which is obtained from T ′ by adding the paths uixiyizi

to T ′ and joining ui to v for i = 1, . . . , `. Then S ∪`
i=1 {yi, zi} is a TRDS of T , and so

dn(T ′)+4`+2
2 e ≤ γtr(T ) ≤ dn(T ′)+2

2 e+ 2`. Consequently, γtr(T ) = dn(T )+2
2 e, and so T ∈ T . 2

We are now in a position to prove the main result of this section.

Theorem 6 T is in C if and only if T is in T .

Proof. Assume T ∈ C. We show that T ∈ T , by using induction on c(T ), the number
of operations required to construct the tree T . If c(T ) = 0, then T = P2, which is in T .
Assume, then, for all trees T ′ ∈ C with c(T ′) < k, where k ≥ 1 is an integer, that T ′ is in
T . Let T ∈ C be a tree with c(T ) = k. Then T is obtained from some tree T ′ by one of the
Operations O1 – O4. But then T ′ ∈ C and c(T ′) < k. Applying the inductive hypothesis
to T ′, T ′ is in T . Hence, by Lemma 4 or Lemma 5 , T is in T .

To show that T ∈ C for a nontrivial T ∈ T , we use induction on n, the order of the tree T .
If n = 2, then T = P2 ∈ C. Let T ∈ T be a tree of order n ≥ 3, and assume for all trees
T ′ ∈ T of order 2 ≤ n(T ′) < n, that T ′ ∈ C. Since n(T ) ≥ 3, diam(T ) ≥ 2.

If diam(T ) = 2, then T is a star with exactly two leaves, which can be constructed from P2

by applying Operation O1. Thus, T ∈ C.

Since no double star is in T , we may assume diam(T ) ≥ 4. Throughout S will be used to
denote a γtr(T )-set of T .

Claim 3 Let z be a leaf of T . If S − {z} is a TRDS of T ′ = T − z, then T ∈ C.

Proof. Assume S − {z} is a TRDS of T ′. Then dn−1+2
2 e ≤ γtr(T ′) ≤ dn+2

2 e − 1. This
yields a contradiction when n is even. Hence, n is odd, and γtr(T ′) = n+1

2 = dn(T ′)+2
2 e.
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Thus, T ′ ∈ T , with n(T ′) = n− 1 even. By the induction assumption, T ′ ∈ C. The tree T
can now be constructed from T ′ by applying Operation O1, whence T ∈ C. �

Claim 3 implies that if vxz is an endpath of T , then we may assume v 6∈ S, since otherwise
the tree is constructible. Claim 3 also implies that every remote vertex of T is adjacent to
exactly one leaf, since otherwise it is constructible.

Claim 4 If u is a leaf of T and v is either another leaf of T or the remote vertex adjacent
to u, then S′ = S − {u, v} is not a TRDS of T ′ = T − u− v.

Proof. Suppose, to the contrary, that S′ is a TRDS of T ′. Then dn−2+2
2 e ≤ γtr(T ′) ≤

dn+2
2 e − 2. Thus, dn

2 e+ 2 ≤ dn+2
2 e, which yields a contradiction. �

Let T be rooted at a leaf r of a longest path.

Let v be any vertex on a longest path at distance diam(T ) − 2 from r. Suppose v lies on
the endpath vyz′. Then, by the remark above, v 6∈ S, which implies that v is not adjacent
to a leaf. If v also lies on the endpath vxz, then S − {x, z} is a TRDS of T − x− z, which
is a contradiction by Claim 4.

Thus, we assume each vertex on a longest path at distance diam(T ) − 2 or diam(T ) − 1
from r has degree two.

Let v be any vertex on a longest path at distance diam(T ) − 3 from r. Let vy1y2z
′ be an

endpath of T . Then y1 6∈ S, and so v 6∈ S, which means all neighbors of v have degree at
least 2.

Assume v also lies on the path vxz, where z is a leaf. Then, since each remote vertex is
adjacent to exactly one leaf, vxz is an endpath. If v is dominated by a vertex other than
x, then S − {x, z} is a TRDS of T ′ = T − x − z, which is a contradiction (cf. Claim 4).
Hence, v is dominated only by x. Then S′ = S−{y2, z

′} is a TRDS of T ′ = T −y1−y2−z′

and so dn−3+2
2 e ≤ γtr(T ′) ≤ dn+2

2 e − 2. This yields a contradiction when n is even. Hence,
n is odd and γtr(T ′) = n−1

2 = dn(T ′)+2
2 e. Thus, T ′ ∈ T , with n(T ′) = n − 3 even. By the

induction assumption, T ′ ∈ C. The tree T can now be constructed from T ′ by applying
Operation O2, whence T ∈ C.

Assume v lies on the path vx1x2z. Since x1 (x2, respectively) is on a longest path at
distance diam(T )−2 (diam(T )−1, respectively) from r, we have deg(x1) = 2 (deg(x2) = 2,
respectively). This implies that vx1x2z is an endpath, and so x1 6∈ S. But then S′ =
S − {x2, z} is a TRDS of T ′ = T − x1 − x2 − z. Thus, dn−3+2

2 e ≤ γtr(T ′) ≤ dn+2
2 e − 2.

This yields a contradiction when n is even. Hence, n is odd and γtr(T ′) = dn(T ′)+2
2 e. Thus,

T ′ ∈ T , with n(T ′) = n− 3 even. By the induction assumption, T ′ ∈ C and T can now be
constructed from T ′ by applying Operation O3, whence T ∈ C.

Thus, we assume each vertex on a longest path at distance diam(T )− 3 from r has degree
two.

Let v be any vertex on a longest path at distance diam(T ) − 4 from r. As P5 6∈ T , v 6= r
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and diam(T ) ≥ 5.

Assume degT (v) ≥ 3. Let vy1y2y3z
′ be an endpath of T . But then, as y2y3z

′ is an endpath
of T , it follows that y2 6∈ S, which implies y1 6∈ S and v ∈ S. Moreover, S′ = S − {y3, z

′}
is a TRDS of T ′ = T − y1 − y2 − y3 − z′. Thus, dn−4+2

2 e ≤ γtr(T ′) ≤ dn+2
2 e − 2, whence

γtr(T ′) = dn(T ′)+2
2 e. We conclude that T ′ ∈ T , and by the induction assumption, T ′ ∈ C. If

degT (v) = 2 or when v is a remote vertex, then T can be constructed from T ′ by applying
Operation O4.

We therefore assume that degT (v) ≥ 3 and that v is not adjacent to a leaf.

If v also lies on the path vxz, where z is a leaf, then v 6∈ S, which is a contradiction.

We now suppose v lies on the path vx1x2z, where z is a leaf. Then, since x2 is a remote
vertex, we have deg(x2) = 2. As x1x2z is an endpath of T , it follows that x1 6∈ S. As x1

must be adjacent to another vertex in V − S, vertex x1 lies on a path x1, u1, u2, z
′′. But

then x1, with deg(x1) ≥ 3, is a vertex at distance diam(T ) − 3 on a longest path from r,
which is a contradiction.

Let e be the edge that joins v with its parent, and let T (v) be the component of T − e that
contains v. Then T (v) consists of ` disjoint paths uixiyizi (i = 1, . . . , `) with v joined to
ui for i = 1, . . . , `. Let i ∈ {1, . . . , `}. Since xiyizi is an endpath of T , we have xi 6∈ S,
ui 6∈ S and v ∈ S. Then S − ∪`

i=1{yi, zi} is a TRDS of T ′ = T − (T (v) − v), and so
dn−4`+2

2 e ≤ γtr(T ′) ≤ dn+2
2 e − 2`, whence γtr(T ′) = dn(T ′)+2

2 e. Thus, T ′ ∈ T , and by
the induction assumption, T ′ ∈ C. Note that v is a leaf of T ′. The tree T can now be
constructed from T ′ by applying Operation O4, whence T ∈ C. 2

Theorem 7 Let T be a tree of order n(T ). If n(T ) ≡ 0 mod 4, then γtr(T ) ≥ dn(T )+2
2 e+1.

Proof. We will show that every tree T in T = C has n(T ) 6≡ 0 mod 4, by using induction on
s(T ), the number of operations required to construct the tree T . If s(T ) = 0, then T = P2,
and 2 6≡ 0 mod 4. Assume, then, for all trees T ′ ∈ C with s(T ′) < k, where k ≥ 1 is an
integer, that n(T ′) 6≡ 0 mod 4. Let T ∈ C be a tree with s(T ) = k. Then T is obtained
from some tree T ′ by one of the Operations O1 – O4. Then T ′ ∈ C, and by the induction
hypothesis, n(T ′) 6≡ 0 mod 4. If T is obtained from T ′ by one of the Operations O1 – O3,
then n(T ′) ≡ 2 mod 4, and, since either a path of order one or a path of order three is
attached to T ′ to form T , n(T ) 66≡ 0 mod 4. Moreover, n(T ) = n(T ′) + 4 if T is obtained
from T ′ by Operation O4, whence n(T ) 66≡ 0 mod 4. The result now follows. 2

4 Extremal trees T of order n(T ) ≡ 0 mod 4 with γtr(T ) =

dn(T )+2
2 e+ 1

Let T ∗ = {T |T is a tree of order n(T ) ≡ 0 mod 4 such that γtr(T ) = dn+2
2 e+ 1}. In order

to constructively characterize the trees in T ∗, we define the following operations on a tree
T :
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O5. Join a leaf or a remote vertex v of T to a vertex of K1, where n(T ) ≡ 3 mod 4.

O6. Join a vertex v of T which lies on an endpath vxz to a vertex of K2, where n(T ) ≡ 2
mod 4.

O7. Join a vertex v of T which lies on an endpath vx1x2z to a vertex of K2, where n(T ) ≡ 2
mod 4.

O8. Join a vertex v of T which lies on an endpath vxz to a leaf of P3, where n(T ) ≡ 1 mod
4.

O9. Join a vertex v of T which lies on an endpath vx1x2z to a leaf of P3, where n(T ) ≡ 1
mod 4.

Let I = {T |T is a tree obtained by applying one of the Operations O5 – O9 to a tree
T ′ ∈ C exactly once}. Let C∗ = {T |T is a tree obtained from a tree T ′ ∈ I by applying
Operation O4 to T ′ zero or more times}. We will show that T ∗ = C∗.

Lemma 8 Let T ′ ∈ C be a tree of order n(T ′) ≡ 3 mod 4. If T is obtained from T ′ by
Operation O5, then T ∈ T ∗.

Proof. Let u be a leaf or a remote vertex of T ′, and suppose T is formed by attaching the
singleton v to u. Let S be a γtr(T ′)-set of T ′. Then S ∪ {v} is a TRDS set of T , and so,
since n(T ) ≡ 0 mod 4, dn(T )+2

2 e + 1 ≤ γtr(T ) ≤ |S| + 1 = dn(T ′)+2
2 e + 1 = dn(T )+1

2 e + 1.
Hence, γtr(T ) = dn(T )+2

2 e+ 1, and so T ∈ T ∗. 2

Lemma 9 Let T ′ ∈ C be a tree of order n(T ′) ≡ 2 mod 4. If T is obtained from T ′ by
either Operation O6 or Operation O7, then T ∈ T ∗.

Proof. Let {u, v} be the vertex set of K2 and let S be a γtr(T ′)-set. The set S ∪ {u, v}
is a TRDS of T , and so, since n(T ) ≡ 0 mod 4, dn(T )+2

2 e + 1 ≤ γtr(T ) ≤ |S| + 2 =
dn(T ′)+2

2 e+ 2 = dn(T )
2 e+ 2. Hence, γtr(T ) = dn(T )+2

2 e+ 1, and so T ∈ T ∗. 2

Lemma 10 Let T ′ ∈ C be a tree of order n(T ′) ≡ 1 mod 4. If T is obtained from T ′ by
either Operation O8 or Operation O9, then T ∈ T ∗.

Proof. Let S be a γtr(T ′)-set of T ′. Assume v lies on the endpath vxz or vx1x2z and T is
obtained from T ′ by adding the path y1y2z

′ to T ′ and joining y1 to v. We show that v 6∈ S.

First consider the case when v lies on the endpath vxz. Suppose v ∈ S. Then x, z ∈ S,
and S − {z} is TRDS of T ′′ = T ′ − z. Since n(T ′′) ≡ 0 mod 4, dn(T ′′)+2

2 e+ 1 ≤ γtr(T ′′) ≤
|S|− 1 = dn(T ′)+2

2 e− 1 = dn(T ′′)+3
2 e− 1, and so n(T ′′)+4

2 ≤ n(T ′′)+2
2 , which is a contradiction.

Thus, v 6∈ S.

In the case when v lies on the endpath vx1x2z, one may show, as in the previous paragraph,
that x1 6∈ S. But then v 6∈ S, as required.
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In both cases, the set S ∪ {y2, z
′} forms a TRDS of T , so that dn(T )+2

2 e + 1 ≤ γtr(T ) ≤
|S|+ 2 = dn(T ′)+2

2 e+ 2 = dn(T )−1
2 e+ 2. Hence, γtr(T ) = dn(T )+2

2 e+ 1, and so T ∈ T ∗. 2

The proof of the following result is similar to that of Lemma 5.

Lemma 11 If T is obtained from T ′ ∈ T ∗ by Operation O4, then T ∈ T ∗.

Lemma 12 If T is in I, then T is in T ∗.

Proof. Assume T ∈ I. Then T is obtained from T ′ ∈ C by applying one of the Operations
O5 – O9 exactly once. Then, by Lemmas 8, 9 and 10, T ∈ T ∗. 2

Theorem 13 T is in C∗ if and only if T is in T ∗.

Proof. Assume T ∈ C∗. We show that T ∈ T ∗, by using induction on c(T ), the number of
operations required to construct the tree T . If c(T ) = 0, then T ∈ I, and the result follows
from Lemma 12. Assume, then, for all trees T ′ ∈ C∗ with c(T ′) < k, where k ≥ 1 is an
integer, that T ′ is in T ∗. Let T ∈ C∗ be a tree with c(T ) = k. Then T is obtained from
some tree T ′ by applying Operation O4. But then T ′ ∈ C∗ and c(T ′) < k. Applying the
inductive hypothesis to T ′, T ′ is in T ∗. Hence, by Lemma 11, T is in T ∗.

To show that T ∈ C∗ for a nontrivial T ∈ T ∗, we employ induction on 4n, the order of the
tree T . Suppose n = 1. Then T ∼= K1,3 or T ∼= P4, and T can be constructed from P3 ∈ C
by applying Operation O5.

Let T ∈ T ∗ be a tree of order 4n, where n ≥ 2, and suppose T ′ ∈ C∗ for all trees T ′ ∈ T ∗

of order 4n′ where n′ < n.

The only trees T with diam(T ) ≤ 3 which are in T ∗ are K1,3 and P4. As 4n ≥ 8, it follows
that diam(T ) ≥ 4. Throughout S will be used to denote a γtr-set of T , i.e. |S| = dn+2

2 e+1.

Claim 5 If u and v are vertices of T such that T ′ = T −u− v is a tree and S′ = S−{u, v}
is a TRDS of T ′, then n(T ′) ≡ 2 mod 4 and T ′ ∈ C.

Proof. As dn−2+2
2 e ≤ γtr(T ′) ≤ dn+2

2 e+1− 2, we have γtr(T ′) = dn−2+2
2 e = dn(T ′)+2

2 e, and
so T ′ ∈ C. �

Claim 6 Let z be a leaf of T . If S − {z} is a TRDS of T ′ = T − z, then T ∈ C∗.

Proof. Assume S−{z} is a TRDS of T ′. Then dn−1+2
2 e ≤ γtr(T ′) ≤ dn+2

2 e+1−1 = dn+2
2 e.

Hence, n − 1 ≡ 3 mod 4 and γtr(T ′) = dn+1
2 e = dn(T ′)+2

2 e. Thus, T ′ ∈ C. The tree T can
now be constructed from T ′ by applying Operation O5, whence T ∈ C∗. �
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Claim 6 implies that if vxz is an endpath of T , then we may assume v 6∈ S, since otherwise
the tree is constructible. Claim 6 also implies that every remote vertex of T is adjacent to
exactly one leaf, since otherwise it is constructible.

Let T be rooted at a leaf r of a longest path.

Let v be any vertex on a longest path at distance diam(T ) − 2 from r. Suppose v lies on
the endpath vyz′. Then, by the remark above, v 6∈ S, which implies that v is not adjacent
to a leaf. If v also lies on the endpath vxz, then S − {x, z} is a TRDS of T − x − z and
so T ′ ∈ C (cf. Claim 5), whence T ∈ C∗ (as it can be constructed from T ′ by applying
Operation O6).

Thus, we assume each vertex on a longest path at distance diam(T ) − 2 or diam(T ) − 1
from r has degree two.

Let v be any vertex on a longest path at distance diam(T ) − 3 from r. Let vy1y2z
′ be an

endpath of T . Then y1 6∈ S, and so v 6∈ S, which means all neighbors of v have degree at
least 2.

Assume v also lies on the path vxz, where z is a leaf. Then, since each remote vertex
is adjacent to exactly one leaf, vxz is an endpath. If v is dominated by a vertex other
than x, then S − {x, z} is a TRDS of T ′ = T − x − z and so T ′ ∈ C (cf. Claim 5),
whence T ∈ C∗ (as it can be constructed from T ′ by applying Operation O7). Hence, v is
dominated only by x. Then S′ = S − {y2, z

′} is a TRDS of T ′ = T − y1 − y2 − z′ and so
dn−3+2

2 e ≤ γtr(T ′) ≤ dn+2
2 e − 1. But then γtr(T ′) = dn−1

2 e = dn(T ′)+2
2 e. Thus, T ′ ∈ C. The

tree T can now be constructed from T ′ by applying Operation O8.

Assume v lies on the path vx1x2z. Since x1 (x2, respectively) is on a longest path at
distance diam(T )−2 (diam(T )−1, respectively) from r, we have deg(x1) = 2 (deg(x2) = 2,
respectively). This implies that vx1x2z is an endpath, and so x1 6∈ S. But then S′ =
S−{x2, z} is a TRDS of T ′ = T −x1 −x2 − z. Thus, dn−3+2

2 e ≤ γtr(T ′) ≤ dn+2
2 e− 1. But

then γtr(T ′) = dn−1
2 e = dn(T ′)+2

2 e. Thus, T ′ ∈ C and so T can now be constructed from T ′

by applying Operation O9.

Thus, we assume each vertex on a longest path at distance diam(T )− 3 from r has degree
two.

Let v be any vertex on a longest path at distance diam(T ) − 4 from r. As P5 6∈ T ∗, v 6= r
and diam(T ) ≥ 5.

Assume degT (v) ≥ 3. Let vy1y2y3z
′ be an endpath of T . But then, as y2y3z

′ is an endpath
of T , it follows that y2 6∈ S, which implies y1 6∈ S and v ∈ S. Moreover, S′ = S − {y3, z

′} is
a TRDS of T ′ = T − y1 − y2 − y3 − z′. Thus, dn−4+2

2 e+ 1 ≤ γtr(T ′) ≤ dn+2
2 e − 1, whence

γtr(T ′) = dn(T ′)+2
2 e + 1. We conclude that T ′ ∈ T ∗, and by the induction assumption,

T ′ ∈ C∗. If degT (v) = 2 or when v is a remote vertex, then T can be constructed from T ′

by applying Operation O4, whence T ∈ C∗.

We therefore assume that degT (v) ≥ 3 and that v is not adjacent to a leaf.
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If v also lies on the path vxz, where z is a leaf, then v 6∈ S, which is a contradiction.

We now suppose v lies on the path vx1x2z, where z is a leaf. Then, since x2 is a remote
vertex, we have deg(x2) = 2. As x1x2z is an endpath of T , it follows that x1 6∈ S. As x1

must be adjacent to another vertex in V − S, vertex x1 lies on a path x1, u1, u2, z
′′. But

then x1, with deg(x1) ≥ 3, is a vertex at distance diam(T ) − 3 on a longest path from r,
which is a contradiction.

Let e be the edge that joins v with its parent, and let T (v) be the component of T − e that
contains v. Then T (v) consists of ` disjoint paths uixiyizi (i = 1, . . . , `) with v joined to
ui for i = 1, . . . , `. Let i ∈ {1, . . . , `}. Since xiyizi is an endpath of T , we have xi 6∈ S,
ui 6∈ S and v ∈ S. Then S − ∪`

i=1{yi, zi} is a TRDS of T ′ = T − (T (v) − v), and so
dn−4`+2

2 e + 1 ≤ γtr(T ′) ≤ dn+2
2 e − 2` + 1, whence γtr(T ′) = dn(T ′)+2

2 e + 1. Thus, T ′ ∈ T ∗,
and by the induction assumption, T ′ ∈ C∗. Note that v is a leaf of T ′. The tree T can now
be constructed from T ′ by applying Operation O4, whence T ∈ C∗. 2
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