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The flexibility of locally melted DNA
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ABSTRACT

Protein-bound duplex DNA is often bent or kinked.
Yet, quantification of intrinsic DNA bending that
might lead to such protein interactions remains
enigmatic. DNA cyclization experiments have indi-
cated that DNA may form sharp bends more easily
than predicted by the established worm-like chain
(WLC) model. One proposed explanation suggests
that local melting of a few base pairs introduces
flexible hinges. We have expanded this model to
incorporate sequence and temperature dependence
of the local melting, and tested it for three
sequences at temperatures from 238C to 428C.
We find that small melted bubbles are significantly
more flexible than double-stranded DNA and
can alter DNA flexibility at physiological tempera-
tures. However, these bubbles are not flexible
enough to explain the recently observed very
sharp bends in DNA.

INTRODUCTION

Beyond the information content of a given DNA mole-
cule, its physical properties as a polymer, such as its
flexibility, are important for its biological function.
The formation of sharp bends is critical to many biological
processes such as gene regulation (1,2), binding of tran-
scription factors (3,4) and DNA packaging (5). An accu-
rate quantitative understanding of the formation of such
bends is important.

The flexibility of a polymer is characterized by its per-
sistence length, the length over which orientations of the
polymer become decorrelated. For DNA on scales longer
than several hundred base pairs this flexibility has been
investigated using many methods, including cyclization
(6–8), direct mechanical measurements of force versus
extension (9,10), and atomic force microscopy (AFM)
(11,12). Data from these experiments all fit the worm-
like chain (WLC) model, which treats DNA as a uniform
rod with a given bending rigidity (13). The numerical
values of the persistence length recovered in these experi-
ments are in the range of 40 to 55 nm.

Recent studies suggest that the WLC may not accu-
rately describe sharp bends in DNA (14–18). For example,
cyclization experiments for the biologically important
regime of sequence lengths below 200 bp indicate that
sharp bends occur significantly more frequently than pre-
dicted by the WLC model (14,15). While the results of
these studies were recently challenged (8), the large
sequence dependence in the flexibility reported remains
unchallenged. Furthermore, fluorescence resonance elec-
tron transfer (FRET) measurements (16,17) and AFM
studies (18) also indicate that on short length scales
DNA is more flexible than predicted by the WLC
model. Together, these studies suggest that a modification
of the WLC model appears necessary to explain sequence-
dependent sharp bends in DNA.
One explanation of the increased flexibility of double-

stranded DNA (dsDNA) on short length scales is that
DNA may transition to kinked structures, which maintain
base pairing (19,20). This notion is supported by recent
investigations of DNA minicircles (21) and with AFM
measurements, which show that the DNA bending
energy is not harmonic for all deflections (18,22). An alter-
native but not mutually exclusive model for the measured
flexibility of short DNA molecules is the formation of
melted bubbles in DNA, where a number of contiguous
nucleotides are unpaired. These bubbles may form spon-
taneously as thermal excitations. Indeed, Yan and Marko
(23,24) suggest that cyclization of short DNA sequences
may be explained if small bubbles are significantly more
flexible than dsDNA, since for short molecules the gain in
bending energy due to a flexible hinge can outweigh the
loss in free energy of breaking the DNA base pairing. In
order to judge the relevance of this mechanism for the
anomalous flexibility of short DNA molecules, the gain
in bending energy and the loss of base pairing free
energy must be quantified. The latter has been measured
experimentally in a temperature- and sequence-dependent
manner (1,25,26). Thus, to accurately predict the flexibility
of the molecule with this model, measurements of the
effective flexibility of melted bubbles are required.
Here, we report measurement of the flexibility of small

melted bubbles. We perform cyclization experiments for
three different sequences at temperatures from 238C to
428C, and then fit the bubble flexibilities needed such
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that a sequence-dependent Yan–Marko model makes pre-
dictions that agree with our cyclization data. We find that
small bubbles have modest persistence lengths, of 8 and
4 nm for 3- and 4-bp bubbles, respectively. We report per-
sistence lengths at a reference temperature of 294 K. The
persistence length decreases with temperature, so we must
scale its value when comparing with experiments at differ-
ent temperatures (Supplementary Data). This is consistent
with the expectation that small bubbles should be signifi-
cantly more flexible than dsDNA (16,23) and is also
consistent with measurements on DNA containing mis-
matches of similar length (16,27,28). Our results imply
that melted bubbles are important to DNA flexibility,
but that other effects such as kinking (19,20) are also
needed to explain the very sharp bends observed in some
AFM experiments (18) and in DNA minicircles (21).

MATERIALS AND METHODS

We develop a model that predicts the impact of melted
bubbles on the overall flexibility of dsDNA. We then
make temperature-dependent cyclization measurements
on a 200-bp fragment of DNA from bacteriophage �,
which has previously been studied at room temperature
(7). This allows us to make a rough estimate of the flex-
ibilities for small melted bubbles, which we use to design a
pair of DNA fragments with nearly identical sequences
which our model predicts should have significantly differ-
ent flexibilities. We then perform temperature-dependent
cyclization measurements (6) for these sequences to test
the predictions of our model.

Model and theory

We describe the flexibility of dsDNA using a WLC model
reduced to discrete units (discretized) following the work
of Yan et al. (24). In this model, the bending free energy of
a discretized polymer of N segments is

EWLC ¼
XN�1

n¼1

A

2b
�2n � kBT: 1

Here A is the persistence length, b is the segment length, �n
is the angle between two adjacent segments of the poly-
mer, kB is Boltzmann’s constant and T is temperature.
We apply this model to dsDNA with a segment length

of 1 nt, or b=0.34 nm. In our calculations, we use
A=Ads between 40 and 55 nm, which is within the
range of dsDNA persistence lengths reported in the liter-
ature (6–9,11,13). We then include the formation of melted
bubbles. These are structures where a stretch of bases
becomes unpaired resulting in a higher flexibility than
base paired dsDNA (23,24). The associated melting free
energy for a bubble containing L open base pairs starting
at base a is ��L ¼

P�þL
i¼� �

st
i þ �

loop
�L , where �st

i is the free
energy cost to break the stacking interaction between base
pairs i and i� 1, and �loop

�L is the entropic contribution that
arises from the formation of a closed loop in a flexible
polymer, called the loop entropy (26) or ring factor (29).
The free energy to break the hydrogen bonding between
base pairs is included in the stacking interaction, such that

if a single base pair i is broken, �st
i þ �

st
iþ1 will give the

total free energy cost of breaking the hydrogen bonds in
base pair i and the stacking interactions between base
pairs from i� 1 to i, and from i to i+1. Sequence-depen-
dent values have been explicitly measured for �st

i (1,25,26),
and �loop

�L for L� 2 (26). The exact values of stacking ener-
gies and loop entropies for DNA used in this study have
not been published, but are available upon request from
David Mathews. The analogous values for RNA along
with a description of how Mathews et al. obtained these
values may be found in (26). For larger values of L, we use
�loop
�L ¼ �

avg
L þ �

d
� þ �

d
�þL, where �

avg
L is the average loop

entropy of a size L bubble, and �d
� is a correction to this

which depends on the last stacking interaction broken at
each edge of the bubble. All needed values of �d

� and �
avg
L

have been measured (26). All these free energies have been
determined in melting experiments and thus include an
entropic contribution from the configurational degrees
of freedom. Since we model the spatial configurations
explicitly, we remove the configurational contributions
from these measured free energy parameters (19,
Supplementary Data). We model bubbles whose flexibility
is isotropic about the helical axis of the DNA. The free
energy for a bubble is

EBubble ¼ ��L þ
X�þL�1

n¼�

AL

2bL
�2n � kBT; 2

where AL is the persistence length for a segment contain-
ing L open base pairs, and bL is the segment length for an
unpaired nucleotide, which we set equal to 0.7 nm, the
segment length of single-stranded DNA (ssDNA). If a dif-
ferent value of bL was used, we would need to adjust our
values for AL proportional to the change in bL to give the
same fit to our data. The total bending free energy E for
a configuration is calculated using Equation (1) for all
closed base pairs and Equation (2) for base pairs inside
melted bubbles.

In order to be cyclized, a DNA molecule must form a
closed loop whose ends meet with a parallel orientation.
In principle, the DNA molecule may explore many states
due to thermal fluctuations most of which do not lead to
closed loops. In order to quantitatively compare with the
cyclization experiments, we calculate the probability of
loop closure, also called the J factor, as the total proba-
bility of all the DNA configurations that lead to a closed
loop with parallel ends. For details of the calculation of
this probability, see the Supplementary Data and (24).

The only free variables in our model are the persistence
lengths of duplex DNA Ads, and of internal bubbles AL.
We restrict the persistence length of duplex DNA to the
reported values of 40–55 nm (6–9,11,13). We fit the J
factor at 238C by varying the duplex DNA persistence
length. Variations in the J factor at this temperature are
likely due to sequence-dependent intrinsic bend and twist
(20,30,31). Once the duplex persistence length is deter-
mined for the DNA sequence, we compare the predictions
of our model with experimentally measured J factors, and
vary AL to simultaneously give the best agreement at 30,
37 and 428C. While we must use different Ads for the
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different sequences, we fit all three sequences at all tem-
peratures using a single set of AL.

Cyclization experiments

We begin by measuring a 200-bp � DNA sequence that
has already been well studied (7,14). The 200-bp �
sequence is polymerase chain reaction (PCR) amplified
from � DNA, and then inserted into the pDrive plasmid
(Qiagen). In addition, we study two synthetic 116-bp
sequences, shown in Figure 1, which we design to have
significantly different J factors using our model. The
116-bp sequences are synthesized by PCR amplification
of custom DNA oligonucleotides (Operon). They are
then digested with HindIII restriction endonuclease
(20U/ml; NEB) and inserted into the HindIII site of the
pUC19 plasmid. All plasmid sequences are verified using a
3730 DNA Analyzer (Applied Biosystems).

In all cases, plasmids are replicated in DH5a
Escherichia coli and harvested with a QIAprep Spin
Miniprep kit (Qiagen). Custom oligonucleotides contain-
ing Amino Modifier C6 dT (Operon) are labeled at the
modified residues with Cy5 fluorophores (Amersham)
and purified using a C18 reverse phase high performance
liquid chromatography (HPLC) column (Vidac). These
oligonucleotides are then used to PCR amplify inserted
sequences from plasmids, resulting in one Cy5 label per
DNA molecule. Labeling DNA with Cy5 via an amino-
modifier C6 dT is unlikely to impact the structure of the
DNA because it is attached to the carbon 5 of a thymine
base with a long hydrocarbon linker. To confirm this, we
verify that our measurements of the 200-bp � sequence
labeled with Cy5 give the same result as those in (7),
which were obtained with radiolabeled DNA. The labeled
DNA is digested with HindIII leaving AGCT overlapping
ends, and then purified using a Gen-Pak Fax ion exchange
HPLC column (Waters). We ligate with an excess of ligase
to verify that ligatability of the digested ends is >95%.

Cyclization experiments are performed using T4 DNA
ligase (400U/ml; NEB) in its standard buffer, with 0.1mg/
ml bovine serum albumin (BSA) (10mg/ml; NEB) added.
Cy5 labeled, HindIII-digested DNA is added at a concen-
tration of 0.33 nM for 116-bp sequences and 10 nM for
the 200-bp sequence. T4 ligase is added in concentrations
of 25–100U/ml, over a range of temperatures from 238C
to 428C. Ligation is found to be linear for ligase

concentrations <100U/ml at 238C, in agreement with pre-
vious studies (8). Figure 2 shows that we also find that
ligation is linear for ligase concentrations up to 400U/ml
at 378C. Ligase activity is quenched by increasing the ethy-
lenediaminetetraacetic acid (EDTA) concentration to
0.05M and samples are digested with proteinase K
(Invitrogen) for 20 min at 658C to inactivate ligase. We
repeat experiments at several T4 ligase concentrations to
ensure reproducibility. For the 116-bp sequences samples
are concentrated by precipitation with linear polyacryla-
mide (32). Samples are visualized on 6% polyacrylamide
gels. The gels are then imaged using a Typhoon Trio
imager (GE Healthcare) set to detect the Cy5-labeled
DNA in order to determine the concentration of the dif-
ferent ligation products.
The J factor is calculated from cyclization experiments

using (6):

J ¼ 2M0 lim
t!0

CðtÞ=DðtÞ; 3

Figure 2. Rate of ligation versus concentration of T4 ligase at 378C.
The open circles show data from the 116o sequence, and the closed
diamonds show data from the 116cl sequence. (a) The rate of formation
of circular monomer increases linearly for all concentrations of ligase.
(b) At high ligase concentration, the rate of dimer formation no longer
increases linearly with ligase concentration. We find that ligation
is linear up to 400U/ml of ligase at 378C, and therefore use �100U/
ml for our experiments at this temperature.

Figure 1. Synthetic 116-bp DNA sequences. The sequences are identical
except for 8 nucleotides, which are highlighted with bold text and
underlined. Both sequences have Cy5 fluorophores attached to thymine
residues where shown.

Nucleic Acids Research, 2009 3



where M0 is the initial concentration of the linear mono-
mer of our DNA molecule, C(t) is the concentration of
cyclized monomer, which is one molecule ligated to itself
forming a closed loop and D(t) is the combined concen-
tration of linear dimers and dimer circles, which may form
directly from linear dimers. Since the only difference
between the reactions that generate circular monomer
and linear dimer is that for the former case, the DNA
must bend into a closed loop while in the latter case
it does not, the J factor gives a direct measure of
DNA flexibility. Figure 3 shows an example of how the
J factor is calculated from our experiments.

RESULTS

The results of cyclization experiments plotted alongside
our sequence-dependent Yan–Marko model predictions
for the three DNA molecules are shown in Figure 4.
Also shown is the result of Vologodskaia and
Vologodskii (7) for the 200 bp � sequence, which quanti-
tatively agrees with our measurements at 238C. We
adjusted the dsDNA persistence lengths of the 200 bp �,
116cl and 116o molecules to 51, 44 and 48 nm, respec-
tively, to fit the measured J factors at 238C. These persis-
tence length values are within the range reported in the
literature (6–9,11,13). At 238C, the excitations of melted
base pairs are so rare that they do not contribute signifi-
cantly to the J factor (Figure 4). These variations in J
factors are likely to be due to other effects such as
sequence-dependent permanent bend, twist and anisotro-
pic bending and twisting fluctuations (19,20,30,31,33). We
also note that TA stacks (a T followed by an A in the
DNA sequence) periodic with the helical repeat have
been suggested to promote cyclization (14,15), and that
the 116o sequence contains eight TA stacks not found in
the 116cl sequence. We therefore placed these TA stacks
such that no pair is separated by an integer number of
helical repeats to minimize any contribution to cyclization
from this effect. It is possible that if this effect is due to
permanent bendedness of TA stacks, such out of phase
bends could be partially responsible for the 116o sequence
having a smaller J factor than the 116cl sequence at 238C.

The measurements of Du et al. (8) show that 116-bp
sequences should have nearly an integer number of helical
repeats, and therefore be relaxed with respect to twist when
they are cyclized. However, the difference in J factor
between 116o and 116cl at 238C suggests that 116o might
have a different helical repeat, and therefore might not be
relaxed when cyclized. This would make interpretation of
our results more difficult as we would have to consider the
impact of twist on the J factor. Therefore, we measure the
cyclization of a 116o sequence truncated to 114 bp and one
extended to 118 bp. We find little variation of the J factor
with length, indicating that the 116o sequence can be no
more than 2 bp from an integer helical repeat. Since the
integer helical repeat corresponds to a maximum in the
twist dependence of the J factor, in the vicinity of such a
maximum twist effects on the J factor are minimal and we
are thus justified to neglect the effects of twist in our ana-
lysis (Supplementary Data).

While the J factors for 200 bp � and 116cl may be fit at
all temperatures by the WLC model, as indicated by the
dashed lines in Figure 4, the 116o molecule cannot. It has a
5-fold increase in the J factor as compared with the WLC
model at 378C. This increase in J factor appears too large
to be explained by known temperature-dependent struc-
tural changes in DNA, such as changes in the helical
repeat (34). Since 116o forms melted bubbles more readily
than the other sequences, this suggests that bubbles may
impact the flexibility of short dsDNA molecules at 378C.

Bubble flexibility

The effect of local melting on DNA flexibility depends
on the frequency with which local melting occurs, which

Figure 3. Example gel showing a ligation time course for the 116o
sequence at a concentration of 0.33 nM ligated at 378C with 50U/ml
T4 ligase. (a) Gel image showing both linearly and circularly ligated
products. The bands in the gel are (from bottom to top) linear mono-
mer (LM), linear dimer (LD), circular monomer (CM), linear trimer
(LT), circular dimer (CD) and circular trimer (CT). The leftmost lane
(labeled L) shows ligation with excess ligase, where almost all DNA is
converted to circular products showing that it is at least 95% ligatable.
The remaining lanes show a ligation time course, and are labeled with
the reaction time in minutes. (b) A plot of the ratio 2M0C(t)/D(t)
created from the gel shown in (a). The intercept of this plot at t=0
gives the J factor measured in this experiment. The LM band shows
some sample impurity, which we measured to be <5%.
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we calculate based on known parameters, and on the
(unknown) flexibility of those melted regions. Thus, by
using our sequence-dependent Yan–Marko model to
simultaneously fit our J factor measurements for all
three DNA molecules with a single set of persistence
lengths, we can constrain the range of persistence lengths
for different size bubbles. Clearly, the bubbles cannot be
more stiff than dsDNA and cannot be less stiff than two
parallel ssDNA molecules, i.e. 2 nm (35). We also assume
that the persistence length cannot increase as the bubble
size increases. Furthermore, we find that we need only
consider bubbles containing �4 bp, as larger bubbles
occur so infrequently due to their large free energy cost
that they cannot affect our model predictions.

We will now describe a series of fits where we constrain
a subset of the bubble persistence lengths to be equal, and
set the remaining bubble persistence lengths to a fixed
extreme value (either equal to the persistence length of
dsDNA or ssDNA). This leaves us with one adjustable
parameter, which we manually vary to give the best over-
all fit to our data. We first fit the temperature dependence
of all three DNA molecules with a constant persistence
length for all melted bubbles. The observations provide
a fit value of 13 nm as a ‘lower limit’ for the persistence
length of 1-bp bubbles. To determine the ‘maximum’ per-
sistence length for 1-bp bubbles, we determine how stiff we
can make the 1-bp bubbles by reducing the persistence
length of �2-bp bubbles. We find that 1-bp bubbles can
have persistence length equal to dsDNA if �2-bp bubbles
have a persistence length of 7 nm. This provides an ‘upper
limit’ of dsDNA persistence length for 1-bp bubbles and a
‘lower limit’ for 2-bp bubbles of 7 nm. We then fit the data
where 1- and 2-bp bubbles are as stiff as dsDNA and find
that 3- and 4-bp bubbles must have a persistence length of
6 nm. This implies that 2-bp bubbles have a ‘maximum’
persistence length equal to that of dsDNA and that 3-bp
bubbles have a ‘minimum’ persistence length of 6 nm. We
finally attempt to fit the cyclization data assuming 1-, 2-
and 3-bp bubbles are as stiff as dsDNA. However, we find
no fit is possible even with a persistence length for 4-bp
bubbles equal to that of two parallel ssDNA molecules,
2 nm, unless we also include 3-bp bubbles with a persis-
tence length of at most 11 nm.

The ranges of persistence lengths for different bubble
sizes are summarized in Table 1. Plots of all fits compared
with our experimental measurements are shown in the
Supplementary Data. We view Fits 1–4 as unlikely because
we expect a smooth decrease in persistence length as the
bubble size increases, which converges to the single strand
persistence length limit at 4–5 bp. To obtain a more realis-
tic fit we first assume that 3-bp bubbles have a persistence
length of 8 nm, which is that measured for 3-bp mismatches
(28). We then arbitrarily choose a geometric scaling to pro-
vide a simple, smooth dependence. A scale factor of 2
results in the parameters shown in Table 1, Fit 5, which
give a good fit to our data as shown in Figure 4. While
there is a very large possible range of persistence lengths
for 1 and 2 bp bubbles which fit our data, we view the
values given by Fit 5 as the most physically reasonable
approximate values for all persistence lengths.
Melted bubbles >4bp do not occur often enough to

contribute to the cyclization of DNA, but we may still
infer their flexibility indirectly from our experiments. We
find that 4-bp bubbles display persistence length not much
higher than that of two ssDNA molecules. Bubbles >4bp
can neither display persistence length larger than the per-
sistence length of 4-bp bubbles nor be less stiff than two
ssDNA molecules. Therefore, we conclude that bubbles

Figure 4. Measured J factors as a function of temperature. In all plots, the predictions of the WLC are shown by the dashed line, and the predictions
of the sequence-dependent Yan–Marko model for Fit 5 are shown by the solid line. Fits 1–4 are nearly indistinguishable from Fit 5, and are shown
as Supplementary Data. (a) A 200-bp fragment of � DNA, with our experimental data shown by the open triangles and data from (7) shown by the
closed triangle. (b) The 116cl sequence (open diamonds) is a 116-bp sequence designed to minimize the formation of local bubbles, while (c) the 116o
sequence (open circles) is designed to readily form local bubbles in several locations.

Table 1. Persistence lengths used to fit our data, given in nanometers

at a reference temperature of 294K

Bubble Fit Fit Fit Fit Fit Range
size 1 2 3 4 5

1 bp 13 DS DS DS 32 13 to DS
2 bp 13 7 DS DS 16 7 to DS
3 bp 13 7 6 11 8 6–13
4 bp 13 7 6 2 4 2–13

An entry of ‘DS’ indicates a persistence length equal to that of dsDNA,
which is 44, 48 and 51 nm for 116cl, 116o and the 200 bp � fragment,
respectively. The five ‘Fit’ columns show values used in different fits to
our data. The column labeled ‘Range’ summarizes the minimum and
maximum persistence lengths that may be used to fit our data for each
bubble size, found by inspecting fits 1–4.
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>4bp have essentially the same persistence length as that
of two ssDNA molecules.

DISCUSSION

We provide a model that can accurately predict the impact
of melted bubbles on DNA flexibility. To demonstrate the
viability of this model, we perform cyclization measure-
ments for nearly identical sequences, which our model
predicts should have significantly different J factors. The
results of these experiments are in agreement with the
predictions of our model. The WLC model also correctly
predicts J factors for the 200 bp � and 116cl sequences, but
not the 116o sequence, which we predict should readily
form melted bubbles. Our model simultaneously predicts
the behavior of all three sequences with a single set of
persistence lengths for melted bubbles, indicating that
the formation of melted bubbles may in fact explain the
differences we measure between the 116o and 116cl
sequences.
By comparing our model to experimentally determined

J factors at different temperatures, we constrain the per-
sistence lengths of 3- and 4-bp bubbles to the ranges of
6–13 and 2–13 nm, respectively. We estimate that 1-, 2-, 3-
and 4-bp bubbles have persistence lengths of roughly 32,
16, 8 and 4 nm, respectively. We also find that bubbles
>4bp have a persistence lengths equal to that of two
ssDNA molecules, or �2 nm (35).
Our fit values for the persistence length of 3 bp melted

bubbles are in very good agreement with measurements of
the flexibility of three consecutive mismatches (28). This
implies that mismatches may have similar physical proper-
ties to thermally excited melted bubbles, and that our
values for persistence lengths of melted bubbles may be
good estimates of mismatch flexibilities (36).
The bubble persistence lengths we find also suggest that

the main impact of melted bubbles on DNA bending
comes from those in the 2- to 4-bp range, and especially
3-bp bubbles. Larger bubbles occur too infrequently to
make a significant impact on bending, while the large per-
sistence length of 1-bp bubbles causes them to contribute
very little to overall flexibility. Therefore, a model such as
ours with isotropic bending cannot explain experiments
which measure large flexibilities for 1-bp mismatches
(16,27). This would instead require a model including
kinks or directional bends (19,20).
There is currently a discrepancy between reported mea-

surements of the J factor for DNA molecules significantly
less than the DNA persistence length (�150 bp) (8,14,15).
While our results cannot fully explain these discrepancies,
we can make some conclusions that impact this issue.
First, we measure J factors for our sequences that agree
with Du et al. (8). Therefore, certain 116-bp DNA
sequences have J factors that are similar to those predicted
by the WLC model. Second, we find that the J factor for
our 116o sequence increases by 4-fold between 238C and
308C. Du et al. performed their measurements at 218C,
while Cloutier et al. made theirs at 308C, so it is possible
that the temperature difference could be partially respon-
sible for their different results. Third, we measure a 4-fold

difference in J factors between our nearly identical 116-bp
sequences at 238C, which cannot be explained by our
model and indicates that different sequences could have
very different J factors. Du et al. and Cloutier et al. mea-
sured J factors for different sequences. In fact, some of the
sequences studied by Cloutier et al. were selected to pre-
ferentially wrap into nucleosomes (37). These variations in
the DNA sequences could explain some of the differences
between these studies.

Our results demonstrate that sequence-dependent
dsDNA melting can increase the flexibility of dsDNA
such that the J factor is increased to 5-fold more than
predicted by the WLC model at 378C. We show that
such a large increase in J factor cannot be due to a
decrease in twist rigidity with temperature, reinforcing
our assertion that this effect is due to the formation of
melted bubbles. However, this increase in the J factor is
of the same order of magnitude as differences we observe
between sequences at lower temperatures, where DNA
melting does not contribute to increasing the J factor.
Moreover, we verified that DNA melting alone using the
bubble flexibilities determined in our experiments cannot
explain the sharp bends recently observed in AFM studies
(18) and FRET experiments (16,17) (Note that the FRET
experiments (16,17) were performed under significantly
different salt conditions from cyclization experiments
that make only qualitative but not quantitative compari-
sons between these and our experiments meaningful). We
conclude that an accurate model of DNA flexibility at
physiological temperatures must include both melted bub-
bles and other effects such as sequence-dependent bends
and twists (19,20,30,31,33).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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