Context-Free Grammars

Carl Pollard Ohio State University

Linguistics 680 Formal Foundations Tuesday, November 10, 2009

These slides are available at:

http://www.ling.osu.edu/~scott/680

(1) Context-Free Grammars (CFGs)

A CFG is an ordered quadruple $\langle T, N, D, P \rangle$ where

- a. T is a finite set called the **terminals**;
- b. N is a finite set called the **nonterminals**
- c. D is a finite subset of $N \times T$ called the **lexical entries**;
- d. *P* is a finite subset of $N \times N^+$ called the **phrase structure** rules (PSRs).

(2) CFG Notation

- a. ' $A \to t$ ' means $\langle A, t \rangle \in D$.
- b. $A \to A_0 \dots A_{n-1}$ means $\langle A, A_0 \dots A_{n-1} \rangle \in P$.
- c. $A \to \{s_0, \dots, s_{n-1}\}$ abbreviates $A \to s_i \ (i < n)$.

(3) A 'Toy' CFG for English (1/2)

 $T = \{\mathsf{Fido}, \; \mathsf{Felix}, \; \mathsf{Mary}, \; \mathsf{barked}, \; \mathsf{bit}, \; \mathsf{gave}, \; \mathsf{believed}, \; \mathsf{heard}, \; \mathsf{the}, \; \mathsf{cat}, \; \mathsf{dog}, \; \mathsf{yesterday}\}$

$$N = \{S, NP, VP, TV, DTV, SV, Det, N, Adv\}$$

D consist of the following lexical entries:

$$\begin{split} \mathrm{NP} &\to \{\mathsf{Fido}, \ \mathsf{Felix}, \ \mathsf{Mary}\} \\ \mathrm{VP} &\to \mathsf{barked} \\ \mathrm{TV} &\to \mathsf{bit} \\ \mathrm{DTV} &\to \mathsf{gave} \\ \mathrm{SV} &\to \{\mathsf{believed}, \ \mathsf{heard}\} \\ \mathrm{Det} &\to \mathsf{the} \\ \mathrm{N} &\to \{\mathsf{cat}, \ \mathsf{dog}\} \\ \mathrm{Adv} &\to \mathsf{yesterday} \end{split}$$

(4) A 'Toy' CFG for English (2/2)

 ${\cal P}$ consists of the following PSRs:

 $S \rightarrow NP \ VP$ $VP \rightarrow \{TV \ NP, \ DTV \ NP \ NP, \ SV \ S, \ VP \ Adv\}$ $NP \rightarrow Det \ N$

(5) Context-Free Languages (CFLs)

- a. Given a CFG $\langle T, N, D, P \rangle$, we can define a function C from N to (T-)languages (we write C_A for C(A)) as described below.
- b. The C_A are called the **syntactic categories** of the CFG (and so a nointerminal can be thought of as a name of a syntactic category).
- c. A language is called **context-free** if it is a syntactic category of some CFG.

(6) Historical Notes

- Up until the mid 1980's an open research questions was whether NLs (considered as sets of word strings) were context-free languages (CFLs).
- Chomsky maintained they were not, and his invention of transformational grammar (TG) was motivated in large part by the perceived need to go beyond the expressive power of CFGs.
- Gazdar and Pullum (early 1980's) refuted all published arguments that NLs could not be CFLs.
- Together with Klein and Sag, they developed a context-free framework, generalized phrase structure grammar (GPSG), for syntactic theory.
- But in 1985, Shieber published a paper arguing that Swiss German cannot be a CFL.
- Shieber's argument is still generally accepted today.

(7) Defining the Syntactic Categories of a CFG (1/2)

- a. We will recursively define a function $h: \omega \to \wp(T^*)^N$.
- b. Intuitively, for each nonterminal A, the sets h(n)(A) are successively larger approximations of C_A .
- c. Then C_A is defined to be $C_A =_{\text{def}} \bigcup_{n \in \omega} h(n)(A)$.

(8) Defining the Syntactic Categories of a CFG (2/2)

- d. We define h using RT with X, x, F set as follows:
 - i. $X = \wp(T^*)^N$
 - ii. x is the function that maps each $A \in N$ to the set of lengthone strings t such that $A \to t$.
 - iii. F is the function from X to X that maps a function $L: N \to \wp(T^*)$ to the function that maps each nonterminal A to the union of L(A) with the set of all strings that can be obtained by applying a PSR $A \to A_0 \dots A_{n-1}$ to strings s_0, \dots, s_{n-1} , where, for each $i < n, s_i$ belongs to $L(A_i)$. In other words: F(L)(A) =

 $F(L) \cup \bigcup \{ L(A_0) \bullet \ldots \bullet L(A_{n-1}) \mid A \to A_0 \ldots A_{n-1} \}.$

iv. Given these values of X, x, and F, the RT guarantees the existence of a unique function h from ω to functions from N to $\wp(T^*)$.

(9) Proving that a String Belongs to a Category (1/2)

- a. With the C_A formally defined as above, the two clauses in the *informal* recursive definition (Chapter 6, section 5):
 - i. (Base Clause) If $A \to t$, then $t \in C_A$.
 - ii. (Recursion Clause) If $A \to A_0 \dots A_{n-1}$ and for each i < n, $s_i \in C_{A_i}$, then $s_0 \dots s_{n-1} \in C_A$.

become true assertions.

b. This in turn provides a simple-minded way to prove that a string belongs to a syntactic category (if in fact it does!).

(10) Proving that a String Belongs to a Category (2/2)

- c. By way of illustration, consider the string s = Mary heard Fido bit Felix yesterday.
- d. We can (and will) prove that $s \in C_{\rm S}$.
- e. But most syntacticians would say that s corresponds to two different sentences, one roughly paraphrasable as Mary heard yesterday that Fido bit Felix and another roughly paraphrasable as Mary heard that yesterday, Fido bit Felix.
- f. Of course, these two sentences mean different things; but more relevant for our present purposes is that we can also characterize the difference between the two sentences purely in terms of two distinct ways of proving that $s \in C_{\rm S}$.

(11) First Proof

- a. From the lexicon and the base clause, we know that Mary, **Fido**, **Felix** $\in C_{NP}$, **heard** $\in C_{SV}$, **bit** $\in C_{TV}$, and **yesterday** $\in C_{Adv}$.
- b. Then, by repeated applications of the recursion clause, it follows that:
 - 1. since **bit** \in C_{TV} and **Felix** \in C_{NP} , **bit Felix** \in C_{VP} ;
 - 2. since bit Felix $\in C_{VP}$ and yesterday $\in C_{Adv}$, bit Felix yesterday $\in C_{VP}$;
 - 3. since Fido $\in C_{NP}$ and bit Felix yesterday $\in C_{VP}$, Fido bit Felix yesterday $\in C_{S}$;
 - 4. since heard $\in C_{SV}$ and Fido bit Felix yesterday $\in C_S$, heard Fido bit Felix yesterday $\in CP_{VP}$; and finally,
 - 5. since $Mary \in C_{NP}$ and heard Fido bit Felix yesterday $\in C_{VP}$, Mary heard Fido bit Felix yesterday $\in C_{S}$.

(12) Second Proof

- a. Same as for first proof.
- b. Then, by repeated applications of the recursion clause, it follows that:
 - 1. since $\mathbf{Fido} \in C_{NP}$ and $\mathbf{bit} \ \mathbf{Felix} \in C_{VP}$, $\mathbf{Fido} \ \mathbf{bit} \ \mathbf{Felix} \in C_{S}$;
 - 2. since heard $\in C_{SV}$ and Fido bit Felix $\in C_S$, heard Fido bit Felix $\in C_{VP}$;
 - 3. since heard Fido bit Felix $\in C_{VP}$ and yesterday $\in C_{Adv}$, heard Fido bit Felix yesterday $\in C_{VP}$; and finally,
 - 4. since $Mary \in C_{NP}$ and heard Fido bit Felix yesterday $\in C_{VP}$, Mary heard Fido bit Felix yesterday $\in C_{S}$.

- (13) **Proofs vs. Trees**
 - The analysis of NL syntax in terms of proofs is characteristic of the family of theoretical approaches collectively known as **categorial grammar**, initiated by Lambek (1958).
 - But the most widely practiced approaches (sometimes referred to as **mainstream generative grammar**) analyze NL syntax in terms of *trees*, which will be introduced in a formally precise way in Chapter 7, section 3.
 - For now, we just note that the two proofs above would correspond in a more 'mainstream' syntactic approach to the two trees represented informally by the two diagrams:

Tree corresponding to first proof:

Tree corresponding to second proof:

• Intuitively, it seems clear that there is a close relationship between the proof-based approach and the tree-based one, but the nature of the relationship cannot be made precise till we know more about trees and about proofs.