(Pre-)Algebras for Linguistics 7. Modelling Meaning and Reference

Carl Pollard

Linguistics 680: Formal Foundations

Autumn 2010

Carl Pollard (Pre-)Algebras for Linguistics

э

• Following Frege (1892), semanticists distinguish between the **meaning** (or **sense**) of a linguistic expression and its **reference** (or **denotation**).

- Following Frege (1892), semanticists distinguish between the **meaning** (or **sense**) of a linguistic expression and its **reference** (or **denotation**).
- We say an expression **expresses** its meaning, and **refers to**, or **denotes**, its reference.

- Following Frege (1892), semanticists distinguish between the **meaning** (or **sense**) of a linguistic expression and its **reference** (or **denotation**).
- We say an expression **expresses** its meaning, and **refers to**, or **denotes**, its reference.
- A source of confusion: the terms Frege used were *Sinn* and *Bedeutung*, usually glossed by German-English dictionaries as 'sense' and 'meaning'.

・ロト ・四ト ・ヨト ・ヨ

- Following Frege (1892), semanticists distinguish between the **meaning** (or **sense**) of a linguistic expression and its **reference** (or **denotation**).
- We say an expression **expresses** its meaning, and **refers to**, or **denotes**, its reference.
- A source of confusion: the terms Frege used were *Sinn* and *Bedeutung*, usually glossed by German-English dictionaries as 'sense' and 'meaning'.
- In general, the reference of an expression can be contingent (depend on how things are), while the meaning is independent of how things are (examples coming soon).

• In this course, we are ignoring the distinction between an *expression* and an *utterance of* an expression.

- In this course, we are ignoring the distinction between an *expression* and an *utterance of* an expression.
- But that distinction can no longer be ignored when one examines the interdependence between the meaning of an expression and the **context** in which it is uttered.

- In this course, we are ignoring the distinction between an *expression* and an *utterance of* an expression.
- But that distinction can no longer be ignored when one examines the interdependence between the meaning of an expression and the **context** in which it is uttered.
- This interdependence is the topic of the Winter/Spring 2011 Interdisciplinary Seminar on the Syntax/Semantics/Pragmatics Interface (Linguistics 812).

• The meaning of a declarative sentence is a **proposition**, while its reference is the truth value of that proposition.

《曰》 《聞》 《臣》 《臣》

- The meaning of a declarative sentence is a **proposition**, while its reference is the truth value of that proposition.
- The meaning of a common noun (e.g. *donkey*) or an intransitive verb (e.g. *brays*), is a **property**, while its reference is the set of things that have that property.

《曰》 《聞》 《臣》 《臣》

- The meaning of a declarative sentence is a **proposition**, while its reference is the truth value of that proposition.
- The meaning of a common noun (e.g. *donkey*) or an intransitive verb (e.g. *brays*), is a **property**, while its reference is the set of things that have that property.
- Names are controversial! Vastly oversimplifying:
 - **Descriptivism** (Frege, Russell) the meaning of a name is a **description** associated with the name by speakers; the reference is what satisfies the description.

《曰》 《聞》 《臣》 《臣》

- The meaning of a declarative sentence is a **proposition**, while its reference is the truth value of that proposition.
- The meaning of a common noun (e.g. *donkey*) or an intransitive verb (e.g. *brays*), is a **property**, while its reference is the set of things that have that property.
- Names are controversial! Vastly oversimplifying:
 - Descriptivism (Frege, Russell) the meaning of a name is a description associated with the name by speakers; the reference is what satisfies the description.
 - **Direct Reference Theory** (Mill, Kripke) the meaning of a name **is** its reference, so names are **rigid** (their reference is independent of how things are.)

イロト イヨト イヨト イヨト 二日

• The grammar of a language not only assigns expressions to syntactic categories but also specifies their **meanings**.

- The grammar of a language not only assigns expressions to syntactic categories but also specifies their **meanings**.
- Grammar says nothing about reference.

《曰》 《聞》 《臣》 《臣》

- The grammar of a language not only assigns expressions to syntactic categories but also specifies their **meanings**.
- Grammar says nothing about reference.
- Instead, a separate, nonlinguistic, theory tells how the extension of a meaning depends on how things are.

- The grammar of a language not only assigns expressions to syntactic categories but also specifies their **meanings**.
- Grammar says nothing about reference.
- Instead, a separate, nonlinguistic, theory tells how the **extension** of a meaning depends on how things are.
- An expression's reference is just its meaning's extension.

- The grammar of a language not only assigns expressions to syntactic categories but also specifies their **meanings**.
- Grammar says nothing about reference.
- Instead, a separate, nonlinguistic, theory tells how the extension of a meaning depends on how things are.
- An expression's reference is just its meaning's extension.
- So reference also depends on how things are.

We have a set P of **propositions** with the **entailment** preorder \sqsubseteq and the following operations:

- $\hfill \square$ a glb operation, the meaning of and
- $\rightarrow\,$ a residual operation for $\sqcap,$ the meaning of implies
- $\sqcup\,$ a lub operation, the meaning of or
- $\neg\,$ a complement operation, the meaning of $no\ way$
- $\top\,$ a top, a necessary truth
- $\perp\,$ a bottom, a necessary falsehood

a. B = 2 (= {0,1}) as the underlying set (in this context 1 and 0 are usually called **t** and **f** respectively)

- a. B = 2 (= {0,1}) as the underlying set (in this context 1 and 0 are usually called **t** and **f** respectively)
- b. \leq as the order

- a. B = 2 (= {0,1}) as the underlying set (in this context 1 and 0 are usually called **t** and **f** respectively)
- b. \leq as the order
- c. ${\bf t}$ and ${\bf f}$ as top and bottom respectively

- a. B = 2 (= {0,1}) as the underlying set (in this context 1 and 0 are usually called **t** and **f** respectively)
- b. \leq as the order
- c. ${\bf t}$ and ${\bf f}$ as top and bottom respectively
- d. operations given by the usual truth tables: \land (glb), \lor (lub), \supset (residual of \land), and \sim (complement).

Our theory will use the following sets as building blocks:

P The propositions (things that can be sentence meanings)

Our theory will use the following sets as building blocks:

- P The propositions (things that can be sentence meanings)
- B The truth values (things that can be extensions of propositions)

Our theory will use the following sets as building blocks:

- P The propositions (things that can be sentence meanings)
- B The truth values (things that can be extensions of propositions)
 - I The **individuals** (things that can be meanings of names).

《曰》 《聞》 《臣》 《臣》

Our theory will use the following sets as building blocks:

- P The propositions (things that can be sentence meanings)
- B The truth values (things that can be extensions of propositions)
- I The **individuals** (things that can be meanings of names).
- W The worlds (ultrafilters of propositions)

イロト 不得下 イヨト イヨト 二日

Our theory will use the following sets as building blocks:

- P The propositions (things that can be sentence meanings)
- B The truth values (things that can be extensions of propositions)
- I The **individuals** (things that can be meanings of names).
- W The worlds (ultrafilters of propositions)
 - 1 The unit set $\{0\}$.

It's conventional to call the member of this set *, rather than 0, since the important thing about it is that it is a singleton and not what its member is.

The set of **semantic domains** is defined as follows:

a. P, I, and 1 are semantic domains.

Carl Pollard (Pre-)Algebras for Linguistics

The set of **semantic domains** is defined as follows:

- a. P, I, and 1 are semantic domains.
- b. If A and B are semantic domains, so is $A \times B$.

《曰》 《聞》 《臣》 《臣》

The set of **semantic domains** is defined as follows:

- a. P, I, and 1 are semantic domains.
- b. If A and B are semantic domains, so is $A \times B$.
- c. If A and B are semantic domains, so is $A \to B$, the set of functions (arrows) with domain A and codomain B.

《曰》 《聞》 《臣》 《臣》

The set of **semantic domains** is defined as follows:

- a. P, I, and 1 are semantic domains.
- b. If A and B are semantic domains, so is $A \times B$.
- c. If A and B are semantic domains, so is $A \to B$, the set of functions (arrows) with domain A and codomain B.
- d. Nothing else is a semantic domain. (In particular, W and B are not involved in the definition of semantic domains.)

Later we will see that an expression meaning is always a member of a semantic domain (which one depending on the syntactic category of the expression).

Examples of word meanings:

The meaning of **Chiquita** will be an individual **Chiquita**' \in I.

Carl Pollard (Pre-)Algebras for Linguistics

《曰》 《聞》 《臣》 《臣》

Examples of word meanings:

The meaning of **Chiquita** will be an individual **Chiquita**' \in I. The meaning of the dummy pronoun **it**_d (as in *It is obvious that Chiquita is a donkey*) will be $* \in 1$.

Examples of word meanings:

The meaning of **Chiquita** will be an individual **Chiquita**' \in I.

The meaning of the dummy pronoun $\mathbf{it}_{\mathbf{d}}$ (as in *It is obvious that Chiquita is a donkey*) will be $* \in 1$.

The meaning of the common noun **donkey** will be a function **donkey'**: $I \rightarrow P$. For each individual *i*, we think of **donkey'**(*i*) as the proposition that *i* is a donkey.

Examples of word meanings:

The meaning of **Chiquita** will be an individual **Chiquita**' \in I.

The meaning of the dummy pronoun $\mathbf{it}_{\mathbf{d}}$ (as in *It is obvious that Chiquita is a donkey*) will be $* \in 1$.

The meaning of the common noun **donkey** will be a function **donkey'**: $I \rightarrow P$. For each individual *i*, we think of **donkey'**(*i*) as the proposition that *i* is a donkey.

The meaning of the sentential adverb **obviously** will be a function **obvious'**: $P \rightarrow P$. For each proposition p, we think of **obvious'**(p) as the proposition that p is obvious.

a. Ext(I) = I.

<ロ> (四) (四) (三) (三) (三) (三)

- a. Ext(I) = I.
- b. Ext(1) = 1.

<ロ> (四) (四) (三) (三) (三) (三)

- a. Ext(I) = I.
- b. Ext(1) = 1.
- c. Ext(P) = B.

<ロ> (四) (四) (三) (三) (三) (三)

- a. Ext(I) = I.
- b. Ext(1) = 1.
- c. $\operatorname{Ext}(\mathbf{P}) = \mathbf{B}$.
- d. If A and B are semantic domains, then $\operatorname{Ext}(A \times B) = \operatorname{Ext}(A) \times \operatorname{Ext}(B).$

- a. $\operatorname{Ext}(I) = I$.
- b. Ext(1) = 1.
- c. $\operatorname{Ext}(\mathbf{P}) = \mathbf{B}$.
- d. If A and B are semantic domains, then $\operatorname{Ext}(A \times B) = \operatorname{Ext}(A) \times \operatorname{Ext}(B).$
- e. If A and B are semantic domains, then $\operatorname{Ext}(A \to B) = A \to \operatorname{Ext}(B).$

We recursively define, for each semantic domain A, a function $ext_A: (A \times W) \to Ext(A)$.

◆□> ◆圖> ◆国> ◆国>

We recursively define, for each semantic domain A, a function $ext_A: (A \times W) \to Ext(A)$.

We abbreviate Ext(a, w) as a@w, read 'the extension of a at w'.

◆□▶ ◆圖▶ ◆国▶ ◆国▶ 三国

We recursively define, for each semantic domain A, a function $ext_A: (A \times W) \to Ext(A)$.

We abbreviate Ext(a, w) as a@w, read 'the extension of a at w'.

a. For all $w \in W$, *@w = *

Carl Pollard (Pre-)Algebras for Linguistics

We recursively define, for each semantic domain A, a function $ext_A: (A \times W) \to Ext(A)$.

We abbreviate Ext(a, w) as a@w, read 'the extension of a at w'.

a. For all $w \in W$, *@w = *b. For all $i \in I$ and $w \in W$, i@w = i.

We recursively define, for each semantic domain A, a function $ext_A: (A \times W) \to Ext(A)$.

We abbreviate Ext(a, w) as a@w, read 'the extension of a at w'.

- a. For all $w \in W$, *@w = *
- b. For all $i \in I$ and $w \in W$, i@w = i.
- c. For all $p \in P$ and $w \in W$, p@w is **t** if $p \in w$ and **f** otherwise.

We recursively define, for each semantic domain A, a function $ext_A: (A \times W) \to Ext(A)$.

We abbreviate Ext(a, w) as a@w, read 'the extension of a at w'.

a. For all
$$w \in W$$
, $*@w = *$

- b. For all $i \in I$ and $w \in W$, i@w = i.
- c. For all $p \in P$ and $w \in W$, p@w is **t** if $p \in w$ and **f** otherwise.
- d. For all $a \in A$, $b \in B$, and $w \in W$, $\langle a, b \rangle @w = \langle a @w, b @w \rangle$.

We recursively define, for each semantic domain A, a function $ext_A: (A \times W) \to Ext(A)$.

We abbreviate Ext(a, w) as a@w, read 'the extension of a at w'.

a. For all
$$w \in W$$
, $*@w = *$

- b. For all $i \in I$ and $w \in W$, i@w = i.
- c. For all $p \in P$ and $w \in W$, p@w is **t** if $p \in w$ and **f** otherwise.
- d. For all $a \in A$, $b \in B$, and $w \in W$, $\langle a, b \rangle @w = \langle a @w, b @w \rangle$.
- e. For all $f \in A \to B$ and $w \in W$, f@w is the function from A to Ext(B) that maps each $a \in A$ to f(a)@w.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

We define the **reference** of an expression e at a world w to be the extension at w of e's meaning.

・ロト ・聞ト ・ヨト ・ヨト

We define the **reference** of an expression e at a world w to be the extension at w of e's meaning.

The assignment of meanings to expressions is done by the grammar (next lecture).

《曰》 《聞》 《臣》 《臣》

At any world w, the reference at w of:

Chiquita is **Chiquita**' (cf. the direct reference theory of names)

At any world w, the reference at w of:

Chiquita is **Chiquita**' (cf. the direct reference theory of names)

 it_d is * (vacuous reference)

・ロト ・四ト ・ヨト ・ヨト ・ヨ

At any world w, the reference at w of:

Chiquita is **Chiquita**' (cf. the direct reference theory of names)

 it_d is * (vacuous reference)

donkey is the function from individuals to truth values that maps each individual i to **t** if the proposition **donkey**'(i) is in w, and to **f** otherwise. (Informally speaking, this is (the characteristic function of) the set of individuals that are donkeys at w.)

At any world w, the reference at w of:

Chiquita is Chiquita' (cf. the direct reference theory of names)

 it_d is * (vacuous reference)

donkey is the function from individuals to truth values that maps each individual i to **t** if the proposition **donkey**'(i) is in w, and to **f** otherwise. (Informally speaking, this is (the characteristic function of) the set of individuals that are donkeys at w.)

obviously is the function from propositions to truth values that maps each proposition p to **t** if the proposition **obvious**'(p) is in w, and to **f** otherwise. (Informally speaking, this is (the characteristic function of) the set of all propositions which are obvious at w.)

Since $\text{Ext}(A \to P) = A \to B$, the extension (at any world) of an A-property is (the characteristic function of) a set of A's.

Since $\text{Ext}(A \to P) = A \to B$, the extension (at any world) of an A-property is (the characteristic function of) a set of A's.

Example: the extension of an individual property (e.g. **donkey**') is (the characteristic function of) a set of individuals.

Since $\text{Ext}(A \to P) = A \to B$, the extension (at any world) of an A-property is (the characteristic function of) a set of A's.

Example: the extension of an individual property (e.g. **donkey**') is (the characteristic function of) a set of individuals.

Example: the extension of a property of propositions (e.g.**obvious**') is (the characteristic function of) a set of propositions.