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A major challenge to achieving positional control of fluid borne submicron sized objects is regulating

their Brownian fluctuations. We present a magnetic-field-based trap that regulates the thermal fluctuations

of superparamagnetic beads in suspension. Local domain-wall fields originating from patterned magnetic

wires, whose strength and profile are tuned by weak external fields, enable the bead trajectories within the

trap to be managed and easily varied between strong confinements and delocalized spatial excursions that

are described remarkably well by simulations.
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Nature has proven that it is possible to engineer complex
nanoscale machines in the presence of thermal fluctuations
[1–4]. These biological complexes, which harness random
thermal energy to provide functionality, yield a framework
to develop artificial, i.e., nonbiological, phenomena and
devices. Indeed, thermally activated transitions in optical
traps [5], diffusion in solids through activated escape from
metastable states [6–8], and transport of colloidal particles
[9] and DNA [10] through a combination of diffusive and
electric forces are examples where the ceaseless source of
thermal motion is channeled into useful outcomes. An
important outcome of controlling thermally driven motion
in a fluid (i.e., Brownian fluctuations) will be the ability to
manipulate and generate deterministic motion of individ-
ual objects in the 100 nm to 10 �m range. Indeed, several
approaches to achieve this goal have been implemented—
such as optical tweezers [11], dielectric tweezers [12], and
electrokinetic traps [13]—each with its own advantages
and drawbacks.

Although the trapping of paramagnetic objects in a
stable, solely magnetic configuration in free space is not
possible [14], control of their Brownian fluctuations in
quasi three- or two dimensions exclusively through mag-
netic fields would, nevertheless, provide much added value.
The wide tunable force range, convenience of remote ac-
cess, and selectiveness to objects with designed magnetic
signatures is of high interest. In this Letter we demonstrate
a noncontact way of regulating Brownian fluctuations of
magnetic beads of micron to submicron size that is based
on a recently developed platform used to transport labeled
biological cells [15]. Critical to this regulation is the under-
lying principle of combining a weak external magnetic
field (jHextj � 100 Oe) and fields generated from domain
walls (Hdw) residing in ferromagnetic wires designed on a
silicon surface [Fig. 1(a)]. We show that such a superposi-
tion of fields enables the bead to execute stochastic motion
within a tunable deterministic quasi-3D trapping potential
such that the position of its energy minimum can be ma-
nipulated along a predetermined pathway, and its depth

varied from several hundred to a few kBT (thermal energy).
This remote control on the local energy landscape enables
Brownian fluctuations to be varied from being tightly con-
fined (virtually immobilizing the bead) to undergoing large
excursions (expediently biased away from the wire vertex
where a domain wall resides).
Figure 1(b) illustrates the wire-patterned Si platform

supporting a solution of magnetic beads that consist of
small (� 10 nm) iron oxide nanoparticles embedded in a
polymer matrix with radius R ¼ 0:28 or 0:6 �m. A key
property of the beads is their superparamagnetic character
[16] that enables them to be readily magnetized in fields of
only a few tens of Oersted at room temperature and display
no remnant magnetization. The magnetizationMðHÞ of the
bead is induced by the net field H ¼ Hdw þHext, where
three-dimensional control of the external field Hext ¼
ðHx;Hy;HzÞ is achieved by the electromagnets and coil

as shown in Fig. 1(c). The interaction between M and H
leads to a deterministic trapping force on the bead while

FIG. 1 (color online). Experimental setup: (a) Schematic of
Co0:5Fe0:5 zigzag wires of rectangular cross section on a silicon
surface. Typical wire width and thickness were 2 �m and
13.5 nm, respectively. The magnetization (Mwire) points towards
or away from the vertices, generating monopolelike fields (Hdw)
that attract magnetic beads to the vertices. (b) Platform: the O-
ring and cover slip prevent fluid flow and evaporation of solution
of paramagnetic beads. (c) Schematic of electromagnets and coil
to generate fields Hx, Hy, and Hz in the x, y, and z directions,

respectively. The platform was observed by a microscope
(40� objective lens). A CCD camera recorded the trajectories
of the bead.
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thermal fluctuation leads to its stochastic motion. We
follow the motion of the bead in trapping potentials sub-
jected to different external fields through an optical micro-
scope with a 40� objective lens. A CCD camera and
tracking routines resolve individual trajectories with sub-
micron resolution.

Figure 2 provides an overview of the central results.
In the absence of Hext [row (i)], strong field gradients
(> 104 T=m) from the domain wall confine a bead

(R ¼ 0:28 �m) to the vertex. The computed vertical force
Fz ð� � 27 pN � �6500 kBT=�mÞ, pushes the bead to-
wards the surface. The calculated potential depth
was �U � 527 kBT with spring constants kx ¼ ky �
96 pN=�m � 23 000 kBT=�m2. We find the resulting
fluctuation in bead position is below our measurement
resolution of �100 nm, consistent with the calculated
root-mean-square (rms) displacement of 9.3 nm due to
thermal fluctuations.
Application of an in-plane field on the order of tens of

Oersted (e.g., Hx ¼ 0 and Hy ¼ 35 Oe) breaks the sym-

metry, shifting the trap away from the vertex in the same
direction as the in-plane field (þ y), while a field in the�z
direction (e.g., Hz ¼ �74 Oe) weakens the trap. The re-
sulting net field leads to a local field maximum and poten-
tial energy minimum that is formed at y � 0:3 �m from
the vertex center [row (ii)]. Concomitantly, the trap was
also weakened (�U to 22 kBT; Fz ¼ �1200 kBT=�m,
kx ¼ 1400 kBT=�m2, and ky ¼ 250 kBT=�m2 at the

minimum) and became anisotropic. Both the simulation
and experiment (last two columns) showed a tightly con-
fined bead trajectory near the vertex tip at this field value.
As shown in rows (ii)–(iv), when Hz was progressively
decreased (� 74 ! �86 ! �91 Oe), the energy mini-
mum moved farther away (y � 0:3 ! 0:7 ! 0:8 �m)
from the wire vertex, while the depth�U further weakened
(�U � 22 ! 10 ! 8 kBT; Fz � �1200 ! �140 !
�110 kBT=�m, kx � 1400 ! 72 ! 45 kBT=�m2, and
ky � 250 ! 74 ! 53 kBT=�m2 at the respective

minima.)
As is evident in both simulation and experiment (last

two columns of Fig. 2), the weakening of the asymmetric
trap causes an increase in the extent of Brownian motion
of the bead. The bead remained in the focal plane of
the objective lens as long as the sum of the vertical
force provided by the trap and the buoyant weight
(� 0:1 kBT=�m for R ¼ 0:28 �m; �1:5 kBT=�m for
R ¼ 0:6 �m) was strong enough to confine the bead near
to the surface. In row (iv), the vertical trapping force
dropped below 1 kBT=�m for y > 4 �m so that the bead
could become momentarily out of focus when it was
far away from the energy minimum (movie 3 in the
Supplemental Materials [17]).
Row (v) in Fig. 2 demonstrates the ability of this plat-

form to confine Brownian motion of a bead of radius R ¼
0:6 �m functionalized with a short DNA (20 base pairs)
tethered to it. DNA attachment was confirmed by fluores-
cence of DNA-conjugated dye molecules. As expected
since the DNA is short, we observed no qualitative differ-
ence between the DNA-tethered and nontethered beads of
the same radii in their Brownian motion and response to the
tunable trap. The more confined motion of the R ¼
0:6 �m bead compared to the 0:28 �m bead in traps of
similar depth (�U � 8 kBT) can be attributed to the fact
that the diffusion coefficient scales as 1=R.

FIG. 2 (color online). Trapping individual superparamagnetic
beads in solution. Left column: Bead of radius R ¼ 0:28 �m
[rows (i)–(iv)] and DNA-tethered bead with R ¼ 0:6 �m
[row (v)]. Second column:Orientation of the external fieldHext ¼
ð0; Hy;HzÞ with respect to zigzag wire. Head-to-head configura-

tion of magnetizations on neighboring arms of wire (Mwire)
generates outgoing domain-wall field Hdw. Third column:
Calculated energy landscapes and their potential depth �U for
beads in the presence of Hdw and corresponding Hext. The wire
vertex and energy contours (in 1:9 kBT increments) are projected
on top of the energy landscape. Fourth and fifth columns:
Simulated and experimentally observed bead trajectories under
corresponding field conditions. Each simulation and experiment
was for a period of 5 min , except for the experiment in row (iv),
which was for 3 min. See Supplemental Materials [17] for movies
for each experiment, including an additional movie recorded
under fluorescence mode for the DNA-tethered bead (movie 5).
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Figure 3 shows the detailed dependence of the extent of
the Brownian motion (for R ¼ 0:28 �m) on the strength of
the anisotropic trap by plotting the average (dots) and rms
fluctuations (vertical bars) in the y position of the bead
trajectory as a function of the tuning field Hz, while keep-
ing Hx ¼ 0 and Hy ¼ 35 Oe fixed. As Hz is decreased

from �70 to �90 Oe, the distribution of Brownian trajec-
tory shifts gradually along the þy direction, while extend-
ing its spread in the range of 0 � y � 2 �m. Upon further
decreasing Hz below �90 Oe, experiment and theory re-
vealed an abrupt increase in fluctuation up to 10� 15 �m,
due largely from the more frequent escapes of the bead to
the flatter region of the energy landscape [i.e., row (iv)
of Fig. 2].

We describe the motion of the bead by Langevin dy-
namics [18,19] where viscous damping due to the fluid
dominates the inertial forces. The center of mass (r) of the
bead satisfies the Langevin equation

6��R
d

dt
r ¼ �rUþ fðtÞ;

where the left-hand side is the frictional Stokes force on the
bead due to the fluid, and fðtÞ is a Gaussian white noise
with variance 12��RkBT, representing thermal fluctua-
tions. The deterministic force arises from the interaction
energy UðrÞ between the moment of the bead and the net
field HðrÞ:

UðrÞ ¼ ��0V
Z HðrÞ

Hð1Þ
MðH0ÞdH0;

whereMðHÞ and V are the field induced magnetization and
volume of the bead, respectively. The energy landscapes in
Fig. 2 were based on calculation ofU in the plane of z ¼ R

wherein a useful quantitative measure of the asymmetric
trap and its influence on the bead trajectories at tempera-
ture T is provided by �U=kBT. Here �U ¼ Uð1Þ �Umin

is the difference in the potential energy minimum and the
potential at a distant location. Since MðHÞ changes mono-
tonically with H, the energy minimum coincides with the
field maximum. Although MðHÞ only serves to modulate
UðrÞ, due to a log-normal size distribution of the embedded
nanoparticles in the bead [20], the resulting MðHÞ (mod-
eled as a superposition of classical moments) is nonlinear
in H, i.e., susceptibility � not constant, even at low
Hð<100 OeÞ, as seen in the inset of Fig. 3(a). This reduc-
tion in � causes further weakening of the trap as the tuning
field changes. The contribution of the domain-wall field
Hdw to the net field H was, for computational simplicity,
approximated as that generated from a magnetic monopole
[21] located at the center of the vertex. This serves as an
excellent description for Hdw, except in the immediate
vicinity of the vertex, where the precise domain-wall struc-
ture would influence the local field.
The overall scale of the bead magnetization MðHÞ is

difficult to determine due to the uncertainty in the exact
nanoparticle size distributions within the bead and the
precise wire magnetization. For the experimentally deter-
mined values of various parameters and the appropriate
model of the monopole strength, the semiquantitatively
reproducible behaviors of the bead are strikingly similar
to the experimental results as shown in the fourth and fifth
columns of Fig. 2 as well as Fig. 3.
The increase in the extent of Brownian motion as Hz is

decreased (toward more negative) (Fig. 3) can be under-
stood from Boltzmann statistics, i.e., the ensemble-
averaged probability for the bead to be located at r is
proportional to exp½�ðUðrÞ �UminÞ=kBT�. As �U de-
creases the particle can be found farther from the energy
minimum and the extent of the trajectory increases. When
�U becomes comparable to kBT, the bead has a higher
probability to overcome the deterministic potential barrier
on the time scale of interest (i.e., 5 min); large excursions
of Brownian trajectories with motion biased away from the
zigzag wires then happen more frequently [row (iv) Fig. 2].
In the experiments, we track single trajectories for a par-
ticular realization of the noise term fðtÞ, and so ensemble
averages were not performed in the simulations.
A significant advantage of a solely magnetic trap as

presented here is the ability to remotely tune its relative
strength with weak external magnetic fields without alter-
ing the fluid environment, such as local heating or the need
to adjust the dielectric property of the fluid as in optical or
dielectric tweezers. Although a potential drawback of this
approach is the requirement for a magnetic signature on
the entity being manipulated, magnetic nanoparticles
could be embedded directly within or attached to inert or
biological (e.g., DNA) entities of interest. While other
approaches based on magnetic fields have utilized

FIG. 3. Average position (dots) and rms fluctuation (vertical
bars) of the R ¼ 0:28 �m bead trajectory in the y direction as a
function of Hz, keeping Hx ¼ 0 and Hy ¼ 35 Oe fixed. Each

data point is obtained from a single 5-minute trajectory, except
for field value (iv) of the experimental plot, which was a 3 min
trajectory. Arrows labeled with (ii)–(iv) correspond to external
field values in Fig. 2. (a) Results of the simulation: the inset
shows calculated magnetization MðHÞ (modeled as a superposi-
tion of classical moments [20]) of the superparamagnetic bead as
a function of net field H, with dots indicating values at the
energy minimum formed under external field values (ii)–(iv).
Note nonlinearity of the MðHÞ curve at low Hð�100 OeÞ.
(b) Results of the experiment.
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Brownian fluctuations to characterize trapping forces
[22,23] and susceptibility of the beads [24], the method
presented here serves as an experimental implementation
of a magnetic trap that provides a high degree of control
over the extent of the Brownian fluctuation of the bead and
a quantitative understanding of the parameters that influ-
ence it. This allows us to selectively suppress the low-
frequency components (in free Brownian motion, the
power spectrum of the noise is white and the mean-square
deviation of the position increases linearly in time) thereby
controlling local areal coverage of the trajectories. In
addition to low cost and biocompatibility, this approach
allows multiple beads to be loaded at different vertices in
fluid environment for concurrent trapping, control, and
easy observation with a standard optical microscope.

In conclusion, a fundamental challenge in the advance-
ment of nanotechnology is the development of precision
tools for the manipulation and transport of nanoobjects and
biomolecules in solution. The tunable magnetic trap pre-
sented here with the feature of controlling the relative
importance between the deterministic and stochastic
(Brownian) forces helps achieve this goal. Underlying this
control are (1) embedded superparamagnetic nanoparticles
that display a nonlinear response to magnetic fields, (2)
monopolelike high gradient (104 T=m) fields produced by
magnetic wires imprinted on a platform, and its delicate
combination with (3) weak external fields of only tens to a
hundred Oersted that tune the trap. These ingredients
enable the bead dynamics to be easily varied between
tightly confined and delocalized spatial excursions. As
demonstrated by the quantitative understanding of the
stochastic dynamics and the ability to manipulate a
DNA-tethered bead, our experiments open many possibil-
ities for basic and applied research in both nanoscience and
molecular biology.
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