
CHAPTER SIX: INTRODUCTION TO FORMAL
LANGUAGES

It is a familiar and basic intuition that language somehow involves string-
ing things together. Examples include stringing phonemes together to form
syllables or (phonologies of) morphemes, stringing morphemes together to
form words, stringing words together to form phrases (including sentences),
and stringing sentences together to form discourses. Indeed, in the early
days of syntactic theory (early to mid 1950s), natural languages were mod-
elled as sets of strings, and the notion of a grammar was identified with a
mathematical device for listing the members of such sets. But what exactly
is a string?

1 Strings

As we saw in Chapter Four, for every natural number n,

n = {m ∈ ω | m < n}

Let us now consider, for some set A and some n ∈ ω, the set An, i.e. the set
of arrows (functions with specified codomains) from n to A. The members
of this set are called the A-strings of length n. In a linguistic application,
we would think of the members of A as linguistic entities of some kind
(phonemes, morphemes, words, etc.) that we would like to be able to string
together, and of a particular A-string of length n > 0, f , as one of the
possible results of stringing n such entities together, namely the one starting
with f(0), then f(1), then f(2), etc. If f(i) = ai for all i < n, then we usually
denote f by the string (in the informal sense) of symbols a0 . . . an−1. (But in
working with strings, it is important to remember that, technically, a string
is not really a bunch of symbols lined up from left to right on a page, but
rather a function whose domain is a natural number.) Also, it’s important
to note that there is exactly one A-string of length 0, denoted by εA (or just
ε when no confusion is possible).1 The set of all A-strings of length greater
than 0 is denoted by A+.

For strings of length 1, a mild notational confusion arises: if f : 1 → A
and f(0) = a, then the notation ‘a’ could refer to either a itself (a member
of A), or to the length-one A-string f . It should be clear from context which

1In Chapter Three, we called this ♦A, but the name εA is more usual when we are
thinking of it as a string.

1



is intended. Note also that an A-string of length one is the same thing as a
nullary operation on A.

The “infinite counterpart” of anA-string is called an infiniteA-sequence;
technically, an infinite A-sequence is a function from ω to A.

The set of all A-strings, i.e. the union of all the sets An, for all n ∈ ω, is
written A∗. Thus A∗ = A+ ∪ {εA}. When the identity of the set A is clear
from context, we usually speak simply of strings, rather than A-strings. It
should be obvious that there is a function from A∗ to ω that maps each string
to its length, and that the relation on strings of having the same length is
an equivalence relation. Of course the sets in the partition induced by that
equivalence relation are just the sets An. If A is a subset of another set B,
then clearly there is an injection η : A∗ → B∗ that maps each A-string to a
B-string just like it except that its codomain is B instead of A.

For each n ∈ ω, there is an obvious bijection from A(n) to An. For n ≥ 2,
the bijection maps each n-tuple 〈a0, . . . , an−1〉 to the string a0 . . . , an−1. For
n = 1, it maps each a ∈ A to the length-one string that maps 0 to a; and for
n = 0, it is the (only) function from 1 to {εA}, i.e. the function that maps
0 to εA.

The binary operation of concatenation on A∗, written _, can be de-
scribed intuitively as follows: if f and g are strings, then f _ g is the string
that “starts with f and ends with g.” More precisely, for each pair of natural
numbers 〈m,n〉, if f and g are strings of length m and n respectively, then
f _ g is the string of length m+ n such that

1. (f _ g)(i) = f(i) for all i < m; and

2. (f _ g)(m+ i) = g(i) for all i < n.

It can be proven inductively (though the details are quite tedious) that for
any strings f , g, and h, the following equalities hold:2

1. (f _ g) _ h = f _ (g _ h)

2. f _ ε = f = ε _ f

Usually concatenation is expressed without the “_”, by mere juxtaposition;
e.g. fg for f _ g. And because concatenation is an associative operation,
we can write simply fgh instead of f(gh) or (fg)h.

2As we will see later, the truth of these equations means that A∗ together with the
nullary operation ε and the binary operation _ is an instance of a kind of algebra called
a monoid; i.e. (1) _ is an associative operation, and (2) ε is a two-sided identity for _.

2



2 Formal Languages

A formal (A-)language is defined to be a subset of A∗. But when it is clear
that we are talking about formal languages rather than natural languages,
we will usually just speak of an A-language, or simply a language if the
identity of A is clear from the context. In the most straightforward applica-
tion of formal languages to linguistics, we mathematically model a natural
language as a set of A-strings, where A is a set each of whose members is (a
representation of ) one of the words of the natural language in question. Of
course this is a very crude model, since it disregards any linguistic structure
a sentence has other than the temporal sequence of the words themselves.
Additionally, once one speaks of a sentence as a string of words, one is im-
mediately faced with the question of what counts as a word, or, to put it
another way, what criterion of identity one is using for words. Is it enough
to be homophonous (i.e. to sound the same), so that meat and meet count
as the same word? Or to be homographic (written the same), so that row
‘linear array’ and row ‘fight’ count as the same word? Or must two words
have the same sound, meaning, and ‘part of speech’ (whatever we think that
is), so that murder counts as two words (one a noun and one a verb)? We
will return to these and related questions in later chapters.

For the time being, we set such issues aside and assume we know what we
mean by a ‘word’. Assuming that, we can begin theorizing about questions
such as the following: How many sentences (qua word strings) does the
language have? Is there a way to list all its members? Is there a way to
decide whether a given word string is a sentence of the language? Can we
construct a plausible model of the process by which people who know the
language recognize that a given string is a sentence of the language? Can the
processing model somehow be extended to a model of how language users
interpret utterances in context?

In order to address such questions, we need some techniques for defining
formal languages. Since natural languages uncontroversially have an infini-
tude of sentences (how do you know?), it will not do to just make a list of
A-strings. In due course we’ll consider various kinds of formal grammars—
mathematical systems for specifying formal languages—but we already have
a powerful tool for doing just that, namely the Recursion Theorem (RT).
One important way RT is used to specify an A-language L is roughly as
follows: we start with (1) a set L0 of A-strings which we know to be in the
A-language we wish to define, and (2) a general method for adding more
strings to any arbitrary set of strings, i.e. a function F from A-languages to
A-languages. We can think of L0 as the “dictionary” of the language we are

3



trying to define and F as its “rules”. We then define L as the union of the
infinite sequence of languages L0, . . . , Ln, . . . where for each k ∈ ω, Lk+1 is
the result of appying F to Lk.

To make this precise, it will help to introduce a little notation. First,
suppose B is a set, n ∈ ω, and f : n→ B (in our applications, B will usually
be ℘(A∗).) Suppose also that for each i < n, f(i) = xi. Then

⋃
ran(f) is

written
⋃

i<n xi. If f is an infinite sequence in B, i.e. a function from ω
to B, and f(n) = xn for all n ∈ ω, then

⋃
ran(f) is written

⋃
n∈ω xn. For

example, it’s not hard to see that
⋃

n∈ω A
n = A∗.

We now give a simple example of a recursive definition for a language.
Intuitively, a mirror image string in A is one whose second half is the reverse
of its first half. Informally, we define the language Mir(A) as follows:

1. ε ∈ Mir(A);

2. If x ∈ Mir(A) and a ∈ A, then axa ∈ Mir(A);

3. Nothing else is in Mir(A).

Formally, this definition is justified by the RT as follows (here X, x, and
F are as in the statement of RT in Chapter Four) we take X to be ℘(A∗),
x to be {ε}, and F : ℘(A∗) → ℘(A∗) to be the function such that for any
A-language S,

F (S) = {y ∈ A∗ | ∃a∃x[a ∈ A ∧ x ∈ S ∧ y = axa]}

.
RT then guarantees the existence of a function h : ω → ℘(A∗) such that
h(0) = {ε} and for every n ∈ ω, h(suc(n)) = F (h(n)). Finally, we define
Mir(A) to be

⋃
n∈ω h(n). Intuitively, h(n) is the set of all mirror image

strings of length 2n.

3 Operations on Languages

Let A be a set, so that A∗ is the set of A-strings, ℘(A∗) is the set of A-
languages, and ℘(℘(A∗)) is the set whose members are sets of A-languages.

We introduce the following notations for certain particularly simple A-
languages:

a. For any a ∈ A, a is the singleton A-language whose only member is the
string of length one a (remember this is the function from 1 to A that
maps 0 to a).

4



b. ε is the singleton A-language whose only member is the null A-string
(i.e. the unique arrow from 0 to A). An alternative notation for this
language is IA.

c. ∅ as always is just the empty set, but for any A we can also think of this
as the A-language which contains no strings! An alternative notation
for this language is 0A.

Next, we define some operations on ℘(A∗). In these definitions L and
M range over A-languages.

a. The concatenation of L and M , written L •M , is the set of all strings
of the form u _ v where u ∈ L and v ∈M .

b. The right residual of L by M , written L/M , is the set of all strings u
such that u _ v ∈ L for every v ∈M .

c. The left residual of L by M , written M\L, is the set of all strings u
such that v _ u ∈ L for every v ∈M .

d. The Kleene closure of L, written kl(L), has the following informal
recursive definition (formalizing this definition will be an exercise):

i. (base clause) ε ∈ kl(L);
ii. (recursion clause) if u ∈ L and v ∈ kl(L), then uv ∈ kl(L); and
iii. nothing else is in kl(L).

To put it even less formally but more intuitively: the Kleene closure
of L is the language whose members are those strings that result from
concatenating together zero or more strings drawn from L.

e. The positive Kleene closure of L, written kl+(L), has the following
informal recursive definition:

i. (base clause) If u ∈ L, then u ∈ kl+(L);
ii. (recursion clause) if u ∈ L and v ∈ kl+(L), then uv ∈ kl+(L); and
iii. nothing else is in kl+(L).

Intuitively: the positive Kleene closure of L is the language whose mem-
bers are those strings that result from concatenating together one or
more strings drawn from L.

4 Regular Languages

Linguists are often concerned not just with languages, but with sets of lan-
guages, e.g. the set of finite languages, the set of decidable languages (lan-

5



guages for which an algorithm exists that tells for any given string whether
it is in the language), the set of recursively enumerable languages (languages
for which an algorithm exists for listing all its strings while not listing any
strings not in the language), etc. In computational linguistics applications,
one of the most important sets of languages is (for a fixed alphabet A) the
set Reg(A) of regular A-languages. As with many other important sets of
languages, there are several different ways to define this set, all of which give
the same result. For our purposes, the simplest way is a recursive definition.
The informal version runs as follows:

a. For each a ∈ A, a ∈ Reg(A);

b. 0A ∈ Reg(A);

c. IA ∈ Reg(A);

d. for each L ∈ Reg(A), kl(L) ∈ Reg(A);

e. for each L,M ∈ Reg(A), L ∪M ∈ Reg(A);

f. for each L,M ∈ Reg(A), L •M ∈ Reg(A); and

g. nothing else is in Reg(A).

Note that in this definition, the first three clauses are base clauses and
the next three are recursion clauses. The formalization of this definition
using RT is left as an exercise. (Hint: remember that we are defining not a
language, but rather a set of languages, and therefore the choice of X (as in
the statement of RT in Chapter Four) is not ℘(A∗) but rather ℘(℘(A∗)).

5 Context-Free Grammars

Context-free grammars (CFGs) are a particular way of defining languages
recursively that is very widely used in syntactic theory; in one form or an-
other, CFGs play a central role in a wide range of syntactic frameworks (here
‘framework’ means, roughly, a research paradigm or community), including,
to name just a few, all forms of transformational grammar (TG); many kinds
of categorial grammar (CG); lexical-functional grammar (LFG); generalized
phrase structure grammar (GPSG); and head-driven phrase structure gram-
mar (HPSG). In due course it will emerge that CFGs are a rather blunt
instrument for modelling natural languages, but they are a good point of
departure in the sense that they can be elaborated, refined, and adapted in
many ways (some of which we will examine closely) that make them more
suitable for this task.

6



The basic idea behind CFGs is to simultaneuously recursively define a
finite set of different languages, each of which consitutes a set of strings that
have the same “distribution” or “privileges of occurrence” or “combinatory
potential” in the whole language being defined, which is the union of that
set of languages. The languages in that family are called the syntactic
categories of the whole language.

Getting technical, a CFG consists of four things: (1) a finite set T whose
members are called terminals; (2) a finite set N whose members are called
nonterminals; (3) a finite set D of ordered pairs called lexical entries,
each of which has a nonterminal as its left component and a terminal as
its right component3; and (4) a finite set P of ordered pairs called phrase
structure rules (or simply PSRs), each of which has a nonterminal as its
left component and a non-null string of nonterminals as its right component4.

Intuitively, the terminals are the words (or word phonologies, or word
orthographies – see above) of the language under investigation. The non-
terminals are names of the syntactic categories. The lexical entries make
up the dictionary (or lexicon) of the language. And the PSRs provide a
mechanism for telling which strings (other than length-one strings of words)
are in the language and what syntactic categories they belong to. Once all
this is made more precise, the CFG will specify, for each nonterminal A, a
T -language CA, and the language defined by the CFG will be the union over
all A ∈ N of the CA.

We’ll make all this precise in two stages, first using an informal recursive
definition (the usual kind), and then a more informal or ‘official’ definition
employing the Recursion Theorem (RT).

First, the informal version. As with all recursive definitions, a CFG has
a base part and a recursion part. The base part makes use of the lexicon D
and the recursion part uses the set P of PSRs. Starting with the lexicon,
remember that formally a lexical entry is an ordered pair 〈A, t〉 ∈ D ⊆ N×T ;
but formal language theorists usually write entries in the form

A→ t

to express that 〈A, t〉 ∈ D. In the informal recursive definition, the signifi-
cance of a lexical entry expressed as follows:

3formal language theorists usually allow any T -string as the right component of a lexical
entry, but we will not need this generality for our applications.

4Formal language theorists usually allow any (N ∪ T )-string containing at least one
nonterminal as the right component of a PSR, but again this generality goes beyond the
needs of our linguistic applications.

7



If A→ t, then t ∈ CA.

That is: for any terminal a which the dictionary pairs with the nonterminal
A, the string a of length one will be in the category which that nonterminal
names.

Note that it is conventional to abbreviate sets of lexical entries with the
same left-hand side using curly brackets on the right-hand side, e.g.

A→ {t1, t2}

abbreviates

A→ t1

A→ t2

As mentioned above, the recursive part of the (informal) recursive def-
inition draws on the set P of PSRs. Technically, a PSR is an ordered pair
〈A,A0 . . . An−1〉 ∈ P ⊆ N × N+, but formal language theorists usually
write form

A→ A0 . . . An−1

to express that 〈A,A0 . . . An−1〉 ∈ P . In the informal recursive definition,
the significance of a PSR is expressed this way:

If A→ A0 . . . An−1 and for each i < n, si ∈ CAi , then s0 . . . sn−1 ∈ CA.

That is: if, for each nonterminal on the right-hand-side of some rule, we
have a string belonging to the category named by that nonterminal, then
the result of concatenating together all those strings (in the same order in
which the corresponding nonterminals appear in the rule) is a member of
the category named by the nonterminal on the left-hand side of the rule.

As with lexical entries, sets of rules with the same left-hand side can be
abbreviated using curly brackets on the right-hand side.

Before going on to the formal, RT-based formulation of CFGs, we illus-
trate the informal version with a ‘toy’ (i.e. ridiculously simplified) linguistic
example.

8



T = {Fido,Felix,Mary, barked, bit, gave, believed, the, cat, dog, yesterday}

N = {S,NP,VP,TV,DTV,SV,Det,N}

D consist of the following lexical entries:

NP→ {Fido,Felix,Mary}
VP→ barked

TV→ bit

DTV→ gave

SV→ believed

Det→ the

N→ {cat, dog}
Adv→ yesterday

P consists of the following PSRs:

S→ NP VP

VP→ {TV NP,DTV NP NP,SV S,VP Adv}
NP→ Det N

In this grammar, the nonterminals are names for the syntactic categories of
noun phrases, verb phrases, transitive verbs, sentential-complement verbs,
ditransitive verbs, determiners, and common noun phrases.5 The lexical
entries tell us, for example, that Felix (the length-one word string, not the
word itself) is a member of the syntactic category CNP, and the PSRs tell us,
for example, that the string that results from concatenating two strings, one
belonging to the syntactic category CNP (e.g. Felix) and the other belonging
to the syntactic category CVP (e.g. barked), in that order (in this case, the
length-two string Felix barked), belongs to the syntactic category CS.

Finally, we show how to formalize the simultaneous recursive definition
of the syntactic categories associated with a CFG, using the RT. As always
when applying the RT, the key is making the right choice for the three
pieces of data X, x, and F . Since we are defining not a language but rather
a function from nonterminals to languages, the right choice for X is not

5The category names are a bit confusing, since the categories of noun phrases, verb
phrases, and common noun phrases are allowed to contain length-one strings (intuitively,
words).

9



℘(T ∗) but rather ℘(T ∗)N ; x will be a member of this set, and F will be a
function from this set to itself.

So what is x? Intuitively, it should tell us, for each nonterminal A,
which strings are in the syntactic category CA by virtue of the lexicon alone,
i.e. without appealing to the recursive part of the defnition (the PSRs). That
is, x is the function that maps each nonterminal A to the set of strings t (all
of which will have length one) such that A→ t is one of the lexical entries.

What about F? What should be the result of applying F to an arbitrary
function L : N → ℘(T ∗)? Well, for each A ∈ N , we will want F (L)(A) to
contain all the strings that were in L(A), together with any strings that
can be obtained by applying a rule of the form A → A0 . . . An−1 to strings
s0, . . . , sn−1, where, for each i < n, si belongs to the language that L as-
signed to Ai. Another way to say this is that F maps each L to the function
that maps each nonterminal A to the language which is the union of the
following two languages: (1) L(A), and (2) the union, over all rules of the
form A→ A0 . . . An−1, of the languages L(A0) • . . . • L(An−1).

Given these values of X, x, and F , the RT guarantees us a unique func-
tion h from ω to functions from N to ℘(T ∗). Finally, for each nonterminal
A, we define the corresponding syntactic category to be

CA =def

⋃
n∈ω

h(n)(A)

A suggested exercise here is to calculate, for as many values of n as you have
patience for, and for each nonterminal A, the value of h(n+ 1)(A) \h(n)(A)
(that is, the set of strings that are added to CA at the nth recursive step).

10


