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Effect of Internal Friction on Biofilament Dynamics
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We consider biofilaments— flexible multimolecule structures common in cell biology —and show how
“internal” friction associated with either conformational fluctuations or with fluid flow through narrow
pores inside the filaments can dominate the external hydrodynamic friction usually considered to be the
main energy dissipation process. The signature of this is wave-number –independent relaxation time of
bending fluctuations. Preliminary experimental data for bending fluctuations of single folded (mitotic)
chromosomes display these dynamics.
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Flexible polymers usually have dynamics dominated by
hydrodynamic drag on the monomers [1,2]. Polymer the-
ory is at present being extended to describe biofilaments,
for example, double-standard DNA (dsDNA) [3], actin [4],
intermediate filaments [5], chromosomes [6], composite
fibers such as dsDNA coated with RecA protein [7], or
semiflexible virus particles [8]. These biofilaments are
many atoms thick, and are consequently stiff, with per-
sistence lengths much larger than their widths. Current
theory of biofilament bending dynamics focuses on ther-
mal fluctuation and external hydrodynamic dissipation [9].

This paper examines the effect of additional, “internal”
dissipation, e.g., due to internal conformational rearrange-
ments. Our result is that below a characteristic length
scale, dissipation can dominate over hydrodynamic fric-
tion, making bending mode relaxation times independent
of wave number q. This is distinct from the usual result
t � 1�q4 obtained when external hydrodynamic damping
dominates [9]. We also give preliminary evidence for these
peculiar dynamics using measurements of bending fluctua-
tions of whole mitotic chromosomes. Mitotic chromo-
somes are large (�2 3 2 3 20 mm in size), soft but still
elastic filaments [6] with large internal friction [10].

The energy of a filament of length L slightly bent from
its straight equilibrium configuration is the integral of its
curvature squared. To harmonic order in the transverse
displacements as a function of contour length u�s� this is
[11]
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where the last term is in terms of Fourier modes uq �R
ds eiqsu�s�. For a filament with uniform and circu-

lar cross section, the bending modulus B (dimensions
energy 3 length) is related to the Young modulus Y and
filament cross-section radius r through B � pYr4�4. In
thermal equilibrium,
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where a and b � 1, 2 refer to the two components of
u. We focus on small-amplitude fluctuations occurring
over filament segments L short compared to the persistence
length B�kBT .

The bending dynamics may be described with a
Langevin equation [9]

B
≠4u
≠s4 1 h

≠u
≠t

1 h0r4 ≠

≠t
≠4u
≠s4 � n�s, t� . (3)

The first term of (3) accounts for the elastic restoring force
from the energy of (1). The second term is the usual hydro-
dynamic drag force associated with motion of the filament
cross section through the surrounding fluid of viscosity h

(nonlocal hydrodynamic interactions may be included;
see Ref. [9]). The final n term is random thermal noise
with delta-function time correlations. Dropping the h0

term of (3) gives the usual dynamical theory of filament
fluctuations [9], with a bending mode relaxation time
tq � h�Bq4.

The h0 term in (3) describes the effect of internal
dissipation; h0 itself has dimensions of viscosity. To see
where h0 comes from, consider the free viscous relaxation
of an initially stretched elastic rod, ignoring external
hydrodynamic friction and inertial terms. The exten-
sion strain DL�L � e of the rod relaxes according
to h0≠e�≠t 1 Ye � 0, where h0 (units of viscosity)
describes the internal friction which opposes instanta-
neous relaxation, and where Y is the Young modulus
which drives the relaxation. The relaxation time h0�Y
is determined by balance of elastic and frictional forces.
The rate of energy dissipation in a volume V of the rod is
�≠E�≠t�friction � 2Vh0�≠e�≠t�2.

Bending of this rod with local curvature k generates
stretching which is inhomogeneous across the rod cross
section, with extension towards the outside edge and
compression towards the inside edge. The average of
the strain squared across the rod cross section is just
�e2�cross-section � k2r2�4. This identification is familiar
from the connection between the usual elastic bending
energy of a rod and the integral of its stretching free
energy:
© 2002 The American Physical Society 228103-1
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The same identification allows us to write the rate of energy
dissipation associated with the internal friction h 0:µ
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Thus the rate of energy dissipation is proportional to the
squared rate of change of local curvature. The energy dis-
sipation rate can be used to find the equation of motion (3),
following the Lagrangian formulation of frictional forces
[12] [note that a factor of p�4 from (5) is suppressed in
Eq. (3) and below, for clarity of formulas].

A simple mechanical model can give an alternate justi-
fication of the energy dissipation rate (5), and therefore
of the equation of motion (3). Consider a filament of
cross-sectional radius r, the exterior of which is a flexible
cylindrical envelope filled with a highly viscous liquid
medium of viscosity h0. Running down the center of the
tube is a backbone with static bending modulus B. If the
time rate of change of curvature is dk�dt, then flow of
the liquid from the inside edge to the outside edge must
occur. Near the middle of the rod, the velocity of this ra-
dial flow will be y � r2dk�dt (relative to the backbone),
while at the edges of the rod, the fluid velocity must be
zero. Therefore the velocity gradient in the liquid will be
rdk�dt, and the time rate of energy dissipation per length
of rod will be �h0r4�dk�dt�2 , essentially (5).

The above arguments amount to description of a biofila-
ment as a thin piece of viscoelastic solid. One way to
obtain a large h0 is to have slow structural fluctuations,
e.g., reptation of entangled polymers, or conformational
changes which cross large energy barriers. A second way
to obtain a large h0, which is relevant to filaments with
gel-like internal structure, is the large dissipation associ-
ated with the flow of the surrounding fluid of viscosity h

through narrow pores. For pores of diameter d extending
across the cross section of a filament, the energy dissipa-
tion rate per length is �h�r6�d2� �dk�dt�2. This reduces
to (5), with an effective internal viscosity h0 � hr2�d2.
For a filament of gel whose radius r is large compared to
the diameter of the gel pores, the effective internal viscos-
ity h0 can greatly exceed the viscosity h of the fluid which
surrounds and fills the filament.

After Fourier transformation with respect to contour
length and time, the equation of motion (3) becomes

�Bq4 1 ihv 1 ih0r4q4v�uqv � nqv , (6)

leading to the correlation function
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Choosing delta-function time correlations for n�s, t� means
that �jnqvj

2� is a function of q only. Fourier transforming
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(7) back to equal times must recover (2), which fixes the
noise correlation. The bending mode correlations follow
as
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The relaxation times of the bending modes are therefore

tq �
h 1 h0r4q4

Bq4
. (9)

There are two wave-number regimes, separated by a
characteristic wave number q� � �h�h0�1�4�r. For long
wavelengths, or q ø q�, the decay times are those of
a stiff polymer damped by external hydrodynamic fric-
tion, �juqvj

2� ~ 1��B2q8 1 hv2�, with mode relaxation
times tq � h��Bq4�. In the opposite small-wavelength
limit, q ¿ q�, internal dissipation dominates and the cor-
relator is �juqvj

2� ~ q24�v2 1 B2��h02r8�	21. In this
limit, the relaxation time is wave-number independent,
tq � h0r4�B.

We have preliminary evidence for this wave-number
independence of bending relaxation time, from single
mitotic chromosomes. We remove folded chromosomes
from mitotic (dividing) cells; for our purposes they
are elastic rods of cross-section radius r � 1 mm and
length #20 mm. Previous experiments have established
Y � 500 Pa [6], and h0 � 100 kg��m ? sec� [10]. Since
h0�h � 105, bending relaxation times should be constant
for modes with wavelengths up to 2p�h0�h�1�4r �
100 mm. Since this is longer than the chromosomes
themselves, we expect all bending modes to relax with the
same lifetime �h0�Y � 0.3 sec. The observed fluctua-
tions are mainly due to thermal excitation of the smallest –
wave-number bending mode (q � p�2L [13]), so our
strategy is to study modes of different q using different-
length chromosomes.

Experiments were done using micromanipulated glass
micropipettes and an inverted microscope (Olympus
IX-70, 60X 1.35 NA objective). A single chromosome
was anchored at one end into a pipette of i.d. 2 mm;
time series of images were then recorded [6,10]. Digital
image analysis was used to track motion of the chromo-
some edge with �10 nm precision. Fluctuations were
recorded at positions between chromosome tip and pipette
(Fig. 1a). We report three experiments on chromosomes
with tip-to-pipette lengths of 7, 16.5, and 18.5 mm.

Figure 1b shows time series for amplitude u�s� at a
few points along the chromosome of length L � 18.5 mm.
The amplitudes are very small near the pipette, but grow
rapidly as one moves toward the free end. Circles in Fig. 2
(inset) show that the amplitude squared follows the equi-
librium law �u2�s�� � kBTs3�B. (Note only one of the two
transverse components of u are measured.) For this chro-
mosome, B � 3 3 10222 J ? m.

Figures 1c and 1d show the 7.0 mm chromosome, and
its fluctuation time series near its tip, and near the pipette.
As expected, the tip fluctuation amplitude is smaller than
228103-2
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FIG. 1. (a) Micromanipulated chromosome attached at one end
to a glass micropipette, with other end free. Total length of
chromosome portion outside pipette is 18.5 mm. Bar is 5 mm.
(b) Time series for amplitude u observed at a few points along
the single mitotic chromosome of (a). The time series shown
were measured at the points indicated by arrows in (a). Fluctua-
tion amplitude grows with distance s from the anchored end.
(c) Shorter 7.0 mm chromosome attached to glass pipette. Bar
is 5 mm. (d) Time series for fluctuations of shorter chromosome
of (c) measured at the two points indicated by arrows in (c). Note
that the characteristic time of fluctuations is similar to that of
the long chromosome of (a),(b).
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FIG. 2. Inset: Mean-squared amplitude �u2� for time series
as in Fig. 1, versus length from anchored end, shows a cu-
bic power law, as expected theoretically for thermal fluctuations
of an elastic rod. The proportionality constant determines the
bending modulus B (see text). Diamonds, squares, and circles
show results for 7.0-, 16.4-, and 18.5-mm-long chromosomes.
The bending moduli (lines) were found to be B � 1.5 3 10222,
1.0 3 10222, and 3.0 3 10222 J ? m, respectively. Following
acquisition of bending fluctuation data, Young moduli were di-
rectly measured in stretching experiments [6,10] to be Y � 400,
500, and 1000 Pa, respectively. Main figure: autocorrelation
functions for the free-end fluctuations of three chromosomes are
independent of chromosome length. The 7.0 mm (diamonds)
and 18.5 mm (circles) correlation functions come from the top
time series of Figs. 1b and 1d, respectively. The solid curve in-
dicates the exponential e2t�t with t � 0.7 sec, the approximate
time scale expected in the internal-viscosity-dominated regime
of Eq. (9).

that of Fig. 1b. The diamonds of Fig. 2 (inset) indicate
a bending modulus close to that of the chromosome of
Fig. 1a. Squares of Fig. 2 (inset) show similar data for
a third chromosome of length 16.5 mm. The equilibrium
fluctuations are all consistent with (2), with similar bending
moduli.

The time series of Figs. 1b and 1d have similar fluc-
tuation lifetimes. Plots of autocorrelation functions of
the tip (largest) fluctuations for the three chromosomes
(Fig. 2) show the correlation time to be nearly length in-
dependent. If external hydrodynamic damping were the
only dissipation mechanism [i.e., if h0 � 0 in (9)], the
correlation time for the fluctuations of Fig. 1d should be
�7.0�18.5�4 � 0.02 of that of Fig. 1b. Instead, the fluctua-
tion lifetime is nearly independent of chromosome length,
and therefore of bending mode wave number as expected
from (9) for the h0-dominant case.

Further exploration of these effects might be best done
using man-made soft filaments of more tailorable struc-
ture and physical properties than whole chromosomes. Al-
though chromosomes have well-defined elastic properties,
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there is sample-to-sample variation of moduli (see Fig. 2
caption). A more chemically controlled system would al-
low more tightly quantitative study of internal viscosity ef-
fects, which we anticipate should be found in a broad range
of soft filaments. As an example, single actin filaments
(r � 3 nm, B � 7 3 10226 J ? m [4]) are thought to have
internal conformational rearrangement times �1029 sec
[14]. This suggests h0 � Bt0�r4 � 1 kg�m ? sec, i.e.,
h0�h � 1000. Therefore, internal viscosity effects likely
occur for single actin filaments, only at difficult-to-observe
[15] �10 nm length scales. However, thicker actin bun-
dles, or cytoskeletal stress filaments, might show internal
viscosity effects at more easily accessible length and time
scales.

The internal viscosity effects presented here are analo-
gous to internal friction effects discussed for flexible
polymers with a single-bond backbone [16]. For flexible
polymers, relaxation processes proposed as the origin
of internal friction include energy barriers to backbone
conformational change. By contrast, the internal friction
of this paper has its origin in either relatively large-
scale, slow conformational rearrangements of the filament
interior, or in hydrodynamic dissipation associated with
flow through gel pores. Biofilaments with intermedi-
ate ��30 nm� thicknesses should provide experimental
systems for exploration of internal viscosity effects.
These effects may also be relevant to thin shells of soft
materials such as biological membranes “decorated”
with relatively thick layers of proteins or other bio-
polymers [17].
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