
CHAPTER TWO: MATHESE

1 Introduction

Mathematicians (well, English-speaking ones, anyway) talk and write about
things logical and mathematical (including set theory and anything they
construct inside it) in a mixture of ordinary colloquial English and a special
purpose dialect of English, which we will refer to as Mathese. Mathese is
intended to avoid the ambiguity, vagueness, and imprecision of much ordi-
nary colloquial English. It is a good idea to get into the habit of judiciously
using Mathese when writing about formally rigorous linguistic theory for an
audience with a reasonable degree of mathematical sophistication; e.g. when
writing up problem sets for this course. (Alert: it is every bit as important
not to write this way for a general linguistic audience!) Of course, unless
you have an unusually strong mathematical background, it takes some time
to get the hang of Mathese, so we will not require immediate mastery; and
of course it’s also okay to use ordinary English as long as the meaning is
completely clear.

In its most basic form, all Mathese has is a few “logicky” expressions and
some basic predicates for talking about set membership and equality. For-
tunately, it’s permissible to add new predicates and names to the language
as needed, as long as you take care to define them in terms of expressions
that are already in the language, as will be explained below. (Without such
abbreviations, Mathese quickly becomes opaque to the point of sheer incom-
prehensibility.) There are also symbols for abbreviating expressions, which
are mostly used in displayed calculations and inside of set descriptions; the
abbreviations (especially the logicky ones) are usually not used in writing
Mathese prose (which is what you will usually be writing proofs in).1

2 “Logicky” expressions

2.1 Variables

These are upper- or lower-case roman letters (usually italicized in typing),
with or without numerical subscripts, used roughly as pronouns or as names
of arbitrary sets, e.g. x, y, x0, x1, X, Y, etc.

1Later on, we’ll introduce some formal languages, called first-order languages, which
consist entirely of such symbols. By then, you’ll have a good intutitive feeling for what
such symbols mean. If you’ve taken a basic course in predicate logic, you’ll already be
familar with these.

1



2.2 And

Mathese ‘and’ is abbreviated using the conjunction symbol ∧. It is used
mainly for combining sentences, as in:

S1 and S2. (Abbreviated form: S1 ∧ S2)
A sentence formed this way is called a conjunctive sentence. Here S1

is called the first conjunct and S2 is called the second conjunct. A
conjunctive sentence is considered to be true if both conjuncts are true;
otherwise it is false.

2.3 Or

Mathese ‘or’ is abbreviated using the disjunction symbol ∨. Like ‘and’, it
is used mainly for combining sentences, as in:

S1 or S2. (Abbreviated form: S1 ∨ S2)
A sentence formed this way is called a disjunctive sentence. Here S1 is
called the first disjunct and S2 is called the second disjunct. Mathese
or is inclusive disjunction, so that a disjunctive sentence is true if either or
both of the disjuncts are true, and it is false otherwise.

2.4 Implies

Mathese ‘implies’ is abbreviated using one of the two implication symbols
→ or ⊃. A synonym for ‘implies’ is ‘if . . . then . . .’. It too is used for
combining sentences, as in:

S1 implies S2. (Abbreviated forms: S1 → S2 or S1 ⊃ S2)
A sentence formed this way is called a conditional or implicative sentence.
Here S1 is called the antecedent and S2 is called the consequent. Caution:
this does not mean quite exactly the same thing as if S1 then S2 in ordinary
English. One difference is that a conditional Mathese sentence is considered
to be true if the consequent is true, no matter whether the antecedent is
true or false and even if the antecedent and the consequent seem to have
nothing to do with each other, e.g.

If there does not exist a set with no members, then 0 = 0.
is true. Another difference is that a conditional Mathese sentence is consid-
ered to be true if the antecedent is false, no matter whether the consequent
is true or false, e.g.

If 0 6= 0 then 1 6= 1.
is true!

2



2.5 If and only if

Mathese ‘if and only if’, usually written simply as ‘iff’, is abbreviated using
the biimplication symbol ↔. It is used to combine sentences as in:

S1 iff S2. (Abbreviated form: S1 ↔ S2)
A sentence of this form is called a biconditional. S1 iff S2 can be thought
of as shorthand for:

S1 implies S2, and S2 implies S1.
Consequently, a sentence of this form is considered to be true if either (1)
both S1 and S2 are true, or (2) both S1 and S2 are false. Otherwise, it is
false.

2.6 It is not the case that

Mathese ‘it is not the case that’ is abbreviated using one of the two negation
symbols ¬ or ∼. It is placed before a sentence in order to negate it, as in:

It is not the case that S. (Abbreviated forms: ¬S or ∼ S)
A sentence of this form is called a negative sentence. Here S is called the
scope of the negation. Unsurprisingly, a negative sentence is considered to
be true if the scope is false, and false if the scope is true. For any sentence
S, the sentence it is not the case that S is called the negation of S, or,
equivalently, the denial of S.

Note that often, the effect of negation with it is not the case that can be
achieved by ordinary English verb negation, which (simplifying slightly)
involves replacing the finite verb (the one that agrees with the subject) V
with ‘does not V’ if V is not an auxiliary verb (such as has or is), or negating
V with a following not or -n’t if it is an auxiliary. Thus, for example, these
pairs of sentences are equivalent (express the same thing):

It is not the case that 2 belongs to 1.
2 does not belong to 1.
It is not the case that 1 is empty.
1 isn’t empty.

But negation by it is not the case that and verb negation cannot be counted
on to produce equivalent effects if the verb is in the scope of a quantifier
(see following two sections). For example, these are not equivalent:

It is not the case that for every x, x belongs to x.
For every x, x doesn’t belong to x.

3



For the first is clearly true (for example, 0 doesn’t belong to 0), but the truth
of the second cannot be determined on the basis of the assumptions in Chap-
ter 1, and in fact different ways of adding further set-theoretic assumptions
resolve the issue in different ways.

Note that for predicates with an abbreviatory symbol, such as equals (=)
and belongs to (∈), the effect of verb negation is accomplished by a diagonal
slash, e.g. 6= ‘is not equal to’, /∈ ‘is not a member of’.

2.7 For all

Mathese ‘for all’, abbreviated by the universal quantifier symbol ∀, forms
a sentence by combining first with a variable and then with a sentence, as
in:

For all x, S (abbreviated form: ∀xS).
The variable x is said to be bound by the quantifier, and the sentence S is
called the scope of the quantifier. Synonyms of ‘for all’ include ‘for each’,
‘for every’, and ‘for any’. Usually the bound variable also occurs in the
scope; if it doesn’t, then the quantification is said to be vacuous.
A sentence formed in this way is said to be universally quantified, or
simply universal.

As long as we are using Mathese only to talk about set theory, we can
assume that the bound variable in a universal sentence ranges over all sets,
that is, ‘for all x’ is implicitly understood as ‘for all sets x’.

However, often we want to universally quantify not over every set, but
just over the sets that satisfy some condition on x, S1[x]. Then we say:
For every x with S1[x], S2[x].
This is understood to be shorthand for

For every x, S1[x] implies S2[x]. (Abbreviated form: ∀x(S1[x]→ S2[x]))
If such a sentence is true, then we say that S1[x] is a sufficient condition
for S2[x], or, equivalently, that S2[x] is a necessary condition for S1[x].
A special case of this is that a sentence of this format is true if, no matter
what x is, S1[x] is false. Such a sentence is said to be vacuously true. For
example, the sentence

For every x with x 6= x, x = 2.
is (vacuously) true.

If a universal sentence of the form
For every x, S1[x] iff S2[x]

4



(i.e. whose scope is a biconditional) is true, then we say S1[x] is a necessary
and sufficient condition for S2[x].

2.8 There exists . . . such that

Mathese ‘there exists . . . such that’, abbreviated by the existential quan-
tifier symbol ∃, forms a sentence by combining first with a variable and
then with a sentence, as in:

There exists x such that S (abbreviated form: ∃xS).
The variable x is said to be bound by the quantifier, and the sentence S
is called the scope of the quantifier. Synonyms of ‘there exists . . . such
that’ include ‘for some’ and ‘there is a(n) . . . such that’. Usually the bound
variable also occurs in the scope; if it doesn’t, then the quantification is said
to be vacuous.
A sentence formed in this way is said to be existentially quantified, or
simply existential.

As long as we are using Mathese only to talk about set theory, we can
assume that the bound variable in an existential sentence ranges over all
sets, that is, ‘there exists x’ is implicitly understood as ‘there exists a set x’.

However, often we want to existentially quantify not over every set, but
just over the sets that satisfy some condition S1[x]. Then we say:
There exists x with S1[x], such that S2[x].
This is understood to be shorthand for

There exists x such that S1[x] and S2[x].
(Abbreviated form: ∃x(S1[x] ∧ S2[x]))

Note here the use of parentheses for disambiguation. Without the paren-
theses, it would be hard to be sure whether the scope of the quantifier was
the conjunctive sentence or just its first conjunct. This is a common device
in Mathese. Both round and square parentheses can be used, and multiple
sets of parentheses can be used in the same sentence.

If a sentence contains variables which are not bound by any quantifier,
those variables are called free. A sentence is called closed if it has no
free variables, and open otherwise. A sentence whose free variables are
x0, . . . , xn is often called a condition on x0, . . . , xn. The number of free
variables in a condition is called its arity. Thus conditions might be nullary
(no free variables, i.e. a closed sentence), unary (one free variable), binary
(two free variables, ternary (three free variables), etc.

5



2.9 There exists unique . . . such that

In Mathese, ‘there exists unique . . . such that’ (abbreviated form: ∃!x) com-
bines first with a variable, then with a sentence, as in:

There exists unique x such that S. (Abbreviated form: ∃!x S)
This is understood to be shorthand for:
∃x(S[x] ∧ ∀y(S[y]→ y = x))

3 Defining Predicates

At the outset, the only predicates in Mathese are equals (abbreviated =)
or synonyms such as is the same as or is identical to, and in (abbreviated
∈) or synonyms such as is a member of, belongs to, is an element, or is
contained in. But we can define new predicates in terms of these and other
predicates which have already been defined. The arity of a defined predicate
is the smallest arity condition that could be used to define it. For example,
we define “x is empty” to mean ∀y(y /∈ x), and “x is a singleton” to
mean ∃!y(y ∈ x); these are unary predicates. In “x is a subset of y”
(abbreviation: x ⊆ y), ⊆ is a binary predicate defined by the condition
∀z(z ∈ x→ z ∈ y).

4 Defining Names

If we can prove (i.e. provide a persuasive valid argument based only on
our assumptions about set theory and other things that have already been
proved) that there exists a unique set x such that S[x], where S[x] is some
condition on x, then we permit ourselves to bestow a name on that set. For
example, it is easy to show that there is a unique set x such that x is empty.
(The existence part of the proof is by the Empty Set assumption, and the
uniqueness part of the proof is an application of Extensionality.) In this
case, as we saw in Chapter One, the set in question is named ∅ (read “the
empty set”).

5 Defining Functional Names

Often we can show that for any set y, there exists a unique set x satisfying
some condition S[x, y]. In such cases, we permit ourselves to introduce a
functional name, which is basically a scheme which, for each y, provides

6



a name for the unique set x such that S[x, y]. To make an analogy with real
life: obviously everybody has a mother, so we can use the functional name
y’s mom to refer to the unique individual x such that x is a mother of y,
no matter who y is. Returning to sets, it is easy to prove that for any set y,
there is a unique set x such that y is the only member of x. This justifies
introducing the functional name singleton(y), abbreviated {y}. Likewise, we
introduce the functional name successor(y), abbreviated s(y) which, for each
set y, names the unique set x that satisfies the binary condition x = y∪{y}.

This naming convention extends to names that depend on more than
one variable. Again, to take a real-life example, we might introduce the
functional name x’s seniority over y: for any two individuals x and y
this is defined to be the number of days (rounded off) from x’s birthdate to
y’s birthdate (this is a negative integer if y’s birthdate precedes x’s). The
general principle is that if, for some positive natural number n and some
(n + 1)-ary condition S[x0, . . . xn] we can prove

∀x1 . . . ∀xn∃!x0S[x0, . . . xn]

then we are allowed to make up a functional name name(x1, . . . , xn) which
for each choice of values for the n variables x1, . . . , xn provides a name for
the unique set which satisfies the condition for that choice of values.

7


