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(1) Sets and Membership

• We assume there exist things called sets.

• We assume there is a relationship, called membership, which,
for any sets A and B, either does or does not hold between them.

• If it does, we say A is a member of B, written A ∈ B.

• If it doesn’t, we say A is not a member of B, written A /∈ B.

• We never say what sets are: they are the unanalyzed primitives
of set theory and cannot be reduced to, or explained in terms
of, more basic things that are not sets.
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(2) Assumptions about the Membership Relation

• We make certain further assumptions about membership.

• Our set theory consists of these additional assumptions plus any
conclusions we can draw from them using valid reasoning.

• For now, we’ll state these assumptions informally in English.

• Later we’ll state them more precisely in a special symbolic lan-
guage (the language of set theory), and the precise restatements
of the assumptions will be called the axioms of our set theory.

• Also for now we don’t say exactly what counts as valid reasoning.

• Later, we’ll specify what counts as valid reasoning in terms of
mathematical objects called formal proofs which deduce new sen-
tences (in the language of set theory) from the axioms.

• There is nothing privileged about our set theory; there are other
set theories which start with different assumptions.
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(3) Assumption 1 (Extensionality)

If A and B have the same members, then they are the same set
(written A = B).

• We don’t mention that A and B are sets, because we’re doing
set theory (so the only things we are talking about are sets).

• We needn’t assume that if A and B do not have the same mem-
bers, then they are not the same set (written A 6= B). That’s
because, if they were the same set, then everything about them,
including what members they had, would be the same.

• If every member of A is a member of B, we say that A is a
subset of B, written A ⊆ B.

• If A ⊆ B, B might have members that are not in A. In that
case we say A is a proper subset of B, written A ( B.

• But if both A ⊆ B and B ⊆ A, then it follows from Extension-
ality that A = B.
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(4) Assumption 2 (Empty Set)

There is a set with no members.

• From this assumption together with Extensionality we can con-
clude that the there is only one set with no members.

• We call this set the empty set, written ‘∅’.
• But later, we’ll sometimes write it as ‘0’.

• That’s because in the usual way of doing arithmetic within set
theory (covered in Chapter 4) zero is the empty set.

• As yet, we have no basis for concluding that there are any sets
other than the empty set.

• For example, we are not even able to make a valid argument
that there is a set with ∅ as its only member.

• We remedy this situation by making a few more assumptions.
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(5) Assumption 3 (Pairing)

For any sets A and B, there is a set whose members are A and B.

• Even though we say ‘sets’ here, we don’t mean to rule out the
possibility that A and B are the same set.

• Because of Extensionality again, there is only one set whose
members are A and B, which we write as {A, B}, or {B, A}.

• More generally, we will notate any nonempty finite set by listing
its members, separated by commas, between curly brackets, in
any order.

• We’ll get clear about what we mean by ‘finite’ in Chapter 5, but
for now we’ll just rely on intuition.

• In listing the members of a set, repititions don’t count, so e.g. if
A and B are the same set, then {A, B} is the same set as {A}.

• So it makes no sense to talk about how many times A is a mem-
ber of B: either it is or it isn’t.
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(6) Definition (Singleton)

A singleton is a set with only one member.

• For any set A,we have enough resources now to prove informally
(i.e. make a valid argument in English) that there is a singleton
setwhose member is A. (Of course this is written ‘{A}’.

• One singleton set is the set {0} whose member is 0.

• {0} is also written ‘1’, because in the usual way of doing arith-
metic within set theory, it is the same as the number one.

7



(7) Preview of the Natural Numbers

• As mentioned above, we’ll define 0 to be ∅, and 1 to be {0}.
• By Pairing, we know there is a set, {0, 1}, whose only members

are 0 and 1. Let’s say that this is what the number 2 is.

• There seems to be a pattern here, in which the next step would
be to say that 3 is the set whose only members are 0, 1, and 2.

• But as yet we don’t have sufficient resources to prove that there
is such a set!

• To say nothing of proving that there is a set whose members are
the natural numbers.

• In fact, as yet we don’t even know what ‘natural number’ means.

• But soon we will (Chapter 4).
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(8) Assumption 4 (Union)

For any set A, there is a set whose members are those sets which are
members of (at least) one of the members of A.

• Extensionality ensures the uniqueness of such a set, which is
called the union of A, written

⋃
A.

• If A = {B, C}, then
⋃

A is the set each of whose members is in
either B or C (or both), usually written B ∪ C.

• In general, B ∪ C is not the same thing as {B, C}!
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(9) Definition (Successor)

For any set A, the successor of A, written s(A), is the set A∪{A}.

• That is, s(A) is the set with the same members as A, except
that A itself is also a member of s(A).

• Nothing in our set theory will rule out the possibility that A ∈ A,
in which case s(A) = s(A).

• However, some widely used set theories include an assumption
(called Foundation) which does rule out this possibility.

• For example, we can prove that 1 is the successor of 0, and that
2 is the successor of 1.

• Now we can say what 3 is: the successor of 2!

• Likewise we can say what 4, 5, etc. are.

• But we still can’t say exactly what we mean by a natural number.

10



(10) Assumption 5 (Powerset)

For any set A, there is a set whose members are the subsets of A.

• Again, Extensionality guarantees the uniqueness of such a set,
which we call the powerset of A, written ℘(A).

• In general, ℘(A) is not the same set as A, because usually the
subsets of a set are not the same as the members of the set.

• For example, 0 is a subset of 0 (in fact, every set is a subset
of itself), but obviously 0 is not a member of 0 (since 0 is the
empty set).
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(11) Assumptions vs. Definitions

a. Notice a crucial difference between the successor of a set A and
the powerset of A: successor is defined in terms of things whose
existence can already be established on the basis of previous
assumptions (singletons, unions), whereas the existence of the
powerset of A is assumed.

b. Why didn’t we just define ℘(A) to be the set whose members
are the subsets of A?

c. It’s because nobody has found a valid argument (based on just
the first four assumptions) that there is such a set!

d. More generally, there is no guarantee that, for an arbitrary con-
dition on sets P [x], there is a set whose members are all the sets
x such that P [x].

e. But this fact did not become known till 1902.
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(12) Russell’s Paradox

a. Let P [x] be the condition ‘x is not a member of itself’.

b. Following Russell, we will show that there cannot be a set whose
members are all the sets x such that P [x].

c. Suppose R were such a set.

d. Then either (i) R is a member of itself, or (ii) it isn’t.

i. Suppose R is a member of itself, Then it cannot be a member
of R, since the members of R are sets which are not members
of themselves. But then it is not a member of itself.

ii. Suppose R is not a member of itself. Then it must be in R.
But then, it is a member of itself.

iii. Either way, assuming (c) leads to a contradiction.

e. So the assumption (c) must have been false.
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(13) An Imaginable Set-Theoretic Assumption Bites the Dust

• Russell’s Paradox shows we don’t have the option of adding the
following to our set theory:

Tentative Assumption (Comprehension)

For any condition P [x] there is a set whose members are all the
sets x such that P [x].

• The following assumption is usually adopted instead.

14



(14) Assumption 6 (Separation)

For any set A and any condition P [x], there is a set whose members
are all the x in A that satisfy P [x].

• So far, assuming Separation has not been shown to lead to a
contradiction.

• Separation is so-called because, intuitively, we are separating
out from A some members that are special in some way, and
collecting them together into a set.

• By Extensionality, there can be only one set whose members are
all the sets x in A that satisfy P [x].

• We call that set {x ∈ A | P [x]}.
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(15) Intersection

• In naive introductions to set theory, the intersection of two
sets A and B, written A ∩B, is often ‘defined’ as the set whose
members are those sets which are members of both A and B.

• But how do we know there is such a set?

• If we assume Separation and take P [x] to be the condition x ∈ B,
then we can (unproblematically) define A ∩ B to be {x ∈ A |
x ∈ B}.

• A and B are said to intersect provided A ∩B is nonempty.

• A set A is called pairwise disjoint if no two distinct members
of it intersect.
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(16) Set Difference

• For two sets A and B, if we take P [x] to be the condition x /∈ B,
then Separation guarantees the existence of the set {x ∈ A |
x /∈ B}.

• This set is called the set difference of A and B, or alternatively
the complement of B relative to A, written A \B.
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(17) Nonexistence of a Universal Set

• A set is called universal if every set is a member of it.

• We can prove in our set theory that there is no universal set.

• For suppose A were a universal set. Let P [x] be the condition
x /∈ x. Then by Separation, there must be a set {x ∈ A | x /∈ x}.
But Russell’s argument showed that there can be no such set.
So the assumption that there was a universal set must have been
false.
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(18) Ordered Pairs

• If A and B are sets, we call the set {{A}, {A, B}} the ordered
pair of A and B, also written 〈A, B〉.

• 〈A, B〉 differs from {A, B} in the crucial respect that no matter
what A and B are, {A, B} = {B, A}, but 〈A, B〉 = 〈B, A〉 only
if A = B.

• More generally, if A, B, C, and D are sets, then 〈A, B〉 = 〈C, D〉
only if A = C and B = D.

• If C is the ordered pair of A and B, A is called the first com-
ponent of C, and B is called the second component of C.
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(19) The Cartesian Product of Two Sets

• For any sets A and B, there is a set whose members are all those
sets which are ordered pairs whose first component is in A and
whose second component is in B. (It’s instructive to try to prove
this. Hint: use Separation.)

• By Extensionality there can be only one such set. It is called
the cartesian product of A and B, written A×B.

• For any sets A, B, C, and D, A × B = C × D only if A = C
and B = D. (Try to prove this.)

• A is called the first factor of A×B, and B the second factor.
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(20) Ordered Triples

• The ordered triple of A, B, and C, written 〈A, B, C〉, is defined
to be the ordered pair whose first component is 〈A, B〉 and whose
second component is C.

• Then A, B, and C are called, respectively, the first, second,
and third components of 〈A, B, C〉.

• The (threefold) cartesian product of A, B, and C, written
A× B × C, is defined to be (A× B)× C. This is the set of all
ordered triples whose first, second, and third components are in
A, B, and C respectively.

• The definitions can be extended to ordered quadruples, quin-
tuples, etc., and to n-fold cartesian products for n > 3, in an
obvious way.
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(21) Definitions (Cartesian Powers)

For any set A, a cartesian power of A is a cartesian product all of
whose factors are A.

• The first cartesian power of A is just A, also written A(1).

• The cartesian square of A, written A(2), is A× A.

• The cartesian cube of A, written A(3), is A× A× A

• More generally, for n > 3, the n-th cartesian power of A,
written A(n), is the n-fold cartesian product all of whose factors
are A.

• Additionally, the zero-th cartesian power of A, A(0), is de-
fined to be the set 1 (= {∅}).

• This last definition is closely related to the arithmetic fact that
for any natural number n, n0 = 1, but we postpone the expla-
nation.
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