
CHAPTER ONE: SETS

1 Introduction

Scientific theories usually do not directly describe the natural phenomena
under investigation, but rather a mathematical idealization of them that
abstracts away from various complicating factors. For example, a theory
about how the earth, the sun, and the moon move under mutual gravitation
might ignore such complications as the sizes of the three bodies, friction
arising from the presence of interstellar dust, the gravitational force exerted
by other planets and stars, or relativistic effects that become significant
only as the velocities of the bodies in question approach the speed of light.
In the mathematical idealization, the time might be represented by a real
number; the mass of each of the three bodies by a positive real number; its
location in space (or more precisely the location of its center of gravity) at
a particular time by three real numbers (the x, y, and z coordinates relative
to a coordinate system); its velocity at a particular time by three more real
numbers; the state of the three-body system at a given time (real number) t
by the 18 real numbers that specify the locations and velocities of the three
bodies at time t; and the evolution of the system over time by 18 functions
that give the value of each of these 18 parameters at each time t. And the
theory itself is a mathematical specification of which evolutions (‘paths’)
through 18-dimensional Euclidean space) are possible. Armed with such a
theory, we can predict, given the state of the system at a given time t0, what
state it will be in at any future time t1.

Linguistic theories make predictions not about celestial bodies, but rather
about natural languages, for example: how their words can sound; how their
words can be combined into phrases; what meanings they can express; which
natural-language arguments are judged valid; or how the meanings of sen-
tences can be related to the meanings of the words they contain. As it turns
out, the kinds of mathematical entities that have proven to be useful for
representing such things (words, phrases, sentences, their meanings, valid
arguments, etc.) are not real numbers or real-valued functions, but rather
discrete (roughly, non-continuous) things such as natural numbers, strings,
trees, algebras, formal languages, and proof systems. In linguistics these
mathematical idealizations are often called representations or models of
the phenomena in question. In this book the first of these terms will be pre-
ferred, to avoid confusion with a different, technical, use of the term “model”
(in the sense of an interpretation of a logical theory) to be introduced in
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later chapters. For example, phrases (roughly speaking, multi-word expres-
sions, including sentences) are often represented as (mathematical) trees;
phonemes (roughly, minimal units of linguistic sound) as (mathematical)
graphs of a certain kind (feature structures); the sequences of sounds that
make up (the phonology of) words as (mathematical) strings of (representa-
tions of) phonemes; and linguistic meanings as (mathematical) functions of
various kinds. (Note that it is typical for technical mathematical terms, such
as tree, string, and function, to have other, nonmathematical meanings!)

In order to have a clear understanding of what these different kinds of
mathematical entities are and why they are able to serve as linguistic repre-
sentations, we will start out with an overview of set theory. Sets are basic
mathematical entities whose existence is taken for granted by most math-
ematicians, and set theory begins with certain assumptions about them.
Set theory is the workspace that most mathematicians work in; but more
importantly for us, it is where the idealized representation of natural phe-
nomena by linguists and other scientists is carried out. That is, sets are
used to construct the represesentations of natural-language phenomena that
linguistic theories talk about. In fact, all the kinds of linguistic representa-
tions mentioned above (trees, graphs, strings, and functions) are themselves
sets.

2 Sets and Membership

We assume that there exist things which we call sets, and that there is a
relationship, called membership, which either does or does not hold of any
two sets. That is, if A is a set and B is a set, then either A is a member of
B (written A ∈ B) or A is not a member of B (written A /∈ B). There are
many ways to say this. The members of a set are also called its elements,
and instead of saying A is a member of B, we often say it belongs to B,
or is in B, or is contained in B. Intuitively, sets can be thought of as
something like collections, where the members are the things collected, or
as invisible baskets, with the members being the things in the baskets. But
set theory will never tell us what sets are; they are basic and cannot be
reduced to, or explained in terms of, more basic things that are not sets.
That is, they are the unanalyzed primitives of set theory.

We will make certain assumptions about how membership works based
on these intuitions, and then try to ascertain what follows from them. These
assumptions themselves, together with the facts that follow from them, con-
stitute set theory. To be slightly more precise, they are a set theory, since
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some assumptions about how sets should work are controversial. In this
chapter, we will make some of the most generally accepted of these assump-
tions explicit and consider some of their consequences. (In due course we
will also consider some of the more controversial assumptions about how
sets work.)

For the time being, we will state our assumptions about sets in English,
and conduct our reasoning about what follows from these assumptions using
intuitively valid English arguments called informal proofs. Later on we
will see that it is possible to formalize the assumptions of set theory with
the help of specialized symbolic systems (formal logics, such as predicate
logic). In that case the formalized counterparts of the assumptions are
called axioms; the additional formulas that follow from them are called
theorems; and the formalized counterparts of the English arguments we
make to justify these theorems are called formal proofs.

In fact, informal (but precise) natural-language reasoning is the norm
amomg mathematicians and natural scientists. Usually they don’t bother
to formalize proofs unless they are studying proofs as mathematical objects
in their own right. Later we will have occasion to do just that, for the
(perhaps surprising) reason that linguistic expressions and their meanings
can themselves be thought of as proofs in certain kinds of logical systems.

In ascertaining what follows from the assumptions we will make about
sets and membership, the reasoning we use will be pretty much the same
kind of reasoning we use when we draw conclusions from assumptions about
ordinary things, e.g. kitchen appliances, furniture, people, etc. (There are,
however, some ways of arguing and ways of expressing arguments that are
typical of mathematical discourse, which we will look at more closely in the
following chapter.) In practice, mathematics consists of more or less ordinary
reasoning about not-so-ordinary things. The upshot, seemingly paradoxical,
is that so-called formal linguistics is mostly done within informal set theory.
The resolution of the apparent paradox is that even informal set theory is
more precise and explicit than linguistics that uses no set theory at all.

Now we’re ready to start introducing our basic assumptions about sets,
and considering some of their consequences.

3 Basic Assumptions about Sets

We are already assuming that there are sets, and that if A and B are sets,
then either A ∈ B or A /∈ B. But to be able to do anything with sets, we
need to make some assumptions about how they work. The assumptions
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we make in this chapter are the ones that are generally considered the most
basic, intuitively plausible, and uncontroversial. Later we will add a few
more (but not many more), including some that not all mathematicians are
entirely comfortable with. We give each assumption a name, to make it easy
to refer to.

Assumption 1 (Extensionality): If A and B have the same members,
then they are the same set (written A = B).

Note that in stating this assumption, we did not bother to mention that A
and B are sets. That is because we’ve already established that we are now
doing (informal) set theory, and in set theory, the only things being talked
about are sets. Note also that we do not have to explicitly assume (though
it is true) that if A and B do not have the same members, then they are
not the same set (written A 6= B). That’s because, if they were the same
set, then everything about them, including what members they have, would
be the same. This reasoning is no different than the kind of reasoning we
would use to conclude (given that A and B are people), that if A and B
do not have the same blood type, then they cannot be the same person: if
they were the same person, everything about them—including their blood
types—would be the same.

If every member of A is a member of B, we say that A is a subset of
B, or, alternatively, that A is included in B), written A ⊆ B. Note that
if A ⊆ B, B might have members that are not in A. On the other hand, if
both A ⊆ B and B ⊆ A, then it follows from Extensionality that A = B. If
A ⊆ B but A 6= B then we say A is a proper subset of B, written A ( B.

Assumption 2 (Empty set): There is a set with no members.

Note that from this assumption together with Extensionality we can con-
clude that the there is only one set with no members. We call this set the
empty set. The empty set is usually denoted by the symbol ‘∅’. But later,
we’ll sometimes write it as ‘0’ (the symbol for the number zero), because ac-
cording to the most usual way of doing arithmetic within set theory (which
we’ll get to in Chapter 4), the number zero and the empty set are the same
thing (in spite of what you may have been taught in other math classes!).

Now so far, we have no basis for concluding that there are any sets other
than the empty set, not even sets with only one member. For example, we
are not even able to make a valid argument that there is a set with ∅ as its
only member. We remedy this situation by adding a few more assumptions,
beginning with the following:

4



Assumption 3 (Pairing): For any sets A and B, there is a set whose only
members are A and B.

Note that, because of Extensionality again, there is only one set whose only
members are A and B, which we write as {A, B}, Of course we could just
as well have called this set {B, A}. More generally, we will notate any
nonempty finite set by listing its members, separated by commas, between
curly brackets, in any order. (In Chapter 5, we’ll get clear about what we
mean when we say a set is ‘finite’, but for now we’ll just rely on intuition).
Notice that nothing rules out the possibility that A and B are the same set,
so it follows from pairing that for any set A there is a set whose only member
is A, namely {A, A}. Of course, once we realize this, then we might as well
just call it {A} rather than {A, A}: repetitions inside the curly brackets
don’t make any difference because for any given set, either A is a member
of it or it isn’t; it doesn’t make any sense to talk about how many times one
set is a member of another.

A set with only one member is called a singleton. A special case of
singleton sets is the set {0} whose only member is 0. This set is also called
1, because according to the usual way of doing arithmetic within set theory,
it is the same as the number one. Going one step further, we can use Pairing
again to form the set {0, 1}, also known as 2. There is a general pattern
here, which we will explain in Chapter 4.

Assumption 4 (Union): For any set A, there is a set whose members are
those sets which are members of (at least) one of the members of A.

Once again, Extensionality ensures the uniqueness of such a set, which is
called the union of A, written

⋃
A. As a special case, if A = {B, C}, then⋃

A is the set each of whose members is in either B or C (or both). This
set is usually written B ∪C. Note that in general this is not the same thing
as {B, C}!

For any set A, the successor of A, written s(A), is the set A ∪ {A}.
That is, s(A) is the set with the same members as A, except that A itself is
also a member of s(A).1 For example, 1 is the successor of 0, and 2 is the
successor of 1.

Assumption 5 (Powerset): For any set A, there is a set whose members
are the subsets of A.

1Nothing we have said rules out the possibility that A ∈ A, in which case A = s(A).
However, the most widely used set theory (called Zermelo-Fraenkel set theory) includes
an assumption (called Foundation) which does rule out this possibility. We will not
assume Foundation in this book.
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Yet again, Extensionality guarantees the uniqueness of such a set. We call
it the powerset of A, written ℘(A). It’s important to realize that ℘(A) is
usually not the same set as A. That’s because usually the subsets of a set
are not the same as the members of the set. For example, 0 is a subset of 0
(in fact, every set is a subset of itself), but obviously 0 is not a member of
0 (since 0 is the empty set).

4 Russell’s Paradox and Separation

Why do we need the powerset assumption? Why don’t we just define ℘(A)
to be the set of all subsets of A? The answer is that the other assumptions
we have made so far do not seem to enable us to conclude that there actually
is such a set. More generally, whenever one says “the set of all sets such
that blah-blah-blah”, there is no guarantee that the assumptions one has
made about sets enable one to conclude that there actually is a set meeting
that description. That may seem counterintuitive, but, perhaps surprisingly,
there is a knockdown argument that there is no such guarantee, which was
discovered by the philosopher and mathematician Bertrand Russell.2

The argument runs as follows. Consider the description “the set of all
sets which are not members of themselves.” Suppose for a moment there
were such a set, called R. Then would R be member of R? Well, either
it is or it isn’t. In the first case, we see right away that R cannot be a
member of R. And in the second case, we see right away that R must
be a member of R. Either way, we arrive at a contradiction, and so our
temporary assumption that there is a set whose members are the sets which
are not members of themselves must have been false. This argument is called
Russell’s Paradox.

Russell’s Paradox shows that, in general, we cannot assume that, for any
set description, we can take for granted the existence of a set meeting that
description. However, there is a more cautious assumption that proves to be
extremely useful and which so far has not been shown to result in paradox.

Assumption 6 (Separation): If A is a set and P [x] is a condition on x
(where x is a variable that ranges over sets), then there is a set, written
{x ∈ A | P [x]}, whose members are all the x in A that satisfy P [x].

Separation is so-called because, intuitively, we are separating out from A
some members that are special in some way, and collecting them together

2Russell made this argument in a famous letter written in 1902 to Gottlob Frege,
another philosopher and mathematician, whose accomplishments include the invention of
predicate calculus and of modern linguistic semantics.
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into a set. We call Separation an assumption, but to be more precise it is an
assumption schema: for each condition P [x], we get a different separation
assumption. For the moment we remain deliberately vague about what we
mean by “a condition on x”. (We’ll clear this up in due course when we
formalize set theory using predicate logic.) For the moment, the easiest way
to get an idea of what we mean by a condition on x is to look at some
examples.

First, suppose we have two sets A and B. Then by taking P [x] to be the
condition x ∈ B, Separation guarantees the existence of the set consisting of
those members of A which are also in B. This set is called the intersection
of A and B, written A ∩ B. A and B are said to intersect if A ∩ B is
non-empty; otherwise they are said to be disjoint. A set is called pairwise
disjoint if no two distinct members of it intersect.

Second, by taking P [x] to be the condition x /∈ B, Separation guarantees
the existence of the set consisting of those members of A which are not in B.
This set, called the complement of B relative to A, or the set difference
of A and B, is written A \B.

A rather different application of Separation shows that there can be no
set of all sets. For suppose there were; then applying Separation to it using
the condition x /∈ x, we would have the set of all sets which are not members
of themselves. But as we already saw (Russell’s Paradox), there can be no
such set.

5 Ordered Pairs and Cartesian (Co-)Products

Sets do not embody any notion of order: {A, B} = {B, A}. But for lin-
guistic applications, clearly we cannot escape from dealing with order! For
example, we cannot describe the phonology of a word without specifying the
order of the phonemes in it, not can we fully describe a sentence without
specifying the order of its words. One way we might imagine responding
to this need is simply to assume that for any A, B, there is an ordered pair
〈A, B〉. But what properties should we assume that ordered pairs have?
Perhaps surprisingly, it turns out that once we have gotten clear about how
ordered pairs should work, the assumptions we have already made about
sets enable us to conclude that sets with the desired properties already ex-
ist. So we do not need to make any further assumptions in order to have
ordered pairs.

In fact, the crucial property of ordered pairs, from which their usefulness
derives, that they are uniquely determined by their components, in the sense
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that 〈A, B〉 = 〈C, D〉 if and only if A = C and B = D. Any way of defining
the notion of ordered pair that results in their demonstrably having this
property will suffice. The approach we will adopt here is the standard one,
which is to define the ordered pair of A and B, written 〈A, B〉, to be the
set {{A}, {A, B}}. A and B are called, respectively, the first and second
component of 〈A, B〉. Notice that an ordered pair has either one or two
members. In the first case, which arises when A = B, the ordered pair is just
{{A}}, and both components are A. In the second case, the ordered pair
has two members, one with one member and one with two members. In that
case, the first component of the pair is the one that belongs to the set with
one member, and the second component is the member of the two-member
set which is not the member of the one-member set.

Given two sets A and B, it is also useful to have the notion of the
cartesian product of A and B, written A × B, which is supposed to be
the set of all ordered pairs 〈C, D〉 such that C ∈ A and D ∈ B. As it turns
out, we do not have to assume that cartesian products exist, because their
existence follows from Separation. (Showing this is left as an exercise.) A
and B are called the factors of A×B.

Having defined ordered pairs, we can now proceed to define an ordered
triple to be an ordered pair whose first component is an ordered pair:

〈A, B,C〉 =def 〈〈A, B〉, C〉

and correspondingly the threefold cartesian product:

A×B × C =def (A×B)× C

The definitions can be extended to quadruples, quintuples, etc. in the obvi-
ous way. Special cases of cartesian products, called cartesian powers, are
ones where the factors are all the same set A. These are notated with paren-
thesized “exponents” (superscripts), e.g. A(2) = A × A, A(3) = A × A × A,
etc. Additionally, we define A(1) to be A, and we define A(0) to be 1. This
last definition is less mysterious than it appears to be, but we will be in a
better position to explain the motivation for it a little later. (It is actually
closely related to the reason that n0 = 1 in arithmetic, but for some readers,
that may seem equally mysterious.)

Less well known than cartesian product, but also important in some of
our applications, is the notion of the cartesian coproduct, also called the
disjoint union) of A and B, written A + B. This is supposed to be the set
of ordered pairs 〈C, D〉 such that either C = 0 and D ∈ A, or C = 1 and
D ∈ B. As with cartesian products, the existence of cartesian coproducts
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can be demonstrated using Separation A and B are called the cofactors of
A + B.

Intuitively, A + B is the union of two sets, “copies” of A and B re-
spectively, and these copies are disjoint, even if A and B are not. As with
cartesian products, there is a straightforward extension to more than two
cofactors. For the case of identical cofactors (called cartesian copowers),
there does not seem to be a standard notation; here we write A(n), which,
intuitively, is the union of n pairwise disjoint copies of A. So it should not
come as much of a surprise that A(1) is defined to be A and A(0) is defined
to be 0.
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