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1 Introduction

Over the past 25 years, category theory has become an increasingly significant conceptual and
practical tool in many areas of computer science. There are major conferences and journals de-
voted wholly or partially to applying categorical methods to computing. At the same time, the
close connections of computer science to logic have seen categorical logic (developed in the 1970’s)
fruitfully applied in significant ways in both theory and practice.

Given the rapid and enormous development of the subject and the availability of suitable gradu-
ate texts and specialized survey articles, we shall only examine a few of the areas that appear to
the author to have conceptual and mathematical interest to the readers of this Handbook. Along
with the many references in the text, the reader is urged to examine the final section (Literature
Notes) where we reference omitted important areas, as well as the Bibliography.

We shall begin by discussing the close connections of certain closed categories with typed lambda,
calculi on the one hand, and with the proof theory of various logics on the other. It cannot be
overemphasized that modern computer science heavily uses formal syntax but we shall try to tread
lightly. The so-called Curry-Howard isomorphism (which identifies formal proofs with lambda
terms, hence with arrows in certain free categories ) is the cornerstone of modern programming
language semantics and simply cannot be overlooked.

Notation: We often elide composition symbols, writing ¢f : A — ' for gof : A — (', whenever
f:A— Bandg: B — (. Tosave some space, we have omitted large numbers of routine diagrams,
which the reader can find in the sources referenced.

2 Categories, Lambda Calculi, and Formulas-as-Types

2.1 Cartesian Closed Categories

Cartesian closed categories (ccc’s) were developed in the 1960’s by F. W. Lawvere [Law66, Law69].
Both Lawvere and Lambek [[.74] stressed their connections to Church’s lambda calculus, as well as
to intuitionistic proof theory. In the 1970’s, work of Dana Scott and (Gordon Plotkin established
their fundamental role in the semantics of programming languages. A precise equivalence between
these three notions (cce’s, typed lambda calculi; and intuitionistic proof theory) was published in
Lambek and Scott [[.S86]. We recall the appropriate definitions from [[.S86]:



Objects Distinguished Arrow(s) Equations
Terminal 1 A 451 ha=f,
f:A=1
P AX B A me(fg) = f
Products A x B P AxB— B ool f,9) = ¢
f g
C—A (=B (myoh, mooh) = h |
4 A xR h:C'— AxB
Exponentials B* €Va R ! B*xA—> B evo( fromy,my) = f
f
M;B (evo(gomy, ma))" = g,
B g:C — B

Figure 1: CCC’s Equationally

Definition 2.1

(i) A cartesian category C is a category with distinguished finite products (equivalently, binary
products and a terminal object 1.) This says there are isomorphisms (natural in A, B, ()

(1) Home(A, 1) =2 {x}
(2) Home(C,Ax B) 2 Home(C,A)x Home(C, B)

(i) A cartesian closed category C is a cartesian category C such that, for each object A € C,
the functor (—) x A :C — C has a specified right adjoint, denoted (—)* .That is, there is an
isomorphism (natural in B and ()

(3) Home(C x A, B) = Homc(C, B"Y)

For many purposes in computer science, it is often useful to have categories with explicitly given
strict structure along with strict functors that preserve everything on the nose. We may present
such ccc’s equationally, in the spirit of multisorted universal algebra. The arrows and equations
are summarized in Figure 1. These equations determine the isomorphisms (1), (2), and (3). In this
presentation we say the structure is strict, meaning there is only one object representing each of
the above constructs 1, A x B, B*. The exponential object B" is often called the function space of
A and B. In the computer science literature, the function space is often denoted A = B, while the

arrow C' 15 B is often called currying of f.

Remark 2.2 Following most categorical logic and computer science literature, we do not assume
cec’s have finite limits [Law69, 1.S86, AC98, Mit96]), in order to keep the correspondence with
simply typed lambda calculi; ¢f Theorem 2.20 below. Earlier books (cf. [Mac71]) do not always
follow this convention.

Let us list some useful examples of cartesian closed categories: for details see [1.586, Mit96,
Mac71]

Example 2.3 The category Set of sets and functions. Here A x B is a chosen cartesian product
and B” is the set of functions from A to B. The map B* x A =5 B is the usual evaluation map,

while currying 12y BA s the map ¢ (a— f(c,a)).



An important subfamily of examples are Henkin models which are cce’s in which the terminal
object 1is a generator ( [Mit96], Theorem 7.2.41). More concretely, for a lambda calculus signature
with freely generated types (cf Section 2.13 below), a Henkin model A is a type-indexed family of
sets A ={A, | o atype } where Ay = {x}, Aoy, = A, X A, A o, C A% which forms a ccc with
respect to restriction of the usual cce structure of Set. In the case of atomic base sorts b, A, is
some fixed but arbitrary set. A full type hierarchy is a Henkin model with full function spaces, i.e.
Aper = A7,

Example 2.4 More generally, the functor category Set®” of presheaves on C is cartesian closed.
Its objects are (contravariant) functors from C to Set, and its arrows are natural transformations
between them. We sketch the cce structure: given F,G € Set® ., define F' x G pointwise on
objects and arrows. Motivated by Yoneda’s Temma, define G"(A) = Nat(h* x F,G) , where

h* = Hom(A, —). This easily extends to a functor. Finally if H x F LN (=, define H ar by:
0 (@) (b ) = B (H (h) (a), ).

Functor categories have been used in studying problematic semantical issues in Algol-like lan-
guages [Rey81, OI85, OHTY92, Ten94], as well as recently in concurrency theory and models of
m-calculus [CSW, CaWil. Special cases of presheaves have been studied extensively [Mit96, 1.586]:

e lLet C be a poset (qua trivial category). Then Set®”, the category of Kripke models over C,
may be identified with sets indexed (or graded) by the poset C. Such models are fundamental
in intuitionistic logic [1.S86, TrvD&R] and also arise in Kripke Logical Relations, an important
tool in semantics of programming languages [Mit96, OHT93, OHRIi].

e Let C = O(X), the poset of opens of the topological space X. The subcategory Sh(X) of
sheaves on X is cartesian closed.

e et C be a monoid M (qua category with one object). Then Set®” is the category of M-
sets, i.e. sets X equipped with a left action; equivalently, a monoid homomorphism M —
End(X), where Fnd(X) is the monoid of endomaps of X. Morphisms of M-sets X and Y
are equivariant maps (i.e. functions commuting with the action.) A special case of this is
when M is actually a group (G (qua category with one object, where all maps are isos). In
that case Set®” is the category of (G-sets, the category of permutational representations of
(G. Tts objects are sets X equipped with left actions G — Sym(X) and whose morphisms
are equivariant maps. We shall return to these examples when we speak of Laiichli semantics
and Full Completeness, Section 5.2

Example 2.5 w-CPO. Objects are posets P such that countable ascending chains ay < a; < a5 <
--- have suprema. Morphisms are maps which preserve suprema of countable ascending chains (in
particular, are order preserving.) This category is a cce, with products P x () ordered pointwise
and Q¥ = Hom(P,Q), ordered pointwise. In this case, the categories are w-CPO-enriched i.e.
the hom-sets themselves form an w-CPQO, compatible with composition. An important subcce is
w-CPO ., in which all objects have a distinguished minimal element — (but morphisms need not
preserve it).

The category w-CPO is the most basic example in a vast research area, domain theory, which
has arisen since 1970. This area concerns the denotational semantics of programming languages
and models of untyped lambda calculi (cf. Section 2.5 below.) See also the survey article [AbJu94].

Example 2.6 Coherent Spaces and Stable Maps. A Coherent Space A is a family of sets satisfying:
(i)ae Aand b C aimplies b € A, and (ii) if B C A and if Ve, € B(eU ¢ € A) then UB € A.
In particular, § € A. Morphisms are stable maps, i.e. monotone maps preserving pullbacks and



filtered colimits. That is, f : A — B is a stable map if (i) b C a € A implies f(b) C f(a),
(i) f(Uiera;) = Uierfl(a;), for T directed, and (iii) a Ub € A implies f(anNb) = f(a) N f(b).
This gives a category Stab. Every coherent space A yields a reflexive-symmetric (undirected)
graph (JA]|,Z) where |A| = {a|{a} € A} and a T b iff {a,b} € A. Moreover, there is a bijective
correspondence between such graphs and coherent spaces. Given two coherent spaces A, B their
product A x B is defined via the associated graphs as follows: (JA x B|,Z, ), with [A x B| =
|Alw Bl = ({1} x [A]) U ({2} x |B]) where (1,a) =, . (1,d") iff a T a', (2,0) =, (2,0) iff
b Z b, and (1,a) Zus(2:0) forall a € |A],b € |B|. The function space B* = Stab(A, B) of stable
maps can be given the structure of a coherent space, ordered by Berry’s order: f < ¢ iff for all
a,a" € A, o' Caimplies f(a') = f(a) N g(a). For details, see [GLT, Tr92]. This class of domains
led to the discovery of linear logic (Section 4.2).

~4 C A”. Thus ~y4 is an equivalence relation on the subset Dom, = {x € A|x ~4 2}. A P-set
is a pair (A,~,4) where A is a set and ~, is a per on A. Given two P-sets (A, ~,) and (B, ~p)
a morphism of P-setsis a function f : A — B such that a ~, a' implies f(a) ~p f(a') for all
a,a’ € A. That is, f induces a map of quotients Dom,/ ~4— Domp/ ~p which preserves the
associated partitions.

PSet, the category of P-sets and morphisms is a cce, with structure induced from Set: we
define (A x B,~4yxp), where (a,b) ~axp (a',0) iff a ~4 a' and b ~p b and (BA,NRA)7 where
f ~pa giff for all a,a’ € A, a ~4 a’ implies f(a) ~p g(a’). We shall discuss variants of the ccc
structure of PSet in Section 2.7 below, with respect to reduction-free normalization.

Other classes of Per models are obtained by considering pers on a fixed (functionally complete)
partial combinatory algebra, for example built over a model of untyped lambda calculus (cf Section
2.5 below). The prototypical example is the following category Per(N) of pers on the natural

numbers. The objects are pers on N. Morphisms R Ly S are (equivalence classes of) partial
recursive functions (= Turing-machine computable partial functions) N — N which induce a total
map on the induced partitions, i.e. for all m,n € N, mRn implies f(m), f(n) are defined and
f(m)Sf(n). Here we define equivalence of maps f,g : R — S by: f ~ ¢ iff Ym,n, mRn implies
f(m),g(n) are defined and f(m)Sg(n). The fact that Per(N) is a ccc uses some elementary
recursion theory [BFSS90, Mit96, AT.91]. (See also Section 2.4.1).

Example 2.8 Free C'C(’s. Given a set of basic objects X', we can form Fy, the free ccc generated
by X. Tts objects are freely generated from A" and 1 using x and (7)“)7 its arrows are freely
generated using identities and composition plus the structure in Figure 1, and we impose the
minimal equations required to have a ccc. More generally, we may build Fg, the free ccc generated
by a directed multigraph (or even a small category) G, by freely generating from the vertices (resp.
objects) and edges (resp. arrows) of G and then in the case of categories G imposing the appropriate
equations. The sense that this is free is related to Definition 2.9 and discussed in Example 2.23.

Cartesian closed categories can themselves be made into a category in many ways. This depends,
to some extent, on how much 2- | bi-, enriched- , etc. structure one wishes to impose. The following
elementary notions have proved useful. We shall mention a comparison between strict and nonstrict
cee’s with coproducts in Remark 2.28. More general notions of monoidal functors, etec. will be
mentioned in Section 4.1.

Definition 2.9 CART,, is the category of strictly structured cartesian closed categories with
functors that preserve the structure on the nose. 2-CART,, is the 2-category whose 0-cells are
cartesian closed categories, whose 1-cells are strict cartesian closed functors, and whose 2-cells are



natural isomorphisms.

As pointed out by Lambek [1.74, 1.586], given a ccc A, we may adjoin an indeterminate arrow
1 25 A to A to form a polynomial cartesian closed category A[z] over A, with the expected
universal property in CART,,. The objects of A[x] are the same as those of A, while the arrows are
“polynomials”, i.e. formal expressions built from the symbol z using the arrow-forming operations
of A. The key fact about such polynomial expressions is a normal form theorem, stated here for
cec’s, although it applies more generally (see [[.S86], p.61):

Proposition 2.10 (Functional Completeness) For every polynomial p(x) in an indeterminate

1 -5 A over a ccc A, there is a unique arrow 1 s 0" € A such that evo(h,z) = @(x), where =
is equality in Alz].

Looking ahead to lambda calculus notation in the next section, we write h = A, 4.¢(x), so the
equation above becomes evo(A,.4.0(7), ) = @(x). The universal property of polynomial algebras
guarantees a notion of substitution of constants 1 -~ A € A for indeterminates z in p(x). We
obtain the following:

Corollary 2.11 (The 3 rule) In the situation above, for any arrow 1 -2 A € A

(4) evo( A, 4.0(2), a) = p(a)
holds in A.

The f-rule is the foundation of the lambda calculus, fundamental in programming language theory.
It says the following: we think of A, 4.¢(2) as the function 2 — @(2). Equation 4 says: evaluating
the function A, 4.(2) at argument «a is just substitution of the constant a for each occurrence of
x in @(2). However this process is far more sophisticated than simple polynomial substitution in
algebra. In our situation, the argument @ may itself be a lambda term, which in turn may contain
other lambda terms applied to various arguments, etc. After substitution, the right hand side ¢(a)
of Equation 4 may be far more complex than the left hand side, with many new possibilities for
evaluations created by the substitution. Thus, if we think of computation as oriented rewriting
from the [LHS to the RHS, it is not at all obvious the process ever halts. The fact that it does is a
basic theorem in the so-called Operational Semantics of typed lambda calculus. Indeed, the Strong
Normalization Theorem (cf. [1.S86], p. 81) says every sequence of ordered rewrites (from left to
right) eventually halts at an irreducible term (cf. Remark 2.49 and Section 2.7 below).

Remark 2.12 We may also form polynomial cec’s A[xq, -+, 2,] by adjoining a finite set of inde-
terminates 1 =5 A;. Using product types, one may show Afzy, - - -, 2,,] = A[z], for an indeterminate
15 A x---X A,.

Polynomial cartesian or cartesian closed categories A[x] may be constructed directly, showing
they are the Kleisli category of an appropriate comonad on A (see [1.S86], p.56). Extensions of
this technique to allow adjoining indeterminates to fibrations, using 2-categorical machinery are
considered in [HJ95].

2.2 Simply Typed Lambda Calculi

l.ambda Calculus is an abstract theory of functions developed by Alonzo Church in the 1930’s.
Originally arising in the foundations of logic and computability theory, more recently it has become
an essential tool in the mathematical foundations of programming languages [Mit96]. The calculus
itself, to be described below, encompasses the process of building functions from variables and
constants, using application and functional abstraction.



Actually, there are many “lambda calculi” typed and untyped with various elaborate structures
of types, terms, and equations. Let us give the basic typed one. We shall follow an algebraic syntax

as in [L.S86].

Definition 2.13 (Typed A-calculus) let Sorts be a set of sorts (or atomic types). The typed
A-caleulus generated by Sorts is a formal system consisting of three classes: Types, Terms and
Equations between terms. We write a : A for “a is a term of type A”.

Types: This is the class obtained from the collection of Sorts using the following rules: Sorts are
types, 1is a type, and if A and B are types then so are Ax B and B*. We allow the possibility
of other types or type-forming operations and possible identifications between types.

Terms: To every type A we assign a denumerable set of typed variables 2/ : A, i =0,1,2,... .
We write 2 : A or 2” for a typical variable 2 of type A. Terms are freely generated from vari-
ables, constants, and term-forming operations. We require at least the following distinguished
generators:

1. %1,
2. 1Wa:Ab:B,c: Ax B, then (a,b): Ax B ,7{""(e): A, 7P () : B,
3.1a: A, f:B* ¢:Bthen evy g(f,a): B, \pap: B

There may be additional constants and term-forming operations besides those specified.

We shall abbreviate eva 5(f,a) by f‘a, read “f of a”, omitting types when clear. Intuitively,
eva p denotes evaluation, (—, —) denotes pairing, and A, 4. denotes the function z — ¢,
where ¢ is some term expression possibly containing z. The operator A,., acts like a quan-
tifier, so the variable 2 in A,.4.¢ is a bound (or dummy) variable, just like the 2 in V,. 4 or
in [ f(x)dz. We inductively define the sets of free and bound variables in a term , denoted
FV (1), BV(t), resp. (cf. [Bar84], p. 24). We shall always identify terms up to renaming of
bound variables. The expression ¢[a/x] denotes the result of substituting the term «a : A for
each occurrence of 2 : A in ¢, if necessary renaming bound variables in ¢ so that no clashes
occur (cf. [Bar84].) Terms without free variables are called closed; otherwise, open.

Equations between terms: A context? is afinite set of (typed) variables. An equation in context
? is an expression a = a', where a,a’ are terms of the same type A whose free variables are
contained in 7.

The equality relation between terms (in context) of the same type is generated using (at least)
the following axioms and closure under the following rules:
(i) = is an equivalence relation,
a=bh
(i) ;7 —p » whenever 7 C A
A
(iii) = must be a congruence relation with respect to all term-forming operations. It suffices
to consider closure under the following two rules (cf. [1.S86])

/

(l,:rb P = w

r:{ LY

]u”’ - fﬁb /\m:A-Q‘Q - /\m:A-Q‘Q/

(iv) The following specific axioms (we omit subscripts on terms, when the types are obvious):

Products
(a) a=xforalla:l,



(b) mi({a, b)) =a foralla:Ab: B,
(c) m((a,b)) =b foralla:Ab: B,
(d) (mi(c),ma(c)) = ¢ forall c: (),

Lambda Calculus
B-Rule (Ap.a.0)a = pla/z],

n-Rule Xp.a.(fx) = f, where f: B* and z is not a free variable of f.

Remark 2.14 There may be additional types, terms, or equations. Following standard conven-
tions, we equate terms which only differ by change of bound variables this is called a- conversion
in the literature [Bar84]. Equations are in context i.e. occur within a declared set of free variables.
This allows the possibility of empty types, i.e types without closed terms (of that type). This view
is fundamental in recent approaches to functional languages [Mit96] and necessary for interpreting
such theories in presheaf categories, for example. However, if there happen to be closed terms a : A
of each type, we may omit the subscript 7 on equations, because of the following derivable rule (cf.
[1.586], Prop. 10.1, p.75): for ¢ 7 and if all free variables of a are contained in 7,
o(7) = ()

ru{s}

Plafa] = laja]

Example 2.15 Freely generated simply typed lambda calculi. These are freely generated from
specified sorts, terms, and/or equations. In the minimal case (no additional assumptions) we
obtain the simply typed lambda calculus with finite products freely generated by Sorts. Typically,
however, we assume that among the Sorts are distinguished datatypes and associated terms, possibly
with specified equations. For example, basic universal algebra would be modelled by sorts A with
distinguished n-ary operations given by terms ¢ : A” = A and constants ¢ : 1 — A. Any specified
term equations are added to the theory as (nonlogical) axioms.

Example 2.16 The internal language of a ccc A. Here the types are the objects of A, where
X, (f)u),] have the obvious meanings. Terms with free variables =, : 4;,---, 2, : A, are polyno-
mialsin A[z,,---,2,], where 1 =5 A, is an indeterminate, lambda abstraction is given by functional
completeness, as in Proposition 2.10, and we define a = b to hold iff @ = b as polynomials in A[X],
where X = {xy,---,2,}.

Remark 2.17

(i) Historically, typed lambda calculi were often presented with only exponential types B* (no
products) and the associated machinery [Bar84, Bar92]. This permits certain simplifications
in inductive arguments, athough it is categorically less “natural” (cf. also Remark 2.24).

(ii) Ttis a fundamental property that lambda calculus is a higher-order functional language: terms
of type B can use an arbitrary term of type A as an argument, and A4 and B themselves may
be very complex. Thus, typed lambda calculus is often referred to as a theory of functionals
of higher type.

2.3 Formulas-as-Types: the fundamental equivalence
l.et us describe the third component of the trio: cartesian closed categories, typed lambda cal-
culi, and formulas-as-types. The Formulas-as-Types view, sometimes called the Curry-Howard



Formulas An=T| Atoms| AT AN A | Ay = A,
Provability  F is a reflexive, transitive relation such that,
for arbitrary formulas A, B,

AFT |, AANBFA | AABFERB
CHAAB iff CFAand CFB
CANAFEB iff CHFA=B

Figure 2: Intuitionistic T, A, = TLogic

isomorphism, is playing an increasingly influential role in the logical foundations of computing,
especially in the foundations of functional programming languages. TIts historical roots lie in
the so-called Brouwer-Heyting-Kolmogorov (BHK) interpretation of intuitionistic logic from the
1920°s[GLT, TrvD88]. The idea is based on modelling proofs (which are programs) by functions,
i.e. lambda terms. Since proofs can be modelled by lambda terms and the latter are themselves
arrows in certain free categories, it follows that functional programs can be modelled categorically.

In modern guise, the Curry-Howard analysis says the following. Proofs in a constructive logic
L may be identified as terms of an appropriate typed lambda calculus A, where:

e types — formulas of L,
e lambda terms = proofs (i.e. annotations of Natural Deduction proof trees ),

e provable equality of lambda terms corresponds to the equivalence relation on proofs generated
by Gentzen’s normalization algorithm.

Often researchers impose additional equations between lambda terms, motivated from categorical
considerations (e.g. to force traditional datatypes to have a strong universal mapping property).

Remark 2.18 (Formulas = Specifications) More generally, the Curry-Howard view identifies
types of a programming language with formulas of some logic, and programs of type A as proofs
within the logic of formula A. Constructing proofs of formula, A may then be interpreted as building
programs that meet the specification A.

For example, consider the intuitionistic {T, A, =}-fragment of propositional calculus, as in
Figure 2. This logic closely follows the presentation of cec’s in Definition 2.1 and Figure 1. We
now identity (= Formulas-as-Types) the propositional symbols T, A, = with the type constructors
1, X, =, respectively. We assign lambda terms inductively. To a proof of A = B we assign A-terms
x: AFt(x): B, where () is a term of type B with at most the free variable z : A (i.e. in context

{2 : A} ) as follows:

r:AFs(x):B y:BFty):C

r:i ARz A x:r AFts(x)/y]: C ,
r: AT | r: AANBE®T(2): A . r: AANBEmy(2): B
z:CkFa:A z:CEb:B z:CANAFI(z): B
x:CF{a,b): ANB y Yy CE XAy, 2)/z] A= B |



y:CkHity): A= B
z:CNAFtr(2)/yl'ma(z) : B

We can now refer to entire proof trees by the associated lambda terms. We wish to put an equi-
valence relation on proofs, according to the equations of typed lambda calculus. Given two proofs
of an entailment AF B say 2 : AFs(z): Band 2 : AFf(x2) : B, we say they are equivalent if we

can derive s T} t in the appropriate typed lambda calculus.

Definition 2.19 let A-Cale denote the category whose objects are typed lambda calculi and
whose morphisms are translations, i.e. maps ® which send types to types, terms to terms (including
mapping the ith variable of type A to the ith variable of type ®(A) ), preserve all the specified
operations on types and terms on the nose, and preserve equations.

Theorem 2.20 There are a pair of functors C' : XCale — Cart,, and L : Cart,, — »Cale which
set up an equivalence of categories Cart,, = »Calc.

The functor I, associates to ccc A its internal language, while the functor ' associates to any
lambda calculus £, a syntactically generated cce C'(L£), whose objects are types of £ and whose
arrows A — B are denoted by (equivalence classes of) lambda terms #(x) representing proofs

x: AFt(x): B as above (see [1.S86]).

This leads to a kind of Soundness Theorem for diagrammatic reasoning which is important in
categorical logic.

Corollary 2.21 Verifying that a diagram commutes in a ccc C is equivalent to proving an equation
in the internal language of C.

The above result includes allowing algebraic theories modelled in the cartesian fragment [Macg2,
Cr93], as well as extensions with categorical data types (like weak natural numbers objects, see
Section 2.3.1.) Theorem 2.20 also leads to concrete syntactic presentations of free cce’s [1.SR6,
Tay98]. T.et Graph be the category of directed multi-graphs [ST96].

Corollary 2.22 The forgetful functor U : Cart,, — Graph has a left adjoint F : Graph — Cart,,.
Let Fg denote the image of graph G under F. We call Fg the free ccc generated by G.

Example 2.23 Given a discrete graph G, considered as a a set, Fg, = the free ccec generated by the
set of sorts G,. It has the following universal property: for any ccc C and for any graph morphism
F': Gy — C, there is a unique extension to a (strict) cce-functor [~ ] : Fg, — C.

Foo ¢

Go

This says: given any interpretation F of basic atomic types (= nodes of G,) as objects of C, there
is a unique extension to an interpretation [— ]z in C of the entire simply typed lambda calculus
generated by G, (identifying the free cce Fg, with this lambda calculus.)

Remark 2.24 A Pitts [Pi97] has shown how to construct free cec’s syntactically, using lambda
calculi without product types. The idea is to take objects to be sequences of types and arrows
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Objects Distinguished Arrow(s) Equations
Tnitial 0 0% A Ox= 1,
f:0— A
in? A= A+ B [f, gleiny = f
Coproducts A4+ B iny? B> A4+ B [f, glein, = g
f [
A=C B5C haing, hoing) = h
A+BU4 o h:A+B—=C

Figure 3: Coproducts

to be sequences of terms. The terminal object is the empty sequence, while products are given
by concatenation of sequences. For a full discussion, see [CDS97] This is useful in reduction-free
normalization (see Section 2.7 below).

Remark 2.25 There are more advanced 2- and bi-categorical versions of the above results. We
shall mention more structure in the case of cartesian closed categories with coproducts, in the next
section.

2.3.1  SOME DATATVYPES
Computing requires datatypes, for example natural numbers, lists, arrays, etc. The categorical
development of such datatypes is an old and established area. The reader is referred to any of the
standard texts for discussion of the basics, e.g. [MA86, BW95, Mit96, Ten94]. General categorical
treatments of abstract datatypes abound in the literature. The standard treatment is to use
initial T-algebras (cf. Section 2.4.2 below) or final T-coalgebras for “definable” or “polynomial”
endofunctors T. There are interesting common generalizations to lambda calculi with functorial
type constructors [Ha87, Wr89], categories with datatypes determined by strong monads[Mo91,
CSp91], and using enriched categorical structures [K82]. There is recent discussion of datatypes in
distributive categories, [C093, W92] and the use of the categorical theory of sketches [BW95, Bor94].
We shall merely illustrate a few elementary algebraic structures commonly added to a cartesian
or cartesian closed category (or the associated term calculi).

Definition 2.26 A category C has finite coproducts (equivalently, binary coproducts and an initial
object 0) if for every A, B € C there is a distinguished object A + B, together with isomorphisms
(natural in A, B,C' € ()

12

(5) Home(0, A) {x}
(6) Home(A4+ B,C) = Home(A,C) x Home(B,()

We say C is bicartesian closed (= bicce) if it is a cce with finite coproducts '

Just as in the case of products (cf. Figure 1), we may present coproducts equationally, as
in Figure 3, and speak of strict structure, etc. In programming language semantics, coproducts
correspond to wvariant types, set-theoretically they correspond to disjoint union, while from the
logical viewpoint coproducts correspond to disjunction. Thus a bicce corresponds to intuitionistic
{—, T, A,V,=}logic. We add to the logic of Figure 2 formulas — and A; V A, together with the

'"Not to be confused with bicategories, cf. [Bor94]
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rules

—FA
AvBEFEC iff AFCand BFC

corresponding to equations (5),(6). The associated typed lambda calculus with coproducts is rather

subtle to formulate [Mit96, GL.T]. The problem is with the copairing operator A + B M (' which
in Sets corresponds to a definition-by-cases operator:

_ ] fa) ifweA
[f,9](z) = { g(z) ifzeB

The correct lambda calculus formalism for coproduct types corresponds to the logicians’ natural
deduction rules for strong sums. The issue is not trivial, since the word problem for free bicce’s
(and the associated type isomorphism problem [DiC095]) is among the most difficult of this type
of question, and at least for the current state of the art depends heavily on technical subtleties
of syntax for its solution (see [Gh96]).

Just as for cce’s, we may introduce various 2-categories of bicec’s (cf. [Cu93]). For example

Definition 2.27 The 2-category 2 — BiC’ART,; has 0-cells strict bicartesian closed categories,
1-cells functors preserving the structure on the nose, and 2-cells natural isomorphisms.

One may similarly define a non-strict version 2 — BiC' ART.

Remark 2.28 Every bicartesian closed category is equivalent to a strict one. Indeed, this is part
of a general 2-categorical adjointness between the above 2-categories, from a theorem of Blackwell,
Kelly, and Power. (See Cubri¢ [Cu93] for applications to lambda calculi.).

Definition 2.29 In a biccc, define Boole = 1 4+ 1, the type of booleans.

Boole’s most salient feature is that it has two distinguished global elements (boolean values)
T, F :1— Boole, corresponding to the two injections in,, in,, together with the universal property
of coproducts. In Set we interpret Boole as a set of cardinality 2; similarly, in typed lambda
calculus, it corresponds to a type with two distinguished constants T, F': Boole and an appropriate
notion of definition by cases . In any bicce, we can define all of the classical n-ary propositional
logic connectives as arrows Boole” — Boole (see [1.S86], 1.8). A weaker notion of booleans in the
category w-CPO is illustrated in Figure 4.

Definition 2.30 A natural numbers object in a ccc C is an object N with arrows 1 N SN
which is initial among diagrams of that shape. That is, for any object A and arrows 1 -25 A SN A,
there is a unique iterator Z,, : N — A making the following diagram commute:

A weak natural numbers object is defined as above, but just assuming existence and not necessarily
uniqueness of 7.

12



2 0 1 2 n
[ J [ J [ J [ J .. [ J
B, = N/ vo= S
Figure 4: Flat Datatypes in w-CPO

In the category Sef, the natural numbers (N, 0,.5) is a natural numbers object, where Sn = n+1
. In functor categories Set®, a natural numbers object is given by the constant functor Ky, where
Kx(A) = N, and Ky(f) = idy, with obvious natural transformations 1 2 Ky 5 Ky, Tn
w-CPO there are numerous weak natural numbers objects: for example the flat pointed natural
numbers N; = N W {1}, ordered as follows: @ < b iff & = b or a =—, where S(n) = n+ 1 and
S(—) =—, pictured in Figure 4.

Natural numbers objects when they exist are unique up to isomorphism; however weak ones
are far from unique. Typical programming languages and typed lambda calculi in logic assume
only weak natural numbers objects.

If a cce C has a natural numbers object N, we can construct parametrized versions of iteration,
using products and exponentiation in C [1.S86, FrSc]. For example, in Set: given functions g : A —
B and f: Nx Ax B — B, there exists a unique primitive recursor R,; : N x A — B satisfying: (i)
R, (0,a) = g(a) and R, (Sn,a) = f(n,a,R,¢(n,a)). These equations are easily represented in any
cce with NV, or in the associated typed lambda calculus (e.g. the number n € N being identified
with S”0). In the case C has only a weak natural numbers object, we may prove the existence but
not necessarily the uniqueness of R ;.

An important datatype in Computer Science is the type of finite lists of elements of some type
A. This is defined analogously to (weak) natural numbers objects:

Definition 2.31 Given an object A in a ccc C, we define the object list(A) of finite lists on A
with the following distinguished structure: arrows nil : 1 — flist(A), cons : A X list(A) — list(A)
satisfying the following (weak) universal property: for any object B and arrows b : 1 — B and
h:Ax B— B, there exists an “iterator” 7, : list(A) — B satisfying (in the internal language):

Tppnil = b Tyneons{a, w) = h{a, Ty w).

Here nil corresponds to the empty list, and cons takes an element of A and a list and concatenates
the element onto the head of the list.

Analogously to (weak) natural numbers objects N, we can use product types and exponentiation
to extend iteration on fist(A) to primitive recursion with parameters (cf. [GLT], p. 92).

What n-ary numerical Sef functions are represented by arrows N7 — N in a cce? The answer,
of course, depends on the ccc. In general, the best we could expect is the following (cf. [1.S86],
Part 111, Section 2):

Proposition 2.32 et Fy be the free cce with weak natural numbers object. The class of numerical
total functions representable therein is properly contained between the primitive recursive and the
Turing-machine computable functions.

In general, such fast-growing functions as the Ackermann function are representable in any ccc
with weak natural numbers object (see [[.S86]). Analogous results hold for symmetric monoidal
and monoidal closed categories, [PR89].

The question of strong versus weak datatypes is of some interest. For example, although
we can define addition 4+ : N x N — N by primitive recursion on a weak natural numbers type,
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commutativity of addition follows from having a strong natural numbers object; a weak parametrized
primitive recursor would only allow us to derive 2 +n = n + 2 for each closed numeral n but we
cannot then extend this to wvariables (this is similar to consequences of Gédel’s incompleteness
theorem, cf. [[.S86], p. 263). Notice that, on the face of it, the definition of a natural numbers
object appears not to be equational: informally, uniqueness of the arrow 7, requires an implication:
forall f: N —= A (if f0=a and fS=hf ) then f =T, .

Here we remark on a curious observation of Lambek [[.88]. Tet us recall from universal algebra
that a Mal’cev operator on an algebra A is a function m, : A® — A satisfying m 222z = 2 and
maxzz = x . For example, if A were a group, m, = zy"'z is such an operator. Similarly, the
definition of a Mal’cev operator on an object A makes sense in any ccc (e.g. as an arrow A% ™% A
satisfying some diagrams) or, equivalently, in any typed lambda calculus (e.g. as a closed term
my @ A? = A satisfying some equations) .

Theorem 2.33 (Lambek) et C be a ccc with weak natural numbers (N,0,.5) in which each object
A has a Mal’cev operator m 4. Then the fact that (N,0,.S) is a natural numbers object is equationally
definable using the family {m, | A € C}. In particular, if C = Fx, the free ccc with weak natural
numbers object, there are a finite number of additional equations (as schema) that, when added to
the original data, guarantee that every type has a Mal’cev operator and N is a natural numbers
object.

2.4 Polymorphism

“The perplexing subject of polymorphism.”
C. Darwin Life & Lett, 1837

Although Darwin was speaking of biology, he might very well have been discussing computer
science 100 years later. Christopher Strachey in the 1960’s introduced various notions of poly-
morphism into programming language design (see [Rey83, Mit96]). Perhaps the most influential
was his notion of parametric polymorphism. Intuitively, a parametric polymorphic function is one
which has a uniformly given algorithm at all types. Tmagine a “generic” algorithm capable of being
instantiated at any arbitrary type, but which is the “same algorithm” at each type instance. It is
this idea of the “plurality of form” which inspired the biological metaphor.

Example 2.34 (Reverse) Consider a simple algorithm that takes a finite list and reverses it.
Here “lists” could mean: lists of natural numbers, lists of reals, lists of arrays, indeed lists of lists of
.... The point is, the types do not matter: we have a uniform algorithm for all types. Let list(«)
denote the type of finite lists of entities of type a.We thus might type this algorithm

rev, : list(a) = list(a)

where rev, (aq, -+, a,) = (Gn, -+, 01).
A second example, discussed by Strachey, is

Example 2.35 (Map-list) This algorithm begins with a function of type o = 8 and a finite a-
list, applies the function to each element of the list, and then makes a §-list of the subsequent
values. We might represent it as:

mapy s : (0 = B) = (list(a) = list(3))

where map, 5(f)(ar,---,a,) = (flar),---, f(a,)).
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Formulas
Provability

An=0vbl| Al = Ay |Va. A

F is a relation between finite sets of formulas

and formulas

7AW Ae?
TU{A}FB A AFA=RB
FA=RB ° UAFRB
7 F Ala) 7 FVYaA(a)
7 EVaA(a) O ? - A[B/a]

where a ¢ FV(7)

for any formula B .

Figure 5: Second Order Intuitionistic Propositional Calculus

Many recent programming languages (e.g. MI., Ada) support sophisticated uses of generic types
and polymorphism. The mathematical foundations of such languages were a major challenge in the
past decade and category theory played a fundamental role. We shall briefly recall the issues.

2.4.1 POLYMORPHIC LAMBDA CALCULI

The logician J-Y. Girard[Gi71, Gi72] in a series of important works examined higher-order logic
from the Curry-Howard viewpoint. He developed formal calculi of variable types, the so-called
polymorphic lambda calculi, which correspond to proofs in higher-order logics. At the same time
he developed the proof theory of such systems . J. Reynolds[Rey74] independently discovered the
second-order fragment of Giirard’s system, and proposed it as a syntax representing Strachey’s
parametric polymorphism.

The

underlying logical system is intuitionistic second order propositional calculus. The latter theory

let us briefly examine Girard’s System F, second order polymorphic lambda calculus.

is similar to ordinary propositional calculus, except we can universally quantify over propositional
variables.

The syntax of second order propositional calculus is presented in Figure 5.

The usual notions of free and bound variables in formulas are assumed. For example, in
Va(a = (), a is a bound variable, while 3 is free. A[B/a] denotes A with formula B substi-
tuted for free a, changing bound variables if necessary to avoid clashes. Notice in the quantifier
rules that when we instantiate a universally quantified formula to obtain, say, 7 F A[B/a], the
formula B may be of arbitrary logical complexity. Thus inductive proof techniques based on the
complexity of subformulas are not available in higher-order logic. This is the essence of the problem
of impredicativity in polymorphism.

We now introduce Girard’s second order lambda calculus. We use the notation FV () and
BV (t) for the set of free and bound variables of term #, respectively. We write FTV (A) and
BTV (A) for the set of free type variables and bound type variables of formula A, respectively.

Definition 2.36 (Girard’s System F)

Types: Freely generated from type variables «, 3, - - - by the rules: if A, B are types, so are A = B
and Ya. A

Terms: Freely generated from variables 2 of every type A by
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(1) First-order lambda calculus rules: if f: A= B,a: A p: B then fla: B and A\, 4.¢:
A=B

(2) Specifically second-order rules:
(a) Ift: A(a), then Aot : YaA(a) where o & FTV(FV (1)),
(b) Tft:YaA(a) then t[B] : A[B/a] for any type B.

Equations: Fquality is the smallest congruence relation closed under g and 5 for both lambdas,
that is:

() Apa-p)a =g @lajz] and A a(f'z) =, f, where 2 & FV(f).
(4) (Awap)[B] =52 ¥[B/a] and Aa.tla] =, t, where o & FTV(1).

n

Equations (3) are the first order §n equations, while equations (4) are second order 7.

From the Curry-Howard viewpoint, the types of F are precisely the formulas of second order
propositional calculus (Fig. 5), while terms denote proofs. For example, to annotate second order
rules we have:

F:?7ht:Aa) F:?7Et:YaA(a)
F:7F At VaA(a) ¥:7Ht[B]: A[B/a]

The Bn equations of course express equality of proof trees.

What about polymorphism? Suppose we think of a term ¢ : YaA(«) as an algorithm of type
A(a) varying uniformly over all types a. Then t[B] : A[B/a] is the instantiation of ¢ at the specific
type B. Moreover, B may be arbitrarily complex. Thus the type variable acts as a parameter.

In System F we can internally represent common inductive data types within the syntax as weak
T-algebras, for covariant definable functors T. Weakness refers to the categorical fact that these
structures satisfy existence but not uniqueness of the mediating arrow in the universal mapping
property. Thus, for any types A, B we are able to define the types 1, Nat, List(A), A x B, A +
B,3a. A, ete. (see [GLT] for a full treatment) .

et us give two examples and at the same time illustrate polymorphic instantiation.

Example 2.37 The type of booleans is given by
Boole = Va.(oo = (o = a))

It has two distinguished elements 7', F' : Boole given by T' = Aa. A, A2 and F' = AaA, A0y,
together with a Definition by Cases operator (for each type A) Dy : A = (A = (Boole = A))
defined by Djuvt = (t[A]'u)‘v where u,v : A, t : Boole. One may easily verify that D uvT =5 u
and D uvF =5 v. (where 3 stands for 3' U 3%).

Example 2.38 The type of (Church) numerals
Nat =Va((a=a) = (a=a)) .

The numeral n : Nat corresponds at each « to n-fold composition f+— f", where " = fofo---of
(n times) and f° = Id, = Az,.x . Formally, it is the closed term n = A A j.am 0. f" : Nat. Thus for
any type B we have a uniform algorithm: n[B] = A; sop.f" : (B = B) = (B = B). Successor is
given by S = X\, .nvar-n+1, where nt1 = Aa X jno o "1 = A X s n-fof" = A A jins o fo(n]a] f).
Finally, iteration is given by: if a : AJh: A= A, T,;, = Mpvae-(2[A]'h)'a : Nat = A. The reader
may easily calculate that Z,,0 =5 a and Z,,(n + 1) =5 h*(Z,,n) for numerals n.
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et us illustrate impredicativity in this situation. Recall the discussion of Church vs. Curry
typing, Section 2.5.3. Notice that for any type B, n[B = B]‘n[B] makes perfectly good sense. In
particular, let B = Nat, the type of n itself. This is a well-defined term and if we erase all its types
we obtain the untyped expression n‘n = Af.f". This latter untyped term is not typable in simply
typed lambda calculus.

Formal systems describing far more powerful versions of polymorphism have been developed.
For example, Girard’s thesis described the typed lambda calculus corresponding to w-order intu-
itionist type theory, so-called F,. Programming in the various levels of Girard’s theories {F,},
n = 1,2,---,w is described in [PDMR&9]. Other systems include Coquand-Huet’s Calculus of
Constructions and its extensions [l.u094]. These theories include not only Girard’s F, but also
Martin-Lof’s dependent type theories [H97al. Tndeed, these theories are among the most power-
ful logics known, yet form the basis of various proof-development systems (e.g. LEGO and Coq)
[1.P92, D193].

2.4.2 WHAT 1S A MODEL OF SysTeM F 7

The problem of finding and indeed defining precisely a model of System F was difficult.
Cartesian closedness is not the issue. The problem, of course, is the universal quantifier: clearly
in Ya.A the o is to range over all the objects of the model, and at the same time V should be
interpreted as some kind of product (over all objects). Such “large” products create havoc, as
foreshadowed in the following theorem of Freyd (cf. [Mac71], Proposition 3, p. 110)

Theorem 2.39 (Freyd) A small category which is small complete is a preorder.

Cartesian closed preorders (e.g. complete Heyting algebras) are of no interest for modelling proofs;
we seek “nontrivial” categories.

Suppose instead we try to define a naive “set-theoretic” model of System F, in which x,=
have their usual meaning, and Ve is interpreted as a “large” product. Such models are defined in
detail in [RP, Pi87]. John Reynolds proved the following

Theorem 2.40 There is no Set model for System F.

There is an elegant categorical proof in Reynolds and Plotkin [RP]. Let us sketch the proof, which
applies to somewhat more general categories than Set.

l.et C be a category with an endofunctor T : C — C. A T-algebra is an object A together with
an arrow TA -2 A. A morphism of T-algebras is a commutative square:

Tf

TA TB

A B

An initial T-algebra (resp. weakly initial T-algebra) is one for which there exists a unique morphism
(resp. there exists a morphism) to any other T-algebra.

We shall be interested in objects and arrows of the model category C which are “definable”,
i.e. denoted by types and terms of System F. There are simple covariant endofunctors T on C
whose action on objects is definable by types and whose actions on arrows is definable by terms (of
System F). For example, the identity functor T'(a) = « and the functor T'(a) = (0« = B) = B,
for any fixed B, have this property.

17



Now it may be shown (see [RP]) that for any definable functor T, the System F expression
P =VYa.(T(a) = o) = o is a weakly initial T-algebra . Suppose the ambient model category C
has equalizers of all subsets of arrows (e.g. Set has this property). Essentially by taking a large
equalizer (cf. the Solution Set Condition in Freyd’s Adjoint Functor Theorem, [Mac71], p. 116) we
could then construct a subalgebra of P which is an initial T-algebra. Call this initial T-algebra 7.
We then use the following important observation of Lambek :

Proposition 2.41 (Lambek) If T(I) LT is an initial T-algebra, then f is an isomorphism.

Applying this to the definable functor T'(a) = (o = B) = B, we observe that T(Z) =2 7. In
particular, let C = Set and B = Boole, and take the usual Set interpretation of x as cartesian
product and = as the full function space. Notice card(B) > 2 (since there are always the two
distinet closed terms T and F'). Hence we obtain a bijection BP’ =~ 7, for some set 7, which is
impossible for cardinality reasons. O

The search for models of System F led to some extraordinary phenomena that had considerable
influence in semantics of programming languages. Let us just briefly mention the history. Notice
that the Reynolds-Plotkin proof depends on a simple cardinality argument, which itself depends
on classical set theory. Similarly, the proof of Freyd’s result, Theorem 2.39, depends on using
classical (i.e. non-intuitionistic ) logical reasoning in the metalanguage. This suggests that it is
really the non-constructive nature of the category Sets that is at fault; if we were to work within a
non-classical universe say within a model of intuitionistic set theory there is still a chance that
we could escape the above problems but still have a “set-theoretical” model of System F. And,
from one point of view, that is exactly what happened.

These ambient categories, called toposes [1.S86, MM92], are in general models of intuitionistic
higher-order logic (or set-theory), and include such categories as functor categories and sheaves
on a topological space, as well as Sets. Moggi suggested constructing models of System F based
on an internally complete internal full subcategory of a suitable ambient topos. This ambient
topos would serve as our constructive set-theory, and function types would still be interpreted as
the full “set-theoretical” space of total functions. M. Hyland [Hy88] proved that the Realizability
(or Effective) Topos had (non-trivial) such internal category objects. The difficult development
and clarification of these internal models was undertaken by many researchers, e.g. D. Scott,
M. Hyland, E. Robinson, P. Rosolini, A. Carboni, P. Freyd, A. Scedrov,A. Pitts et. al. (e.g.
[HRR, Rob89, Ros90, CPS8], Pi&7]).

In a separate development, R. Seely [See87] gave the first general categorical definition of a
so-called external model of System F, and more generally F,. The definition was based on the
theory of indexed or fibred categories. This view of logic was pioneered by Lawvere[l.aw69] who
emphasized that quantifiers were interpretable as adjoint functors. Pitts[Pi87] clarified the relation-
ship between Seely’s models and internal-category models within ambient toposes of presheaves.
Moreover, he showed that there are enough such internal models for a Completeness Theorem. It
is worth remarking that Pitts” work uses properties of Yoneda embeddings. For general expositions
see [AL.91]. Extensions of “set-theoretical” models to cases where function spaces include partial
functions (i.e. non-termination) is in [RR90].

One can externalize these internal category models [Hy88, AT.91] to obtain ordinary categories.
And one such internal category in the Realizability Topos, the modest sets, when externalized is
precisely the cce category Per(N) discussed in Section 2.1.

Proposition 2.42 Per(N) is a model of System F.

The idea is that in addition to the cce structure of Per(N), we interpret V as a large intersection
(the intersection of an arbitrary family of pers is again a per ). We shall return to this example in
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Section 3.2.

Tronically, in essence this model was already in Girard’s original Phd thesis [Gi72]. TLater,
domain-theoretic models of System F were considered by Girard in [Gi86] and were instrumental
in his development, of linear logic.

2.5 The Untyped World

The advantages of types in programming languages are familiar and well-documented (e.g. [Mit96]).
Nonetheless, there is an underlying untyped aspect of computation, already going back to the ori-
ginal work on lambda calculus and combinatory logic in the 1930’s, which often underlies concrete
machine implementations. In this early view, developed by Church, Curry, and Schonfinkel, func-
tions were understood in the old-fashioned (pre-Cantor) sense of “rules”, as a computational process
of going from an argument to a value. Such a functional process could take anything, even itself,
as an argument. Let us just briefly mention some key directions (see [Bar84, AGM] ).

2.5.1 MODELS AND DENOTATIONAT SEMANTICS
From the viewpoint of cce’s, untypedness amounts to finding a ccc € with an object D 2 1 satisfying
the isomorphism

(7) p”~p

Thus function spaces and elements are “on the same level”. Tt then makes sense to define formal
application fg for constants f,g: D” by f'g = ev(f, ©(g)), where ¢ : D" =4 Dis the isomorphism
above. In particular, self-application f‘f makes perfectly good sense.

Dana Scott found the first semantical (topological ) models of the untyped lambda calculus in
1970 [Se72]; i.e. non-trivial solutions I to “equations” of the form (7) in various cce’s, perhaps the
simplest being in w-CPO. This was part of his general investigations (with Christopher Strachey)
into the foundations of programming languages , culminating in the so-called Scott-Strachey ap-
proach to the semantics of programming languages. Arguably, this has been one of the major
arenas in the use of category theory in Computer Science, with an enormous literature. For an
introduction, see [AbJu94, Gun92, Ten94].

More generally, one seeks to find non-trivial domains D satisfying certain so-called “recursive
domain equations”, of the form

(8) D~...D...

where - -- ) ---is some expression built from type constructors. The difficulty is that the variable
DD may appear both co- and contravariantly. Such recursive defining “equations” are used to specify
the semantics of numerous notions in computer science, from datatypes in functional programming
languages, to modelling nondeterminism, concurrency, etc. (cf. also [DiC095]).

The seminal early paper on categorical solutions of domain equations is the paper of Smyth and
Plotkin [SPR2]. More recent work has focussed on Axiomatic and Synthetic Domain Theory (e.g.
[AbJu94, FiP196, ReSt97]) and use of bisimulations and relation-theoretic methods for reasoning
about recursive domains [Pi96a]. These methods rely on fundamental work of Peter Freyd on
recursive types (e.g [Fre92]).

2.5.2  C-MonNoOIDS AND CATEGORICAT, COMBINATORS
On a more algebraic level, a model of untyped lambda calculus is a ccc with (up to isomorphism)
one non-trivial object. That is, a ccc C with an object DD 2 1 satisfying the domain equations:

(9) D=D"~DxD.
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An example of such a D in w-CPO is given in [[.S86], using the constructions of D. Scott and
Smyth-Plotkin mentioned above. An interesting axiomatization of such I’s comes from simply
considering Home (D, D) = Home(1, D7) as an abstract monoid. Tt turns out that the axioms are
easy to obtain: take the axioms of a cce, remove the terminal object, and erase all the types!. That
is (following the treatment in [L.S86], p. 93):

Definition 2.43 A C-monoid (C for Curry, Church, Combinatory, or CCC) is a monoid (M, o, id)

together with extra structure structure (7, ma, 2, (—)7, (—, —) ) where 7;, £ are elements of M, ()"
is a unary operation on M, and (—, —) is a binary operation on M, satisfying untyped versions of
the equations of a ccc (cf. Figure 1):

mi{a,b) =a e(h™m,my) = h

772<(],7 b> =b (g<l{;ﬂ'1 s 772>)* =k

(mye,mac) = ¢

for any a,b,c, h, k€ M (where we elide the monoid operation o ).

C-monoids were first discovered independently by D. Scott and J. Lambek around 1980. The
elementary algebraic theory and connections with untyped lambda calculus were developed in
[1.586] (and independently in [Cur93], where they were called categorical combinators). Obviously
(C’-monoids form an equational class; thus, just like for general ccc’s, we may form free algebras,
polynomial algebras, prove Functional Completeness, etc. The associated internal language is
untyped lambda calculus with pairing operators. As above, this language is obtained from simply
typed lambda calculus by omitting the type 1 and erasing all the types from terms.

The rewriting theory of categorical combinators has been discussed by Curien, Hardin, et. al.
(e.g. see [Har93]). Categorical combinators form a particularly efficient mechanism for implement-
ing functional languages; for example, the language CAMI, is a version of the functional language
MT. based on categorical combinators (see [Hu90], Part 1).

The deepest mathematical results to date on the cartesian fragment of C'-monoids were ob-
tained by R. Statman [St96]. Statman characterizes the free cartesian monoid F (in terms of a
representation into certain continuous shift operators on Cantor space), as well as characterizing
the finitely generated submonoids of F and the recursively enumerable subsets of F. The latter
two results are based on projections of (suitably encoded) unification problems.

2.5.3 CuurcH vs CURRY TyPING

The fundamental feature of the untyped lambda calculus is self-application. The g-rule Az.o(2)‘a =
pla/z] is now totally unrestricted with respect to typing constraints. This permits non-halting
computations: for example, the term Q =, (Az.2z‘2)*(Az.2‘z) has no normal form and only -
reduces to itself, while the fixed point combinator Y =,.; Af.(Az.f'(z‘2)) (Ax.f*(z‘x)) satisfies
FAYf) =5, Yf, hence Y fis a fixed point of f, for any f. Hence we immediately obtain: all terms
of the untyped lambda calculus have a fired point.

Untyped lambda calculus suggests a different approach to the typed world: “typing” untyped
terms. The Church view (which we have adopted here) insists all terms be explicitly typed, starting
with the variables. On the other hand Curry, the founder of the related but older subject of
Combinatory Logic, had a different view: start with untyped terms, but add “type inference rules”
to algorithmically infer appropriate types (when possible). Many modern typed programming
languages (e.g. ML) essentially follow this Curry view and use “typing rules” to assign appropriate
type schema to untyped terms. This leads to the so-called Type Inference Problem: given an

Frase

explicitly typed language £ and type erasure function £ —— U (where U is untyped lambda
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calculus), decide if an untyped term ¢t satisfies t = Frase(M) for some M € L. Tt turns out that a
problem of type inference is essentially equivalent to a so-called unification problem, familiar from
Logic Programming (cf. [Mit96]). Fortunately in the case of ML, and other typed programming
languages there are known type inference algorithms; however in general (e.g. for System F, F,,---)
the problem is undecidable. To the best of our knowledge, the Church-vs-Curry view of typed
languages has not yet been systematically analyzed categorically.

2.6 Logical Relations and Logical Permutations
logical relations play an important role in the recent proof theory and semantics of typed lambda
calculi [Mit96, Plo80, St&5]. Recall the notion of Henkin model (Section 2.1) as a subcec of Set.

Definition 2.44 Given two Henkin models A and B, a logical relation from A to B is a family of
binary relations R ={R, C A, X B, | o a type } satisfying (we write aR,b for (a,b) € R,) :

1. *R]*

2. (a,a' )R,y (b,0") if and only if aR,b and 'RV, for any (a,a’) € A ur, (b,b) € Byyr, i.e.

ordered pairs are related exactly when their components are.

3. For any f € A,o., g € B,o., fR,~, g if and only if for all a« € A,,b € B,
(aR,b implies fa R, gb), i.e. functions are related when they map related inputs to related
outpuis.

For each (atomic) base type b, fix a binary relation R, C A, x B, . Then: there is a smallest family
of binary relations R = {R, C A, X B, | 0 a type } defined inductively from the R,’s by 1,2,3
above. That is, any property (relation) at base-types can be inductively lifted to a family R at all
higher types, satisfying 1, 2, 3 above. We write aRb to denote aR,b for some o. If A =B and R
is a logical relation from A to itself, we say an element a € A is invariant under R if aRa.

The fundamental property of logical relations is the Soundness Theorem [Mit96, St&5]. T.et
T :7 F M : o denote that M is a term of type ¢ with free variables & in context 7. Consider
Henkin models A with 774 an assignment function, assigning variables to elements in A. Tet [M],
denote the meaning of term M in model A w.r.t. the given variable assignment (following [Mit96],
we only consider assignments 7 such that n4(2;) € A, if ; : 0 € 7). The following is proved by
induction on the form of M:

Theorem 2.45 (Soundness) et R C A Xx B be a logical relation between Henkin models
A B . Let ¥ :7 B M : 0. Suppose assignments 14, ns of the variables are related, i.e. for all
v, R(na(e), ns(2:)). Then ROIM T, [M 1)

In particular, if A =B and M is a closed term (i.e. contains no free variables), its meaning
[M] in a model A is invariant under all logical relations. This holds also for languages which have
constants at base types, by assuming [c] is invariant, for all such constants c.

This result has been used by Plotkin, Statman, Sieber , et. al [Plo80, Sie92, St&5] to show
certain elements (of models) are not lambda definable: it suffices to find some logical relation on
A for which the element in question is not invariant.

There is no reason to restrict ourselves to binary logical relations: one may speak of n-ary
logical relations, which relate n Henkin models [St85]. Indeed, since Henkin models are closed
under products, it suffices to consider unary logical relations, known as logical predicates.

Example 2.46 (Hereditary Permutations) Consider a Henkin model A, with a specified per-
mutation 7, : A, — A, at each base type b. We extend 7 to all types as follows: (i) on product
types we extend componentwise: 7, ., = T, X T, : A,xr = Aoy, ; (ii) on function spaces, extend
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by conjugation: 7w, (f) = mrofor ! where f € A,.. We build a logical relation R on A by
letting R, = the graph of permutation =, : A, — A,, i.e. R,(a,b) < 7,(a) = b. Members of R
will be called hereditary permutations. R—invariant elements a € A, are simply fixed points of the
permutation: 7, (a) = a.

Hereditary permutations and invariant elements also arise categorically by interpretation into

Set”:

Proposition 2.47 The category Set” of (left) 7 -sets is equivalent to the category whose objects are
sets equipped with a permutation and whose maps (= equivariant maps) are functions commuting
with the distinguished permutations. Invariant elements of A are arrows 1 — A € Set”.

Alas, Set” is not a Henkin model (1 is not a generator). In the next section we shall slightly
generalize the notion of logical relation to work on a larger class of structures.

2.6.1 LOGICAT, RELATIONS AND SYNTAX

Logical predicates (also called computability predicates) originally arose in proof theory as a
technique for proving normalization and other syntactical properties of typed lambda calculi
[1.586, GI.T]. Later, Plotkin, Statman, and Mitchell [Plo80, St85, Mit96] constructed logical re-
lations on various kinds of structures more general than Henkin models. Following Statman and
Mitchell, we extend the notion of logical relation to certain applicative typed structures A for which

(i) appropriate meaning functions on the syntax of typed lambda calculus, [M], ., are well-defined,

nas
and (ii) all logical relations R are (in a suitable sense) congruence relations with respect to the syn-
tax. This guarantees that the meanings of lambda abstraction and application behave appropriately
under these logical relations. Following [Mit96, St85] we call them admissible logical relations.
The Soundness Theorem still holds in this more general setting, now using admissible logical

relations on applicative typed structures (see [Mit96], Lemma 8.2.10).

Example 2.48 l.et A be the hereditary permutations in Example 2.46. Consider a free simply
typed lambda calculus, without constants. Then as a corollary of Soundness we have: the meaning
of any closed term M is invariant under all hereditary permutations . This conclusion is itself a
consequence of the universal property of free cartesian closed categories when interpreted in Set”
(cf. Corollary 2.22 and Lauchli’s Theorem 5.4).

Remark 2.49 The rewriting theory of lambda calculi is a prototype for Operational Semantics
of many programming languages (recall the discussion after the g-rule, Corollary 2.11). See also
Section 2.8.1 below on PCF. Logical Predicates (so-called computability predicates) were first intro-
duced to prove strong normalization for simply typed lambda calculi (with natural numbers types)
by W. Tait in the 1960’s. Highly sophisticated computability predicates for polymorphically typed
systems like F and F, were first introduced by Girard in his thesis [Gi71, Gi72]. For a partic-
ularly clear presentation, see his book [GIT]. These techniques were later revisited by Statman
and Mitchell using more general logical relations to also prove Church-Rosser and a host of other
syntactic and semantic results for such calculi (see [Mit96]).

For general categorical treatments of logical relations, see [Mit96, MitSce, MaRey] and references
there. Uses of logical relations in operational semantics of typed lambda calculi are covered in
[ACI8, Mit96]. A categorical theory of logical relations applied to data refinement is in [KOPTT].
Use of operationally-based logical relations in programming language semantics is in [Pi96b, Pi97].
For techniques of categorical rewriting applied to lambda calculus, see [JGh95].
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2.7 Example 1: Reduction-Free Normalization

The operational semantics of A-calculi have traditionally been based on rewriting theory or proof
theory, e.g. normalization or cut-elimination, Church-Rosser, etc. More recently, Berger and
Schwichtenberg [BS91] gave a model-theoretic extraction of normal forms a kind of “inverting”
of the canonical set-theoretic interpretation used in Friedman’s Completeness Theorem (cf. 5.2
below).

In this section we sketch the use of categorical methods (essentially from Yoneda’s LLemma,
cf. Theorem 5.1) to obtain the Berger-Schwichtenberg analysis. A first version of this technique
was developed by Altenkirch, Hoffman, and Streicher [AHS95, AHS96]. The analysis given here
comes from the article [CDS97], which also mentions intriguing analogues to the Joyal-Gordon-
Power-Street techniques for proving coherence in various structured (bi-)categories. The essential
idea common to these coherence theorems is to use a version of Yoneda’s lemma to embed into a
“stricter” presheaf category.

To actually extract a normalization algorithm from these observations requires us to construct-
ively reinterpret the categorical setting in PSet, as explained below. This leads to a non-trivial
example of program extraction from a structured proof, in a manner advocated by Martin-1.6f and
his school [ML.82, Dy95, H97a, CDI7] The reader is referred to [CDSIT] for the fine details of the
proof.

In a certain sense, the results sketched below are “dual” to Lambek’s original goal of categorical
proof theory [1.68, 1.69], in which he used cut-elimination to study categorical coherence problems.
Here, we use a method inspired from categorical coherence proofs to normalize simply typed lambda
terms (and thus intuitionistic proofs.)

2.7.1 CATEGORICATL, NORMAT FORMS

Let £ be a language, T the set of L-terms and ~ a congruence relation on 7. One way to decide
whether two terms are ~-congruent is to find an abstract normal form function, i.e. a computable
function nf : T — T satisfying the following conditions for some (finer) congruence relation = :

NF1 nf(f)~ f

NF2 f~g=nf(f)=nflg)

NF3 =C~

NF4 = is decidable.

From (NF1), (NF2) and (NF3) we see that f ~ g < nf(f) =nf(g). This clearly permits a decision
procedure: to decide if two terms are ~-related, compute nf of each one, and see if they are =
related, using (NF4). The normal form function nf essentially “reduces” the decision problem of
~ to that of =. This view is inspired from [CD97].

Here we let £ be typed lambda calculus, 7T the set of A-terms, ~ be @n-conversion, and =
be a-congruence. let us see heuristically how category theory can be used to give simply typed
A-calculus a normal form function nf.

Recall 2.22 that A-terms modulo gn-conversion ~g, determine the free ccc Fy on the set of

> By the universal property 2.22, for any ccc C and any interpretation of the

sorts (atoms) X
atoms X in ob(C), there is a unique (up to iso) cce-functor [—] : Fy — C freely extending this
interpretation. Let C be the presheaf category Set”™ ". There are two obvious cee-functors: (i) the

Yoneda embedding Y : Fy — Set™” (cf. 5.1) and (ii) if we interpret the atoms by Yoneda, there

2We actually use the free ccc of sequences of Ad-terms as defined by Pitts [Pi9?]
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is also the free extension to the cec-functor [—] : Fy — Set”™” . By the universal property, there
is a natural isomorphism ¢ : ¥ — [—]. By the Yoneda lemma we shall invert the interpretation
[—] on each hom-set, according to the following commutative diagram

Fan — L1 o= al 18]

RILURNN im0}

Set™ (YA, VB)

" f .
That is, for any f € Fy (A, B), we obtain natural transformations YA day [A] u [B] & yB.

a4 £
Then evaluating these transformations at A gives the Set functions: Fy (A, A) g [A]A u
[B]A ik Fx (A, B). Hence starting with 1, € Fy (A, A), we can define an nf function by:

(10) nf(f) =aer 4 a ([[f]]A(Qj,]A(]A)))

Clearly nf(f) € Fx(A, B). But, alas, by Yoneda’s Lemma, nf(f) = f ! Indeed, this is just a
restatement of part of the Yoneda isomorphism. But all is not lost: recall NF1 says nf(f) ~ f.

This suggests we should reinterpret the entire categorical argument, including the use of functor

[44 [44

categories and Yoneda’s L.emma, in a setting where “=" becomes “~", a (partial) equivalence
relation. Diagrams which previously commuted now should commute “up to ~".

This viewpoint has a long history in constructive mathematics, where it is common to use sets
(X, ~) equipped with explicit equivalence relations in place of quotients X/~ (because of problems
with the Axiom of Choice). Thus, along with specifying elements of a set, one must also say what

it means for two elements to be “equal” (see [Bee85]).

2.7.2 P-CATEGORY THEORY AND NORMALIZATION ALGORITHMS

Motivated by enriched category theory [K82, Bor94], this view leads to the setting of P-category
theory in [CDSI97]. In P-category theory (i) hom-sets are PSets, i.e. sets equipped with a partial
equivalence relation (per) ~, (ii) all operations on arrows are PSet maps, i.e. preserve ~, (iii) func-
tors are ~-versions of enriched functors, (iv) P-functor categories and P-natural transformations
are ~-versions of appropriate enriched structure, etc. One then proves a P-version of Yoneda's
lemma. In essence, P-category theory is the development of ordinary (enriched) category theory in
a constructive setting, where equality of arrows is systematically replaced by explicit pers, making
sure every operation on arrows is a congruence with respect to the given pers. For an example, see
Figure 6.

Now consider the free ccc (Fy,~) as a P-category, where the arrows are actually sequences of
A-terms and the per ~ on arrows is gn-equality =g,. Analogously to the above, freeness in the
P-setting yields a unique P-cce functor

)P

[-1:(Fy,~) — PSetm>™

where atoms X € X’ are interpreted by P-Yoneda, i.e. as Homz, . )(—, X). Just as in the ordinary
case, the P-Yoneda functor Y is a P-ccc functor, so we have a P-natural isomorphism ¢ : [~ ] = Y
of P-cce P-functors:
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P-Products

¢ ~ ¢ for any constant ¢ € {14, 7, w2},

[~ fforany ff'r A1,

fi ~ g; implies <f17f2> ~ <!]17!]2>7 7T7I<f17f2> ~ fi where f;,g; : C' = A;,
(mik,mok) ~ k, for k: C'— A x A,

P-Fzponentials

e ecv~evforB* x A2 B,

e h~ h'implies h* ~ b : C' — B*, where h,h' : C' x A — B
o h ~ h' implies ev(h*m, ms) ~ b,

o [ ~ 1" implies (ev(lmy, m))" ~1': C' — B".

P-Functor

o [~ fimplies Ff ~ Ff forall f,f,
o [~ [, g~ g implies F(gf)~ Fg Ff' for all composable f,g and f' ¢,
o F(ida) ~ idpa,
e Specified P-isomorphisms 1 — F1, FAx FB ——» F(A x B),
(FB)"™ = F(BY)

Figure 6: P-ccc’s and P-cee Functors

)P

(Fxo~) gl 1 q"" PSet»~
Y

In this setting nf as defined by Equation (10) will be a per-preserving function on terms themselves
and not just on fn-equivalence classes of terms (recall that, classically, a free ccc has for its arrows
equivalence classes of terms modulo the appropriate equations). Arguing as before, but now using
the P-Yoneda isomorphism, it follows immediately that nf is an identity P-function. But this
means nf(f) ~ f, which is precisely the statement of NF1. Moreover, the part of P-category
theory that we use is constructive in the sense that all functions we construct are algorithms.
Therefore n f is computable.

It remains to prove NF2: f ~ g = nf(f) =nf(g). This is the most subtle point. Here too the
P-version of a general categorical fact will help us (cf 2.4): the P-presheaf category PSet’” is a
P-cce for any P-category C. In particular, let C be the P-category (Fx,=) of sequences of A-terms
up to “change of bound variable” =. This is a trivially decidable equivalence relation on terms
(called a-congruence in the literature) and obviously = C =g,. Note that this P-category has the
same objects and arrows as (Fy,~), but the pers on arrows are different.

By the freeness of (Fy,~), we have another interpretation P-functor

[-17: (Fx,~) = PSet"=)

where we interpret atoms X € X by the P-presheaf Homr, =)(—, X). The key fact is that this
P-functor [~ ] has exactly the same set-theoretic effect on objects and arrows as [—]. That is,
one proves by induction:

Lemma 2.50 For all objects C' and arrows f in (Fx,~), |[C]]| = [[C1F| and similarly |[[f]]| =

|[[f]]5|, where | — | means taking the underlying set-theoretic structure.
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Hence, we can conclude that f ~ ¢ implies [[f]] = [9] (here = refers to the per on arrows in

PSet(TX’E)np). We can show that g and ¢5' are =natural, in particular gr a and q,ﬁjA preserve
=. Tt then follows that nf(f) = nf(g), as desired.

Remark 2.51

(i) The normal forms obtained by this method can be shown to coincide with the so-called long
Bn normal forms used in lambda calculus [CDS97].

(i) The direct inductive proofs used above correspond more naturally to a more-involved bicat-
egorical definition of freeness ([CDS97], Remark 3.17).

Finally, in [CDS97] it is shown how to apply the method to the word problem for typed -
calculi with additional axioms and operations, i.e. to freely-generated ccc’s modulo certain theories.
This employs appropriate free P-ccc’s (over a P-category, a P-cartesian category, etc.) These are
generated by various notions of A-theory, which are determined not only by a set of atomic types,
but also by a set of basic typed constants as well as a set, of equations between terms. Although the
Yoneda methods always yield an algorithm nf it does not necessarily satisfy NF4 (the decidability
of =). What is obtained in these cases is a reduction of the word problems for such free cce’s to
those of the underlying generating categories.

2.8 Example 2: PCF

The language PCF, due to Dana Scott in 1969, has deeply influenced recent programming language
theory. Much of this influence arises from seminal work of Gordon Plotkin in the 1970°s on opera-
tional and denotational semantics for PCF. We shall briefly outline the syntax and basic semantical
issues of the language following from Plotkin’s work. We follow the treatment in [AC98, Sie92],
although the original paper ( [Plo77] ) is highly recommended.

2.8.1 PCF
The language PCF is an explicitly typed lambda calculus with the following structure:
Types: Generated from nat, boole by =.

Lambda Terms: generated from typed variables using the following specified constants:

n : nat, for each n € N zero? : nat = boole

T : boole cond,, . = boole = (nat = (nat = nat))

F : boole condy, o : boole = (boole = (boole = boole))
suce : nat = nat —5t O

pred : nat = nat Y,: (0= 0)=o0.

Categorical Models

The standard model of PCF is defined in the ccc w-CPQO . as follows: interpret the base types as
in Figure 4: [nat] = N, [boole] = B., [o= 7] =[c] = [7] (= function space in w-CPO).
Interpret constants as follows (for clarity, we omit writing [—] ): suce,pred : Nat; — Nat,,
zero? : Nat, — B, , cond, : boole x 0> — o, o € {nat,boole} (cond is for conditional, sometimes

called if then else), [T] =t [F]=f, 1n] =n,
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(Az.p)a — pla/z] zero?‘(0) — t
Yf — f4Y“f) zero?'(n+1) — f
succ'n — n4+1 condtab — «a
pred(n+1) — n cond fab — b
=y =y 0
Fa s ga S g where u € {suce, pred, zero?}
f—y
cond fab — cond gab  where cond xyz = ((cond‘z)‘y)‘z

Figure 7: Operational Semantics for PCF

. B y if p=t
suee(x) = { gi—‘_ ] :: : i— cond,(p,y,2) =< z if p=Ff
v — if p=—
x—1 ifx#—,0
pred(z) = { i ]p]:(jé —, is the least element of [o] (denoting “non-
o termination” or “divergent”).
t ifx=0
zerol(z) =< [ ifaz#0,— Y, is the least fixed point operator
— e = Y. (f) =V{f"(—5) | »n >0} (see Example 3.5).

More generally, a standard model of PCFis an w-CPO-enriched ccc C, in which each homset C(A, B)
has a smallest element —,5: A — B with the following properties: (i) pairing and currying are
monotonic, (i) — of = f and evo(—, f) =— for all f of appropriate type, (iii) there are objects nat
and boole whose sets of global elements satisfy C(1,nat) 2 N, and C(1,boole) > B, and in which
the constants are all interpreted in the internal language of C as in the standard model above (e.g.
interpreting suce(x) by evo(suce, z), ete.). A model is order-extensional if 1 is a generator and the
order on hom-sets coincides with the pointwise ordering.

The operational semantics of PCF is given by a set of rewriting rules, displayed in Figure 7.
This is intended to describe the dynamic evaluation of a term, as a sequence of 1-step transitions.
The fixed-point combinator Y guarantees some computations may not terminate. It is important
to emphasize that in operational semantics with partially-defined (i.e. possibly non-terminating)
computations, different orders of evaluation (e.g. left-most outermost vs innermost) may lead to
non-termination in some cases and may also effect efficiency, ete. (See [Mit96], Chapter 2). We
have chosen a simple operational semantics for PCF, given by a deterministic evaluation relation,

following [AC98].

2.8.2 ADEQUACY

A PCF program is a closed term of base type (i.e. either nat or boole). The observable behaviour
of a PCF program P : nat is the set Beh(P) = {n € N | P -5 n}, and similarly for P : boole.
The set Beh(P) is either empty if P diverges or a singleton if P converges to a (necessarily unique)
normal form. The following theorem is proved using a logical relations argument.
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Theorem 2.52 (Computational Adequacy) et C be any standard model of PCF. Then for all

programs P : nat and n € N,
P-Sn iff [P]l=n
and similarly for P : boole. Hence [ P] = [[Q]] iff their sets of behaviours are equal.

We are interested in a notion of “observational equivalence” arising from the operational se-
mantics. A program (a closed term of base type) can be observed to converge to a specific numeral
or boolean value. More generally, what can we observe about arbitrary terms of any type? The idea
is to plug them into arbitrary program code, and observe the behaviour. More precisely, a program
context C[—] is a program with a hole in it (the hole has a specified type) which is such that if
we formally plug a PCF term M into (the hole of) C[—] (we don’t care about possible clashes of

bound variables) we obtain a program C[M]. We are looking at the convergence behaviour (with
respect to the operational semantics) of the resulting program. (cf. [AC98]).

Definition 2.53 Two PCF terms M, N of the same type are observationally equivalent (denoted
M = N) iff Beh(C[M]) = Beh(C[N]) for every program context C[—].

That is, M == N means that for all program contexts C[—], C[M] —= ¢ iff C[N] - ¢ (for
c either a boolean value or a numeral). Thus, by the previous Theorem, M =~ N iff [[C[M]H =

[[C[N]H. In order to prove observational equivalence of two PCF terms, R. Milner showed it suffices
to pick applicative contexrts, i.e.

Lemma 2.54 (Milner) Two closed PCF expressions M, N : oy = (65 = -+ (- (0, = nat)---)
are observationally equivalent iff [[/\/[R ...Pn]] = [[NR ...P,,,]] for all closed P, : o0, , 1 <1 <n.

Finally, the main definition of the subject is:

Definition 2.55 (Full Abstraction) A model is called fully abstract if observational equivalence
coincides with denotational equality in the model, i.e. for any two PCF terms M, N

M=~ N iff [M]=][N]
Which models are fully abstract? There are two main theorems, due to Milner and Plotkin.

First we introduce the “parallel-or” function por : B, x B, — B, on the standard model of PCF:

t fa=torb=t
por(a,by=< f ifa=b=f
— else
Theorem 2.56 (Plotkin)
e por is not definable in PCF.

o The standard model is not fully abstract.

o The standard model is fully abstract for the language PCF + por.

The proof of the first two parts of the theorem use logical relations ([Sie92, AC98, Gun92]) . In
1977, R. Milner proved the following [Mil77]:

Theorem 2.57 (Milner) There is a unique (up to isomorphism) fully abstract order-extensional

maodel of PCF.
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“ mathematical” (i.e.

Milner’s construction is syntactical, so the question became: find a more
not explicitly syntactical) characterization of the unique fully abstract model. This is related to the
Full Completeness Problems discussed in Section 5.2. A satisfying solution to the Full Abstraction
Problem for PCF was recently given by S. Abramsky, R. Jagadeesan, and P. Malacaria and also M.
Hyland and TI.. Ong who use various monoidal categories of games. This has recently led to highly
active subject of games semantics for programming languages (see Section 4.3.2 and the articles

mentioned there).

3 Parametricity

What is parametricity in polymorphism? We have already seen such notions as

e Uniformity of algorithms across types.

e Passing types as parameters in programs.

But the problem is that a type like Yo(a = «), when interpreted in a model as a large product over
all types, may contain in Strachey’s words unintended ad hoc elements. In addition to removing
some entities, we may wish to include yet others. For example, should we consider closure of
parametric functions under isomorphism of types?

We have already mentioned the idea of types being functors, in Section 2.4.2. Indeed, this
suggests an obvious kind of modelling

e Types = functors

e Terms (programs) = natural transformations

all defined over some ccc C. This view of categorical program semantics has had a fruitful history.
Reynolds, Oles, and later O’Hearn and Tennent have used functor categories to develop semantics of
local variables, block structure, non-interference, etc. in Algol-like languages (see [OHT92, Ten94]
and references there ).

In the case of polymorphism this is also not such a far-fetched idea. Tmagine a term ¢ : Voo = .
We know that for each type A, t[{A] : A = A. Thus, from our Curry-Howard viewpoint, we think
of this as an object-indexed family of arrows. Combining this idea with the mild parametricity
condition of naturality then seems reasonable. In the mid 1980°s, Giirard gave functor category
models of System F [Gi86]. However to handle the functorial problem of co/contravariance in an
exression like & = 3 (or worse, in & = «, which is not a functor at all) he introduced categories of
embedding-projection pairs (asin domain theory, Section 2.5). Below we shall consider dinaturality,
a multivariant notion of naturality which takes into account such problems.

Reynolds[Rey&3] also proposed an analysis of parametricity using the notion of logical relations,
a fundamental tool in the theory of typed lambda calculi. The paper [BFSS90] studied the above
two frameworks for parametricity: Reynolds’ relational approach and the dinaturality approach.

This work was extended and formalized in [ACC93, BAC95, PIAb93].

3.1 Dinaturality

One attempt to understand parametric polymorphism is to require certain naturality conditions on
families interpreting universal types. In this view we begin with some appropriate ccc C of values
and interpret polymorphic type expressions A(aq, ..., a,) , with type variables «;, as certain kinds
of multivariant “definable” functors F': (C")" xC" — C. Terms or programs t are then interpreted
as certain multivariant (= dinatural ) transformations between (the interpretations of) the types.
We need to account for naturality not only in positive (covariant) positions, but also in negative
(contravariant) ones. As we shall see, the difficulty will be compositionality.
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Definition 3.1 Tet C be a category, and F,G : (C")" x C" — C functors. A dinatural transform-
ation 0 : ' — G is a family of C-morphisms § = {0, : FAA — GAA| A € C"} satisfying (for any
n-tuple f: A— B €(C"):

fa

F'AA GAA
FfA/’ \i%‘f
F'BA GAB
FBf\« . /(;.fB
FBB GBB

For a history of this notion, see [Mac71]. Dinatural transformations include ordinary natural trans-
formations as a special case (e.g. construe covariant F, (G as bifunctors, dummy in the contravariant
variable), as well as transformations between co- and contravariant functors. The parametric aspect
of naturality here is that 84 may be varied along an arbitrary map f: A — B in both the co- and
contravariant positions.

In the following examples, K4 denotes the constant functor with value A (where K4(f) = id,4
). We use set-theoretic notation, but the examples make sense in any ccc (e.g. using the internal
language). We follow the treatment in [BFSS90].

Example 3.2 (Polymorphic Identity) let F'= Ky, let G(—, ) = (7)“). Consider the family
T={I,:1—= A" | AcC} where T,(x) = A\pa.r = (1 x A 25 A)*. Definition 3.1 reduces to the

following commuting square:
A4
N
1 B"
N
BB

which essentially says foid, = idgof. This equation is true (in Set or in the internal language of
any ccc) since both sides equal f.

Example 3.3 (Evaluation) Fix an object D € C. et F(—) = DY) and G = Kp. The family
Fvo={evy : (D*Yx A= D|AeC}:F — Gisadinatural transformation, where ev, is the usual
evaluation in any ccc. Definition 3.1 reduces to the following commuting square, forany f: A - B

DY % A

D? % A D
DP xf\« /evR
n®x B

This says, for any g : D% a2 A, eva(gof,a) = evg(g, f(a)). More informally, (gof)(a) = g(f(a)).
Again, this is a truism in any ccc.



Extending the above example, generalized evaluation KV = {ev, 41 : AV A A A A €C)
determines a dinatural transformation between appropriate functors (cf [BFSS90]). Dinaturality
corresponds to the true equation f'((gof)(a)) = (fog)(f(a)) for g : A", a: A, and any f: A —
B, ff: A= B.

Example 3.4 (Church Numerals) Define n : (=) — (=) to be the family where n, :

(-)
A" = A% is given by mapping h — h”, with h” = hohoh - - -oh, (n times). Dinaturality corresponds
to the diagram (for any f: A — B)

A4 A4
b
v N
AP B*
fR\‘ BR np BR /I;f

i if g2 AP (fog)of = fo(gof)” , an instance of associativity.

We shall see dinaturality again in Section 6.1 . Observe that each of the families @ = {6, | A € C}
above which in essence arise from the syntax of cce’s  have uniform algorithms 64 across all types
A. For example, ny = Aj.44.h", uniform in each type A.

We end with an operator which is fundamental to denotational semantics.

Example 3.5 (Fixed Point Combinators) In many ccc’s C used in programming language
semantics, e.g. certain subcategories of w-CPQ, there is a dinatural fixed point combinator
Yoy - (=)™ = (=). That is, we have a family {Y, : A* = A | A € C} making the follow-
ing diagram commute, for any f: A — B:

AA Ya A
b
a N
AP B
fR\‘ BR YR B /74(113

This says, using informal set-theoretic notation, if g : A%, f(Y4(gof)) = Yg(feg). Tn particular,
setting B = A and letting g = idg, we have the fixed-point equation f(Y.(f)) =Ya(f).

For example, consider w-CPO  the subcee of w-CPO whose objects A have a least element — 4
but the morphisms need not preserve it. It may be shown that the family given by Y, (f) = the
least fized-point of f = \/{f"(—4) | n > 0} is dinatural (see [BFSS90, Mul91, Si93]).

There is a calculus of multivariant functors F, G : (C*?)" x C" — C functors. For example basic
type constructors may be defined (using products and exponentials in C) by setting

(11) (FxG)AB = FAB xGAB
(12) (G"YAB = GAB™"?

Here A is the list of n contravariant and B the list of n covariant arguments. Note the twist of
the arguments in the definition of exponentiation. Much of the structure of cartesian closedness
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(e.g. evaluation maps, currying, projections, pairing, etc.) exists within the world of dinatural
transformations and there is a kind of abstract functorial calculus (cf. [BFSS90], Appendix A6,
[Fre93]).

Unfortunately, there is a serious problem: in general, dinaturals do not compose. That is,
given dinatural families {FFAA 1 GAA | A€ C}and {GAA YA HAA | A €C}, the composite

{FAA Caha I AA | A € C} does not always make the appropriate hexagon commute. However,
with respect to the original question of closure of parametric functions under isomorphisms of
types, we note that families dinatural with respect to isomorphisms f do in fact compose. But this
class is too weak for a general modelling . Detailed studies of such phenomena have been done in
[BFSS90, FRRa, FRRb].

Remarkably, there are certain categories C over which there are large classes of multivariant
functors and dinatural transformation which provide a compositional semantics:

e In [BFSS90] it is shown that if C = Per(N), that so-called realizable dinatural transformations
between realizable functors compose. Realizable functors include almost any functors that
arise in practice, (e.g. those definable from the syntax of System F) while realizable dinatural
transformations are families of per morphisms whose action is given uniformly by a single
Turing machine. This semantics also has a kind of universal quantifier modelling System

F(see below).

e In [(GSS91] it is shown that the syntax of simply typed lambda calculus with type variables
i.e. C = afree ccc  admits a compositional dinatural semantics (between logically definable
functors and dinatural families). This uses the cut-elimination theorem from proof theory.
This work was extended to Linear Logic by R. Blute [Blu93].

e In [BS96] there is a compositional dinatural semantics for the multiplicative fragment of linear
logic (generated by atoms). Here C = RTVEC, a category of reflexive topological vector spaces
first studied by Lefschetz [1.ef63], with functors being syntactically definable. Tn [BS96b, BS98]
this was extended to a compositional dinatural semantics for Yetter’s noncommutative cyclic
linear logic. In both cases, one demands certain uniformity conditions on dinatural families,
involving equivariance w.r.t. continuous group (respectively Hopf-algebra ) actions induced
from actions on the atoms (see also Section 5.2 below). For the non-cyclic fragment, this is
automatic.

Associated with dinaturality is a kind of “parametric” universal quantifier first described by
Yoneda and which plays a fundamental role in modern category theory [MacT71].

Definition 3.6 An end of a multivariant functor (G on a category C is an object ' = [, GAA and
a dinatural transformation Kr — G, universal among all such dinatural transformations.
In more elementary terms, there is a family of arrows {[, GAA X GXX| X € C)} making

the main square in the following diagram commute, for any X BN Y, and such that given any
other family v = {ux | X € C} such that GX foux = G fYouy, there is a unique Au making the



appropriate triangles commute:

One may think of [, GAA as a subset of [1,GAA (note, this is a “large” product over all A € C,
so C must have appropriate limits for this to exist)

/ GAA = {g € TAGAA | GX folx = GfYoby, forall X,V,f: X =V €C}
J A

In [BEFSS90] versions of such ends over Per(N) are discussed with respect to parametric modelling
of System F.

In a somewhat different direction, co-ends (dual to ends) are a kind of sum or existential
quantifier. Their use in categorical computer science was strongly emphasized in early work of
Bainbridge [B72, B76] on duality theory for machines in categories. A useful observation is that we
may consider functors R : CxD — Set and S : Dx & — Set as generalized relations, with relational
composition being determined by the coend formula R; S(C, F) = fD(R(C, D) x S(D, F)). This
view has recently been applied to relational semantics of dataflow languages in [HPW].

We should mention that dinaturality is also intimately connected with categorical coherence
theorems and geometrical properties of proofs [Blu93, So87]. Tt also seems to be hidden in deeper
aspects of Cut-Elimination [GSS91], although here there is still much to understand. We shall meet
dinaturality again in several places (e.g. in Traced Monoidal Categories, Section 6.1).

3.2 Reynolds Parametricity
Reynolds [Rey83] analyzed Strachey’s notion of parametric polymorphism using a relational model
of types. Although his original idea of using a Set-based model was later shown by Reynolds
himself to be untenable, the framework has greatly influenced subsequent studies. As a concrete
illustration, following [BFSS90] we shall sketch a relational model over Per(N). Related results
in more general frameworks were obtained by Hasegawa [RHas94, RHas95] and Ma and Reynolds
[MaRey]. Although originally Reynolds’ work was semantical, general logics for reasoning about,
formal parametricity, supported by such Per models, were developed in [BAC95, PIAb93, ACC93].
Given pers A, A" € Per(N), a saturated relation R : A — A’ is a relation R C dom 4 X dom 4
satisfying R = A; R; A', where ; denotes relational composition. For all pers A, A', B, B’, saturated
relations R: A —+— A" and S : B += B’ and elements a € dom ,a’ € dom 4, b € dompg, b € domp
we define a relational System F type structure as follows:

e R xS :(AX B)—+ (A x B, given componentwise by (a,b)R x S(a',b") iff aRa" and bSV'.
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e R=S5:(A= B) +— (A" = B'), where f(R = S)giff f, g are (codes of) Turing computable
functions satisfying aRa’ implies faSga’ for any a,a’ as above.

o Va.r(a,S) : Va.r (e, B) —=Va.7(a, B') is defined by a simultaneous inductive definition based
on the formation of type expression 7(«, 3). We shall omit the technical construction (see
[BFSS90], p.49) but the key idea is to redefine the Per-interpretation of Yo.7 () by triming
down the intersection N,47(A) to only those elements invariant under all saturated relations,
while Yo7 (v, S) = Ng7(R,S), the intersection being over all pers A, A" and saturated R :
A AL

The somewhat involved construction of Ya.7(«) ensures the type expressions 7(—) act like functors
with respect to saturated relations. More precisely, Reynolds’ parametricity entails:

o If R: A —— A'isasaturated relation, then for any polymorphic type 7, 7(R) : 7(A) ——=7(A")
is a saturated relation.

o Identity Frxtension Lemma: T preserves identity relations, i.e. 7(id4) = id. (4, as saturated
relations 7(A) —+ 7(A) (and similarly for 7(id4,,...,id4,) )

One obtains a Soundness Theorem, essentially the interpretation of the free term model of
System F into the relational Per model above. For simplicity, consider terms with only one
variable. Tet 0 = o(ay,...,a,) and 7 = 7(ay, ..., a,) denote polymorphic types with free type
variables C {o,...,a,}. Tet 2 : o Bt : 7 denote term ¢ : o with free variable 2 : 0. Associated
to every System F term # is a Turing computable numerical function f;, obtained by essentially
erasing all types and considering the result as an untyped lambda term, qua computable partial
function (see [BFSS90], Appendix A.1).

Theorem 3.7 (Soundness) let A;, Al be pers and R; : A, — Al saturated relations. Then
if mo(R)m' then f,(m)7(R)f;(m"). Also, if t = t' in System F, then f, = [, as Per(N) maps
o(A) — 7(A).

— —

Thus terms (programs) become “relation transformers” o(R) — 7(R) (cf. [MitSce, Fre93]) of the
form f
t —

a(A) ’ 7(A)

a(A) r(A)
Ji
In particular this exemplifies Reynolds’ interpretation of Strachey’s parametricity: if one instanti-
ates an element of polymorphic type at two related types, then the two values obtained must be
related themselves.
Reynolds parametricity has the following interesting consequence [BFSS90, RHas94]. Recall
the category of T-algebras, for definable functors T (cf. the proof of Theorem 2.40).

Theorem 3.8 et T be a System F-definable covariant functor. Then in the parametric Per
model, Yo.((Ta = o) = «a) is the initial T-algebra.



This property becomes a general theorem in the formal logics of parametricity (e.g. [PIAb93,
RHas95]), and hence would be true in any appropriate parametric model. Thus, although the
syntax of second-order logic in general only guarantees weakly initial data types as in [GLT], in
parametric models of System F the usual definitions actually yield strong data types.

The reader might rightly enquire: do relational parametricity and dinaturality have anything in
common? This is exactly the kind of question that requires a logic for reasoning about parametricity.
Plotkin and Abadi’s logic [PIAb93] extends the equational theory of System F with quantification
over functions and relations, together with a schema expressing Reynolds’ relational parametricity.
The dinaturality hexagon in Definition 3.1, for definable functors and families, is expressible as a
quantified equation in this logic.

Proposition 3.9 In the formal system above, relational parametricity implies dinaturality.

Reynolds’ work on parametricity continues to inspire fundamental research directions in pro-
gramming language theory, even beyond polymorphism. For example, O’Hearn and Tennent
[OHT92, OHTI3] use relational parametricity to examine difficult problems in local-variable de-
clarations in Algol-like languages. Their framework is particularly interesting. They use ccc’s of
functor categories and natural transformations, a la Oles and Reynolds, but internal to the category
of reflexive directed multigraphs. The same framework, somewhat generalized, was then used by A.
Pitts [Pi96a] in a general relational approach to reasoning about properties of recursively defined
domains. Pitts work has led to new approaches to induction and co-induction, etc. (see Section
2.5). The reader is referred to Pitts [Pi96a], p.74 and O’Hearn and Tennent [OHT93] for many
examples of these so-called relational structures over categories C.

4 Linear Logic
4.1 Monoidal Categories

We briefly recall the relevant definitions. For details, the reader is referred to [Mac71, Bor94].

Definition 4.1 A monoidal category is a category C equipped with a functor ® : C X C — C, an
object I, and specified natural isomorphisms:

(a:TRA A and ry: AT =5 A

satisfying coherence equations: associativity coherence (Mac Lane’s Pentagon) and the unit coher-
ence.

A symmetric monoidal category is a monoidal category with a natural symmetry isomorphism
sap : A9 B = B® A satisfying: sgasap = idagn, for all A, B, and (omitting subscripts)
r=/Is,asa = (1® s)a(s®@1).

Symmetric monoidal categories include cartesian categories (with ® = X) and cocartesian cat-
egories (with ® = 4). However in the two latter cases, the structure is uniquely determined
(up to isomorphism) and similarly for the coherence isomorphisms by the universal property of
products (resp. coproducts). This is not true in the general case there may be many symmetric
monoidal structures on the same category.

We now introduce the monoidal analog of ccc’s:



Definition 4.2 A symmetric monoidal closed category (= smec) (C, ®, I, —0 ) is a symmetric mon-
oidal category such that for each object A € C, the functor — ® A : C — C has a specified right
adjoint A —o —, i.e. for each A there is an isomorphism, natural in B, ("

(13) Home(C ® A, B) >~ Home(C, A —o B)

eUAR

As a consequence, in any smcc there are “evaluation” and “coevaluation” maps (A —o B)@ A ——= B
and €' — (A —o (C'® A)) determined by the adjointness (13). We shall try to keep close to
our ccc notation, Section 2.1. In particular the analog of Currying arising from (13) is denoted

o (A —o B) Moreover, this data actually determines a (bi)functor — —o — : C” x C — C.
No special coherences have to be supposed for — —o —: they follow from coherence for ® and
adjointness..

For the purposes of studying linear logic below, we need (among other things) a notion of an
smce, equipped with an involutive negation or duality, reminiscent of finite dimensional vector
spaces. The general theory of such categories, due to M. Barr [Barr79], was developed in the mid
1970’s, some ten years before linear logic.

Consider an smec C, with a distinguished object —. Consider the map evg 084 : A® (A —0—
) ——. By (13) this corresponds to a map s : A = (A o) —o—. Tet us write A" for A —o—.
Thus we have a morphism p, : A — A1, Objects A for which p, is an isomorphism are called
reflexive, or more precisely reflexive with respect to —.

Definition 4.3 A x-autonomous category (C,®, I, —o, —) is an smec C with a distinguished object
— such that all objects are reflexive, i.e. the canonical map p, : A — A" is an isomorphism for
all A € C. The object — is called the dualizing object .

Tt may be shown that a s-autonomous category C has a contravariant dualizing functor (—)" :
C" — C, defined on objects by A — A*. There is a natural isomorphism : Home(A, B) =
Homg(B', A").

In any x-autonomous category C there are isomorphisms

12

A Bt

1

(A —o B)L
I

12

The reader is referred to [Barr79] for many examples. Let us mention the obvious one:

Example 4.4 The category Vec;; of finite dimensional vector spaces over a field k is *-
autonomous. Here 4 —o B = Lin(A, B), the space of linear maps from A to B and the dualizing
object. —= k. In particular A = A* is the usual dual space. More generally, within the smce
category Vec of k-vector spaces (with —= k), an object is reflexive iff it is finite dimensional.

In a *-autonomous category, we may define the cotensor @ by de Morgan duality: ARBB =
(AL ® BL)L. The above example Vecy, is somewhat “degenerate” since @ and & are identified
(see the Definition 4.10 of compact category) . In a typical x-autonomous category this is not the
case; indeed in linear logic one does not want to identify tensor and cotensor.

To obtain more general x-autonomous categories of vector spaces, we add a topological structure,
due to Lefschetz [L.ef63]. The following discussion is primarily based on work of M. Barr [Barr79],
following the treatment in Blute [Blu96].



Definition 4.5 let V' be a vector space. A topology 7 on V is linear if it satisfies the following
three properties:

e Addition and scalar multiplication are continuous, when the field k is given the discrete
topology.

e 7 is hausdorff
e () € V has a neighborhood basis of open linear subspaces.

Let TVEC denote the category whose objects are vector spaces equipped with linear topologies,
and whose morphisms are linear continuous maps.

Barr showed that TVEC is a symmetric monoidal closed category, when V —o W is defined to be
the vector space of linear continuous maps, topologized with the topology of pointwise convergence.
(Tt is shown in [Barr96] that the forgetful functor TVEC—VEC is tensor-preserving) . Let V' denote
V —o k. Lefschetz proved that the embedding V—V " is always a bijection, but need not be an
isomorphism. This is analogous to Dana Scott’s method of solving domain equations in denotational
semantics, using the topology to cut down the size of the function spaces.

Theorem 4.6 (Barr) RTVEC, the full subcategory of reflexive objects in TVEC, is a complete,
cocomplete x-autonomous category, with I'- = T = k the dualizing object.

Moreover, in RTVEC, ® and & are not equated. More generally, other classes of x-autonomous
categories arise by taking a linear analog of GG-sets, namely categories of group representations.

Definition 4.7 let (Z be a group. A continuous (G-module is a linear action of (G on a space V
in TVEC, such that for all ¢ € G, the induced map ¢.( ) : V. — V is continuous. Let TMOD(G)
denote the category of continuous G-modules and continuous equivariant maps. Let RT MOD(G)
denote the full subcategory of reflexive objects.

We have the following result, which in fact holds in the more general context of Hopf algebras
(see below).

Theorem 4.8 The category T MOD(G) is symmetric monoidal closed. The category RT MOD(G)
is x-autonomous, and a reflective subcategory of TMOD(G) via the functor ( )LL. Furthermore
the forgetful functor | | : RTMOD(G) = RTVEC preserves the x-autonomous structure.

Still more general classes of *x-autonomous categories may be obtained from categories of mod-
ules of cocommutative Hopf algebras. GGiven a Hopf algebra H |, a module over H is a linear action
p:H ®V — V satisfying the appropriate diagrams, analogous to the notion of G-module. Tet
MOD(H) denote the category of H -modules and equivariant maps. Similarly, TMOD(H) , the
category of continuous H -modules, is the linearly topologized version of MOD(H) where H is given
the discrete topology and all vector spaces and maps are in TVEC.

Proposition 4.9 If H is a cocommutative Hopf algebra, MOD(H) and T MOD(H) are symmetric
monoidal categories.

We then obtain precisely the same statement as Theorem 4.8 by replacing the group G by a
cocommutative Hopf algebra H . Later we shall mention noncommutative Hopf algebra models for
linear logic, with respect to full completeness theorems, Section 5.2.

The case where we do identify ® and @ is an important class of monoidal categories:



Definition 4.10 A x-autonomous category is compact if (A ® B)L ~ A+ @ Bt (i.e. equivalently
if A oB=A"® B).

In addition to the obvious example of Vec;,, there are compact categories of relations, which
have considerable importance in computer science. One such is:

Example 4.11 Rel, is the category whose objects are sets and whose maps R : X — Y are
(binary) relations R C X x Y. Composition is relational composition, etc. This is a compact
category, with X @V =X oV =, ; X XV, the ordinary set-theoretic cartesian product. Define
—= {x}, a one-element set; hence X' = X —o— = X. On maps we have R* = R”, where yR”z

iff 2 Ry.

Given two smce’s C and D (we shall not distinguish the structure) what are the morphisms
between them?

Definition 4.12 A symmetric monoidal functoris a functor F': C — D together with two natural
transformations my : I — F(I) and myyv - F(U) @ F(V) = F(U ® V) such that three coherence
diagrams commute. In the case of the closed structure, we can define another natural transformation
mpy @ F(U —o V) — (FU —o FV) by gy = (F(evrovr)omp ov,r)™- A symmetric monoidal
functor is strong (resp. strict) if m; and mgy are natural isomorphisms (resp. identities) for all
U, V. A symmetric monoidal functor is strong closed (resp. strict closed) if mr and My are natural
isomorphisms (resp. identities) for all U, V. Similarly, one defines x-autonomous functors.

Finally, we need an appropriate notion of natural transformation for monoidal functors.

Definition 4.13 A natural transformation o« : F' — (G is monoidal if it is compatible with both
mr and mgy, for all U,V in the sense that the following equations hold:

oy = My

mpve(ar @ av) = apgvempy

4.2 Gentzen’s proof theory

Gentzen’s proof theory [GIT], especially his sequent calculi and his fundamental theorem on Cut-
Elimination, have had a profound influence not only in logic, but in category theory and computer
science as well.

In the case of category theory, J. Lambek[1.68, 1.69] introduced Gentzen’s techniques to study
coherence theorems in various free monoidal and residuated categories. This logical approach to
coherence for such categories was greatly extended by G. Mints, S. Soloviev, B. Jay, et al [Min81,
So87, S095, J90] For a comparison of Mints’ work with more traditional Kelly-Mac Tane coherence
theory see [Mac82] . More recently, coherence for large classes of structured monoidal categories
arising in linear logic has been established in a series of papers by Blute, Cockett, Seely et al. This is
based on Girard’s extensions of Gentzen’s methods. (see [BCST96, BCS96, BCS97, CS91, CS96b].)

Recent coherence theorems of Gordon-Power-Street, Joyal-Street, et. al. [GPS96, JS91, JS93]
have made extensive use of higher dimensional category theory techniques and Yoneda methods,
rather than logical methods. Related Yoneda techniques are now being introduced, in the reverse
direction into proof theory, as we outlined in Section2.7 above.

In computer science, entire research areas: proof search (Al Logic Programming), operational
semantics, type inference algorithms, logical frameworks, etc. are a testimonial to Gentzen’s work.
Indeed, Gentzen’s Natural Deduction and Sequent Calculi are fundamental methodological as well
as mathematical tools.



A profound and exciting analysis of (Gentzen’s work has arisen recently in the rapidly growing
area of Linear Logic (=LL), developed by J-Y. Girard in 1986. While classical logic is about
universal truth, and intuitionistic logic is about constructive proofs, LI, is a logic of resources and
their management and reuse. (e.g. see [Gi87, Gi®9, GL.R, Sc93, Sc95, Tr92])

4.2.1 (ENTZEN SEQUENTS
Gentzen’s analysis of Hilbert’s proof theory begins with a fundamental reformulation of the syntax.
We follow the presentation in [GLT].

A sequent for a logical language £ is an expression

(14) A Agy o Ay B By Boyo oo By

where Ay, Ay, -~ -, A,, and By, By, ---, B, are finite lists (possibly empty) of formulas of £. Sequents
are denoted 7 F A, for lists of formulas 7 and A. Gentzen introduced formal rules for generating
sequents, the so-called derivable sequents. Gentzen’s rules analyze the deep structure and implicit
symmetries hidden in logical syntax . Computation in this setting arises from one of two methods:

e The traditional method is Gentzen’s Cut-Elimination Algorithm, which allows us to take a
formal sequent calculus proof and reduce it to cut-free form. This is closely related to both
normalization of lambda terms (cf. Sections 2.7) as well as the operational semantics of such
programming languages as PROLOG.

e More recent is the proof search paradigm , which is the bottom-up, goal-directed view of
building sequent proofs and is the basis of the discipline of TLogic Programming [MNPS,
HM94, Mill].

Categorically, the cut elimination algorithm is at the heart of the proof-theoretic approach to
coherence theorems previously mentioned. On the other hand, Logic Programming and the proof-
search paradigm have only recently attracted the attention of categorists (cf. [FiFrl., PK96]).

lLambek pointed out that Gentzen’s sequent calculus was analogous to Bourbaki’s method of
bilinear maps. For example, given sequences 7 = A, --- A, and A = By B, --- B, of R— R bimodules
of a given ring R, there is a natural isomorphism

(15) Mult(? ABA,C) =2 Mult(? A® BA, D)

between m + n + 2-linear and m + n + 1-linear maps. Bourbaki derived many aspects of tensor
products just from this universal property. Such a formal bijection is at the heart of Linear Logic
(e.g. [1.93]).

Traditional logicians think of sequent (14) as saying : the conjunction of the A; entails the
disjunction of the B;. More generally, following Lambek and Lawvere (cf. Section2.1), categorists
interpret such sequents (modulo equivalence of proofs) as arrows in appropriate categories. For
example, in the case of logics similar to linear logic [CS91], the sequent (14) determines an arrow

of the form
(16) Al QA QR A, — B 3B,---BB,

in a symmetric monoidal category with a “cotensor” & (see Section 4.1 below).

4.2.2  (GIRARD’S ANALYSIS OF THE STRUCTURAT, RULES

Gentzen broke down the manipulations of logic into two classes of rules applied to sequents: struc-
tural rules and logical rules. All rules come in pairs (left/right) applying to the left (resp. right)
side of a sequent.



Gentzen’s Structural Rules (Left /Right)

. TEA TEA
Permutation o)A ?F71(A) o, permutations.
7VAARA L THAVBB
Contraction 7 AEA "FA R
. TEA TEA
Weakening T AFA TFALB
For simplicity, consider intuitionistic sequents , i.e. those of the form A, A,,---A,, b B with

one conclusion. So the right rules disappear and we consider the left rules above. We can give a
Curry-Howard-style analysis to Gentzen’s intuitionistic sequents (cf. Section 2.3), assigning lambda
terms (qua functions) to sequents, e.g. @y : Ay, -+, 2, : A, F (%) : B. The structural rules say the
following: Permutation says that the class of functions is closed under permutations of arguments;
Contraction says that the class of functions is closed under duplicating arguments i.e. setting two
input variables equal; and Weakening says the class of functions is closed under adding dummy
arguments. In the absence of such rules, we obtain the so called linear lambda terms, terms where
all variables occur exactly once. (see [GSS91, Abr93, 1.89]):

By removing these traditional structural rules, logic takes on a completely different character”
(see Figure 8). Previously equivalent notions now split into subtle variants based on resource
allocation. For example, the rules for Multiplicative connectives simply concatenate their input
hypotheses 7 and 7', whereas the rules for Additive connectives merge two input hypotheses ?
into one. The situation is analogous for outputs A and A’ ( see Figure 8). The resultant logical
connectives can represent linguistic distinctions related to resource use which are simply impossible
to formulate in traditional logic (see [Gi&6, Abr93, Sc93, Sc95]).

Remark 4.14 First we should remark that on the controversial subject of notation in 1.T,, we have
chosen a reasonable categorical notation, somewhere between [Gi87] and [See89]. Observe that
in CLIL, two-sided sequents can be replaced by one-sided sequents, since 7 = A is equivalent to
F25 A, with 25 thelist A, ---, AL, where ? is Ay, ---, A,,.

n !

Thus the key aspect of linear logic proofs is their resource sensitivity. We think of a linear
entailment A4,,---, A, F B not as an ordinary function, but as an action a kind of process that in a
single step consumes the inputs A; and produces output B. For example, this permits representing
in a natural manner the step-by-step behaviour of various abstract machines, certain models of
concurrency like Petri Nets, etc. Thus, linear logic permits us to describe the instantaneous state
of a system, and its step-wise evolution, intrinsically within the logic itself (e.g. with no need for
explicit time parameters, etc.)

But linear logic is not about simply removing Gentzen’s structural rules, but rather modulating
their use. To this end, Girard introduces a new connective 'A, which indicates that contraction
and weakening may be applied to formula A. This yields the Fxponential connectives in Figure 8.
From a resource viewpoint, an hypothesis !4 is one which can be reused arbitrarily. Moreover, this
permits decomposing “=" (categorically, the ccc function space) into more basic notions:

A= B=('4) oB

*Formulas of LT, are generated from literals p, g, 7, ---,p~,g~,r",--- and constants T, L, 1,0 using binary operations
®, 8, x,® and unary !, 7. Negation (1)* is defined inductively: 7= =1, [*=T,1t =0,0" =1,p** =p, (A@B)* =
AYBBY (ABBY = A" @B Y (AxB)Y = (A"® B, (A B)" = A" x B (1A =2(A1),(24)" =1(A1). Also
we define A lo B = A"RB.
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TEA

Structural Perm m o, T permutations.
Aziom&Cut Azxiom AE A
THEAAN TUARAN
C’ll/t ?7?/|_A7A/
N . 7THAA 7,ARA
egation ?,AL EA 2 AL7A
?,A,BFA THAAN TEBA
Multiplicatives Tensor 7,AR BEFA 2.7 FAQ B, AN
7CARA T BEA ?7THABA
Par 7.2 ABB AN ?THARB,A
TEA
Units TITFA =1
TEA
- F TFoA
P ?HAA V. BEA ? AF B, A
mphication 77 A —oBFAN 7FA oB,A
7,ARA 7, BFA THAA THFBA
Additives Product 7, AxBFA 7, AxBFA 7THFAXB,A
TVAREA T, BEA 7THAA ?7HBA
Coproduct 7 A+BFA TFA+B,A TFA+BA
Units 7,0 FA THI1,A
2 A . TUATAE A
Fxponentials Weakening TUAEA Contraction TUAEA
7rEA Dereliction ~ 2AF A
Storage 7 H1A TIAEA

Figure 8: Rules for Classical Propositional .1,
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Finally, nothing is lost: classical (as well as intuitionistic) logic can be faithfully translated into

CLL. [Gi87, Tr92).

4.2.3 FRAGMENTS AND EXOTIC FXTENSIONS

The richness of LI, permits many natural subtheories (cf.[Gi87, Gi95a]). For a survey of the sur-
prisingly intricate complexity-theoretic structure of many of the fragments of LI, see Tincoln [1.i95].
These results often involve direct and natural simulation of various kinds of abstract computing
machines within the logic [Sc95, Ka95]. Of course there are specific fragments corresponding to
various subcategories of categorical models, in the next section. There are also fragments directly
connected with classifying complexity classes in computing [(GSS92, Gi97] but these latter have not,
been the object of categorical analysis.

More exotic “noncommutative” fragments of .. are obtained by eliminating or modifying the
permutation rule; i.e. one no longer assumes ® is symmetric. One such precursor to LI, is the work
of J. Lambek in the 1950’s on categorial grammars in mathematical linguistics (for recent surveys,
see [1.93, 1.95]). Here the language becomes yet more involved, since there are two implications —o
and o— and two negations A" and " A. Tt has been proven by Pentus [Pen93] that Tambek grammars
are equivalent to context-free grammars. In [1.89] there is a formulation of Lambek grammars using
the notion of multicategory, an idea currently of some interest in higher-dimensional category theory
and higher dimensional rewriting theory [HMP9S].

D.Yetter [Y90] considered eyelic linear logic, a version of LI, in which the permutation rule is
modified to only allow cyclic permutations. This will be discussed briefly below in Section 5.2
with respect to Full Completeness. A proposed classification of different fragments of 1., including
braided versions, based on Hopf-algebraic models is in Blute [Blu96], see also Section 5.2.

4.2.4  ToprorLoGY OF PROOFS

l.et us briefly mention one of the main novelties of linear logic. Traditional Gentzen proof theory
writes proofs as trees. In order to give a Curry-Howard isomorphism to arbitrary sequents 7 = A,
Girard introduced multiple-conclusion graphical networks to interpret proofs. These proof nets
use graph rewriting moves for their operational semantics. It is here that one sees the dynamic
aspects of cut-elimination. In essense these networks are the “lambda terms” of linear logic. There
are known mathematical criteria to classify which (among arbitrary) networks arise from Gentzen
sequent proofs, i.e. in a sense which of these parallel networks are “sequentializable” into a Gentzen
proof tree. Homological aspects of proof nets are studied in [Mét94]

The technology of proof nets has grown into an intricate subject. In addition to their uses in
linear logic, proof nets are now used in category theory, as a technical tool in graphical approaches
to coherence theorems for structured monoidal categories (e.g. [Blu93, BCST96, CS91, CS96b]).
There are proof net theories for numerous non-commutative, cyclic, and braided linear logics, e.g.
[Abru91, Blu93, F196, FR94, Y90].

The method of proof nets has been extended by Y. Lafont [1.af95] to a general graphical language
of computation, his inferaction nets. These latter provide a simple model of parallel computation
with, at the same time, new insights into sequential computation.

4.3 What is a categorical model of LL?

4.3.1  GENERAT, MODELS

As in Section 2.1, we are interested in finding the categories appropriate to modelling linear lo-
gic proofs (just as cartesian closed categories modelled intuitionistic A, =, T proofs). The basic
equations we postulate arise from the operational semantics that is normalization of proofs. In
the case of sequent calculi, this is Gentzen’s Cut-Elimination process [GI'T]. However, there are
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sometimes natural categorical equations which are not decided by traditional proof theory. The
problem is further compounded in linear logic (and monoidal categories) in that there may be
several (non-canonical) candidates for appropriate monoidal structure.

The first categorical semantics of LI, is in Seely’s paper [See89], which is still perhaps the
most readable account. Subsequent development of appropriate term calculi [Abr93, Bie95, BBPH,
W94, BCST96, CS91, CS96b] have modified and enlarged the scope, but not essentially changed the
original analysis for the case of classical linear logic (= CLIL). We impose the following equations
between CLI. proofs, in order to form a category C, where sequents are interpreted as (equivalence
classes of) arrows according to formula (16), based on the rules in Figure 8.

e C is a symmetric monoidal closed category with products, coproducts, and units (from the
rules: Axiom, Cut, Perm, the Multiplicatives and the Additives).

e Cis x-autonomous (from the Negation rule) with @ and % related by de Morgan duality.

e !:C — (Cis an endofunctor, with associated monoidal transformations ¢ :! — ide and & :! !
satisfying:

1. (1, 6,¢) forms a monoidal comonad on C.
2. There are natural isomorphisms

I 211 and 'A®!B = (A x B)

making !: (C, x, 1) = (C,®, T) a symmetric monoidal functor.

3. In particular, T <214 4 TA®IA is a cocommutative comonoid, for all A in C and
the coalgebra maps ¢4 !4 — A and &, 1A =!'A are comonoid maps. In fact, these
conditions are a consequence of (2), but are required explicitly in weaker settings.

For modifications appropriate to more general situations (e.g. various fragments of LI without
products, linearly distributive categories, etc.) see [Bie95, BCS96].

The essence of Girard’s translation of intuitionistic logic into LI is the following easy result (cf
[See89, Bie95]).
Proposition 4.15 [fC is a categorical model of CLL, as above, then the Kleisli category K¢ of the
comonad (1,68,¢) is a ccc. Moreover finite products in K¢ and C coincide, while exponentials in K.
are given by: A= B = (14) —o B.

We should mention one formal rule, MIX, which appears frequently in the literature. To express
it, we use one-sided sequents:

F? EA
Miz F7.A

Categorically, MIX entails there is a map A ® B — ABB. This rule seems to be valid in most
models, certainly so in ones based on RTVEC.
Remark 4.16 The categorical comonad approach to models of linear logic has been put to use by

Asperti in clarifying optimal graph reduction techniques in the untyped lambda calculus [Asp] (see
also [GAT.92]).
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4.3.2 CONCRETE MODELS

There are by now many categorical models of .1, and its interesting fragments. et us just mention
a few [Gi95a, Tr92]:

e Posetal Models or Girard’s Phase semantics. These are x-autonous posets with additional
structure. This gives an algebraic semantics analogous to Boolean or Heyting algebras for
classical (resp. intuitionistic) logic. As categories they are trivial (each hom set has at most
one element); hence they do not model proofs but rather provability. There is associated a
traditional Tarski semantics, with Soundness and Completeness Theorems. Recently, these
models have been applied in Linear Concurrent Constraint Programming, for proving “safety”
properties of programs [FRS98].

e Domain-Theoretic Models. The category LIN = coherent spaces and linear maps gave the
first non-trivial model of LI, proofs. This model arose from Girard’s analysis of the ccc STAB,
realizing that there were many other logical operations available. Indeed, STAB is the Kleisli
category of an approproate comonad (!, §,¢) on LIN (cf. Proposition 4.15). In the model LIN,
4 is a minimal solution of the domain equation '4 2 | x A x (1A®!A), indeed is a cofree
comonoid.

e Relational Models. As discussed in Barr [Barr91], many compact categories are complete
enough to interpret

A2 XA X Fy(A) X ---X F,(A) X ---

where F,(A) is the equalizer of the n! permutations of the nth tensor power A®" for n > 2.
For example, Barr proves Rel, has that property. More generally, Barr [Barr91] constructs
models based on the Chu-space construction in [Barr79]. Chu spaces are themselves an
interesting class of models of LLI. and have been the subject of intensive investigation by M.
Barr and by Vaughn Pratt [Pra95]

e (Games Models. Categories of Games now provide some of the most exciting new semantics
for I.I. and Programming Languages. This so-called intensional semantics provides a finer-
grained analysis of computation than traditional (categorical) models, taking into account
the dynamic or interactive aspects of computation. For example, such games can be used to
model interactions between a System and its Environment and provided the first syntax-free
fully abstract models of PCF, answering a long-standing open problem. Games categories
have been extended to handle programming languages with many additional properties, e.g.
control features, call-by-value languages, languages with side-effects and store, etc. as well
as modern logics like 1., System F, etc. For basic introductions, see [Abr97, Hy97]. For a
small sample of more recent work, see [Mc97, AHMc98, AMc98, BDERIT].

e Gol and Functional Analytic Models: The Geometry of Interaction Program (see e.g. [(Gi&8,
G190, Gi95b, DRIY5S] ) aims to model the dynamics of cut-elimination by interpreting proofs
as objects of a certain (" algebra, with logical rules corresponding to certain x-isomorphisms.
The essence of (Gentzen’s cut-elimination theorem is summarized by the so-called execution
formula. We shall look at an abstract form of the Gol program (in traced monoidal categories)
in Section 6.1. The Gol program itself has influenced both game semantics and work on
optimal reduction.

e Finally, as the name suggests, linear logic is roughly inspired from linear algebra. Thus !A
is analogous to the Grassmann algebra. Indeed, in categories of Hilbert or Banach spaces,
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one is reminded of the symmetric and antisymmetric Fock space construction [Ge85]. For a
(non-categorical) Banach space interpretation of LI, see Girard [Gi96].

5 Full Completeness

5.1 Representation Theorems

The most basic representation theorem of all is the Yoneda embedding:

Theorem 5.1 (Yoneda) If A is locally small, the Yoneda functory : A — Set*”” | where Y(A) =
Hom(—, A), is a fully faithful embedding.

Indeed, Yoneda preserves limits as well as cartesian closedness.

We seek mathematical models which describe the behaviour of programs. From the viewpoint
of the Curry-Howard isomorphism (which identifies proofs with programs) we seek representation
theorems for proofs i.e. mathematical models which fully and faithfully represent proofs. From
the viewpoint of a logician, these are Completeness Theorems, but now at the level of proofs rather
than provability.

One of the first such theorems was proved by H. Friedman [Frie73]. Friedman showed com-
pleteness of typed lambda calculus with respect to ordinary set-theoretic reasoning. Consider the
pure typed lambda calculus £7, whose types are generated from some base sorts by = only. We
interpret £ set-theoretically in a full type hierarchy A (see Example 2.3).

Theorem 5.2 (Friedman) et A be a full type hierarchy with base sorts interpreted as infinite
sets. Then for any pure typed lambda terms M, N, M = N is true in A iff M = N s provable
using the rules of typed lambda calculus.

Similar results but using instead full type hierarchies over w-CPQO or Per-based models have
been given by Plotkin and by Mitchell using logical relations (see [Mit96]). Friedman’s original
Set-based theorem has been extended by Cubric to the entire ccc language =, x, 1 [Cu93] to yield
the following

functor I : C — Set.

Alas this representation is not, full.

et Bg = the free ccc with binary coproducts generated by discrete graph G, given syntactically
by types and terms of typed lambda calculus. For any group G, the functor category Set” is a
cce with coproducts. So according to the universal property, if Fis an initial assignment of (G-sets
to atomic types then a proof of formula ¢, qua closed term M : o, qua Fg-arrow M : 1 — o,
corresponds to a G-set ( = equivariant) map [M]p:1—= [o]p . Such maps are fixed points under
the action. In particular, letting G = 7, we obtain the easy half of the following theorem, due to
Lauchli [TLaul:

Theorem 5.4 (Lauchli) A {T,A, =, V}-formula o of intuitionistic propositional calculus is prov-
able if and only if for every interpretation F' of the base types, its Set” -interpretation [o]p has an
invariant element.

Indeed, Harnik and Makkai extend Lauchli’s theorem to a representation theorem. Recall, a functor

G is weakly full if Hom(A, B) =0 implies Hom(®(A),®(B)) =10 .

Theorem 5.5 (Harnik, Makkai [HM92]) et B be a countable free cce with binary coproducts.
There is a weakly full representation ® of B into a countable power of Set”. If in addition the
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terminal object 1 is indecomposable, then there is a weakly full representation into Set” .

A weakly full representation of B corresponds to completeness with respect to provability: i.e.
Homg..2(1,®(B)) # 0 implies Homg(1, B) # 0, so B is provable. We shall give stronger repres-
entation theorems still based on the idea of invariant elements.

5.2 Full Completeness Theorems

A recent topic of considerable interest is full completeness theorems. Suppose we have a free
category F. We shall say that a model category M is fully complete for F or that we have full
completeness of F with respect to M if the unique free functor (with respect to any interpretation
of the generators) [—] : F — M is full. Tt is even better to demand that [—] is a fully faithful
representation.

For example, suppose F is a free ccc generated by the typed lambda calculus (cf. Example
2.22). To say a ccc M is fully complete for F means the following: given any interpretation of
the generators as objects of M, any arrow [A] — [B] € M between definable objects is itself
definable, i.e. of the form [[f]] for f: A — B. If the representation is fully faithful, f is unique.
Thus, by Curry-Howard, any morphism in the model between definable objects is itself the image
of a proof (or program); indeed of a unique proof if the representation is fully faithful. Thus, such
models M, while being semantical, really capture aspects of the syntax of the language.

Such results are mainly of interest when the models M are “genuine” mathematical models not
apparently connected to the syntax. In that case Full Completeness results are more surprising
(and interesting). For example, an explicit use of the Yoneda embedding ¥ : C — Set” is not
what we want, since Set’” depends too much on C.

Probably the first full completeness results for free cec’s were by Plotkin [Plo&0], using categories
of logical relations. In the case of simply typed lambda calculus generated from a fixed base type
(= the free ccc on one object), Plotkin proved the following result. Consider the Henkin model Ty
= the full type hierarchy over a set B, i.e. the full sub-ccc of Sets generated by some set B. The
Soundness Theorem for logical relations says that if a term f is lambda definable, it is invariant
under all logical relations. We ask for the converse.

The rank of a type is defined inductively: rank(h) = 0, where b is a base type, rank(c = 7)
= max {rank(o) + 1, rank(7)}, rank(c x 7) = max {rank(c), rank(7)}. The rank of an element
f € B, in Ty is the rank of the type o.

Theorem 5.6 (Plotkin, [Plo80]) In the full type hierarchy Ty over an infinite set B, all elements
f of rank < 2 satisfy: if f is invariant under all logical relations, then [ is lambda definable.

This result has been extended by Statman [St85], but the same question for terms of arbitrary
rank is still open. However Plotkin [Plo80] did prove the above result for lambda terms of arbit-
rary rank, by moving to Kripke Logical Relations rather than Set-based logical relations. Kripke
relations occur essentially by replacing Set by a functor category S’etpnp, P a poset, i.e. by look-
ing at P-indexed families of sets and relations. Extensions, with new characterizations of lambda
definability, are in work of Jung and Tiuryn [JT93]. A clear categorical treatment of their work,
and logical-relations-based full completeness theorems, is in Alimohamed [A1i95] (cf. also [Mit96]).

The name “Full Completeness” first arose in Game Semantics, where the fundamental paper of
Abramsky and Jagadeesan [AJ94b] proved full completeness for multiplicative linear logic (+ the
Mix rule), using categories of games with history-free winning strategies as morphisms. It is shown
there that “uniform” history-free winning strategies are the denotations of unique proof nets. A
more involved notion of game, developed by Hyland and Ong (see [Hy97]), permits eliminating the
Mix rule in proofs of full completeness for the multiplicatives. These results paved the way for the
most spectacular application of these game-theoretic methods: the solution of the Full Abstraction
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problem for PCF, by Abramsky,Jagadeesan, and Malacaria and by Hyland and Ong , referred to
in Section 4.3.2.

In [BS96, BS96b, BS9K] Full Completeness for MILT, + Mix and for Yetter’s Cyclic Linear Logic
were also proved using dinaturality and a generalization of Laiichli semantics. Let us briefly recall
that view.

5.2.1 TJINEAR TAUCHLT SEMANTICS

Let C be a x-autonomous category. Given an M LL formula ¢(aq, ..., a,) built from ®, —o, (

)
with type variables oy, ..., a,, we inductively define its functorial interpretation [[cp(oz], ey ,,)H :
(CP)" x C" — C as follows:

PR 1 € T o'
. [[99]](%”3)—{ Z} ifﬂm,... 0/;

o [ @@ (AB) = [ [(AB) @ [@2](AB).

o [eor o wJ(AB) = [@1[(BA) —o [¢:](AB).

The last two clauses correspond to Equations 11 and 12 (following Example 3.5 in Section 3.1). It
is readily verified that [[@LH = [[cp]]L. Also recall that in ML, A —o B is defined as A*3B. From
now on, let C = RTVEC.

The set Dinat(F,G) of dinatural transformations from F to (7 is a vector space, under pointwise

[0
€
[0

2

)

1

operations. We call it the space of proofs associated to the sequent F' = G (where we identify
formulas with definable functors.) If = 7 is a one-sided sequent, then Dinat(?) denotes the set of
dinaturals from k to [27? ]. Tn such sequents, we sometimes abbreviate [27? ] to [? ].

The following is proved in [BS96, BS98]. A binary sequent is one where each atom appears
exactly twice, with opposite variances.

Theorem 5.7 (Full Completeness for Binary Sequents) Let F' and G be formulas in multi-
plicative linear logic, interpreted as definable multivariant functors on RTVEC. Given a binary
sequent F' = G, then Dinat(F,G) is zero or 1-dimensional, depending on whether or not F'F+ G
is provable. If it is provable, every dinatural is a scalar multiple of the denotation of the unique
cut-free proof (qua Girard proof-net).

A diadditive dinatural transformation is one which is a linear combination of substitution in-
stances of binary dinaturals. Under the same hypotheses as above we obtain:

Theorem 5.8 (Full Completeness) The proof space Dinat(F,G) of diadditive dinatural trans-
formations has as basis the denotations of cut-free proofs in the theory MLL+MTX .

Example 5.9 The proof space of the sequent
A1, 0 =0 Qg g =0 3y ..., Oy 1 =0 Oy = (479

has dimension 1, generated by the evaluation dinatural.

The proofs of the above results actually yield a fully faithful representation theorem for a free
x-autonomous category with MTX, canonically enriched over vector spaces ([BS98]).

In [BS98], a similar Full Completeness Theorem and fully faithful representation theorem is
given for Yetter’s Cyclic Linear Logic. In this case one employs the category RT MOD(H) for a
Hopf algebra H . This is based on the following observation [Blu96]:
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Proposition 5.10 If H is a hopf algebra with an involutive antipode, i.e. S° = id then
RTMOD(H) is a cyclic x-autonomous category, i.e. a model of Yetter’s cyclic linear logic.

The particular Hopf algebra used is the shuffle Hopf algebra, described in [Ben, Haz, BS98]. Once
again we consider formulas as multivariant functors on RTVEC, but restrict the dinaturals to so-
called uniform dinaturals 6y, ... |v,|, i.e. those which are equivariant with respect to the H -action
induced from the atoms, for H -modules V; € RT MOD(H). This is completely analogous to the
techniques used in logical relations.

Related results using Chu spaces are in [Pra97]. *

6 Feedback and Trace

6.1 Traced Monoidal Categories
This new class of categories, introduced by Joyal, Street, and Verity [JSV96], have shown surprising
connections to models of computation and iteration. The original versions were very general, in-
cluding braided and tortile categories arising in several branches of mathematics. At the moment,
most of the applications to computing omit any braided structure. But even at the abstract level
of [JISV96], the authors illustrate a computational, geometric calculus somewhat akin to Girard’s
proof nets in linear logic [Gi87], and indeed some precise connections have been made [BCS98].
Moreover, the main construction in [JSV96] has been shown by Abramsky [Abr96] to have fascin-
ating connections with (GGirard’s Gol program, as already hinted by Joyal, Street, and Verity.

We now give a version of traced symmetric monoidal categories. For ease of readability and
without loss of generality, we consider strict monoidal categories (recall, from Mac Lane’s coherence
theorem, that every monoidal category is equivalent to a strict one).

Definition 6.1 A fraced symmetric monoidal category (= tme) is a symmetric monoidal category
(C,@,1,s) (where sxy : X @Y — ¥V ® X is the symmetry morphism) with a family of functions
Trr)éy C(X@UY@U)—C(X,Y), called a trace, subject to the following conditions:

e Natural in X, Tr?y(f)g:Trg,yy(f(g(@][])), where
f: XU —-YU,g: X' — X,

e Natural in YV, gTr?y(f) = Trr)éy,((g @ 1) f), where
XU —=YoU,g:V —Y',

e Dinatural in U, Tr%y((]y ®ag)f) = Trg:y (f(1x ®g)),
where f: X QU — YU, ¢g:U —U,

e Vanishing, Trg(,v (f)=f and Trr)?%v (9) = Trr)?,v (Tr‘x/’&)U,Y@U (9))
for f: XQ@TI—=YRTandg: XQURXV —YRUV.

e Superposing, ¢® Tr%y(f) = Trg/@X,Z@Y(g @ f)

. U
e Yanking, Try;(su,r) = o

*Added in proof: there has been recent progress on the above work. Masahiro Hamano (JAIST) has managed to
eliminate the use of dinaturals in the full completeness proofs in both of the Blute-Scott papers [BS96, BS98], giving
a direct denotational interpretation of MLT, + Mix-full completeness in the categories of reflexive topological vector
spaces above. This paper will appear in Ann. Pure and Applied Logic. Also Hamano has proved MLI, (without
Mix) full completeness in Barr’s category of Reflexive Topological Abelian Groups, using Pontrjagin duality and the
dinatural framework above. This will appear in Math. Struc. in Computer Science, in a volume dedicated to the

75th birthday of J. l.ambek.
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Figure 9: The trace Trr)éy (f)

From a computer science viewpoint, the essential feature is to think of Trr)éy (f) as “feedback
along U”, asin Figure 9. The axiomatization given here differs slightly from those in [Abr96, JSV96],
although it can be shown to be equivalent. We shall leave it to the reader to draw the diagrams for
the trace axioms. We note however that Vanishing expresses trace along a tensor U @ V in terms
of iterated traces along U and V. This is related to the so-called Beki¢ .emma in Domain Theory.

The above notion is really a parametrized trace. The usual notion from linear algebra is when
X =Y =1 (see Example 6.3) below.

Example 6.2 Rel,: The objects are sets, @ = X (cartesian product), and maps are binary
relations. Composition means composition of relations, and z TrY | y iff there exists a u such that

(x,u)R(y,u).

Example 6.3 Vec;y : Given f: X @ U — Y @ U, define Trgy(f)(n) = > ik (yffyk, where
flos @uy) =30, O/f;nl/k @ U, where (u;), (), (yx) are bases for U, X, Y, resp. In the case that
X,Y are one-dimensional, this reduces to the usual trace of a linear map f: U — U, i.e. the usual
trace determines a function Try; : Hom(U,U) — Hom(I,T), where I = k.

Example 6.4 More generally, any compact category has a canonical trace Trr)éy (H=X=X®

[@Z XoUoU*t 'MlY@U@UL iMIY(@ I 2V, where ev’ = evos.

Example 6.5 w-CPO,: with @ = x, I = {—}. In this case the dinatural least-fixed-point
combinator Y, : (=)™ — (=) induces a trace, given as follows (using informal lambda calculus
notation): for any f: X xU =V x U, Trr)éy (N () = file, Yo (Qu.fo(xz,u))), where fi = mof :
X xU—=Y, fo =m0f: X xU — U. Hence Trgy(f)(r) = fi(x,u’), where u' is the smallest
element of U/ such that fo(x,u') = u'. A generalization of this idea to traced cartesian categories is

in [MHas97] and mentioned in Remark 6.16 in the next Section.

Unfortunately, these examples do not really illustrate the notion of feedback as data flow: the
movement of tokens through a network. More natural examples of traced monoidal categories in
the next section, given by partially additive and similar iterative categories, more fully illustrate
this aspect.

Example 6.6 Bicategories of Processes: The paper of Katis, Sabadini, and Walters [KSW95]
develops a general theory of processes with feedback circuits in symmetric monoidal bicategories.
They prove their bicategories C'ire(C) have a parametrized trace operator. A small difference

with the above treatment is that their feedback is given by a family of partially-defined functors
5y : Cire(C)(X @ U Y @ U) — Cire(C)(X,Y).

Remark 6.7 The paper [ABP97] develops a general theory of traced ideals in tensored *-categories.
The category HILB, the tensored x-category of Hilbert spaces and bounded linear maps, illustrates
the difficulty. Tn passing from the finite dimensional case (c¢f. Example 6.3 above) to the infinite
dimensional one, not all endomorphisms have a trace; for example, the identity on an infinite
dimensional space. However Try may be defined on traced ideals of maps, and this extends to
parametrized traces. See [ABP97] for many examples.
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Figure 10: Generalized Yanking

An amusing folklore about traced monoidal categories is that general composition is actually
definable using traces of simple compositions:

Proposition 6.8 (Generalized Yanking) let C be a traced symmetric monoidal category, with
arrows f: X =Y and g:Y — 7. Then gof = Tr?z(.eyyzo(f @9q)).

Although a fairly short algebraic proof is possible, the reader may wish to stare at the diagram
in Figure 10, and do a “string-pulling” argument (cf. [JSV96]). Similar calculations are in [KSW95,
Mil94]

Definition 6.9 Let C and D be traced symmetric monoidal categories. A strong monoidal functor
F:C — D is traced if it is symmetric and satisfies

TrgZ,F‘R((bIL%jU(Ff)CbA,U) = F(Trzﬁ(f))

—1
Parr ¢R,U

where A@ U~ BoU and FA@ FU “X F(AU) L F(Bo U) 28 FB @ FU. In the case of

strict monoidal functors, they are traced if they preserve the trace on the nose.

We define TraMon and TraMon,,; to be the 2-categories whose (-cells are traced monoidal
categories (resp. strict traced monoidal categories) , whose 1-cells are traced monoidal functors
(resp. strict traced monoidal functors), and whose 2-cells are monoidal natural transformations.

6.2 Partially Additive Categories

We shall be interested in special kinds of traced monoidal categories: those whose homsets are
enriched with certain partially-defined infinite sums, which permits canonical calculation of iteration
and traces (see formulas 17 and 18 below). A useful example is Manes and Arbib’s partially additive
categories, which first arose in their categorical analysis of iterative and flowchart schema [MAR6]).
Categories with similar additive structure on the hom-sets had already been considered in the
1950’s by Kuros [Ku63] with regards to categorical Krull-Schmidt-Remak theorems.

Definition 6.10 A partially additive monoid is a pair (M, X)), where M is a nonempty set and 3
is a partial function which maps countable families in M to elements of M (we say that (x;|i € T)
is summable if 3 (x;|i € T) is defined)” subject to the following:

1. Partition-Associativity Aziom. 1f (2;]i € T) is a countable family and if (/;|j € J) is a
(countable) partition of I, then (x; |7 € I) is summable if and only if (2; |7 € I;) is summable
for every j € J and (X(z; |7 € I;)]j € J) is summable. In that case,

S(elie )= S(S(nlie I)je)

5We sometimes abbreviate E(T, |1 € f) by ¥icrr;. Throughout, “countable” means finite or denumerable. All
index sets are countable. A partition {I;|j € J} of I satisfies: T; C T, ,NI; =0ifi+# 5, and UW{I;|j€ T} =1.
But we also allow 7; = 0 for countably many j.



2. Unary Sum Aziom. Any family (x; |7 € T) in which T is a singleton is summable and ¥ (x; |7 €

1= i 1= {j}.

37 Limit Aziom. 1f (x;|i € T) is a countable family and if (2, |i € F) is summable for every
finite subset F' of I then (2, |7 € T) is summable.

We observe the following facts about partially additive monoids:

(i) Axioms 1 and 2 imply that the empty family is summable. We denote S(x;|7 € () by 0,
which is an additive identity for summation.

(ii) Axiom 1 implies the obvious equations of commutativity and associativity for the sum (when

defined).

(iii) Although Manes and Arbib use the Limit Axiom to prove existence of Elgot-style iteration
(see below), Kurosg did not have it. And for many aspects of the theory below, it is not
needed.

Definition 6.11 The category of partially additive monoids, PAMon, is defined as follows. Its

objects are partially additive monoids (M, ). Tts arrows (M, 3/) BN (N,Y¥N) are maps from
M to N which preserve the sum, in the sense that: f(Xy(2;]i € 1)) = Sx(f(x;) |1 € T) for all
summable families (x,|i € T) in M. Composition and identities are inherited from Sets.

A PAMon-category C is a category enriched in PAMon. This means the hom-sets carry a
PAMon-structure, compatible with composition. In particular, in each homset Hom¢(X,Y) there
is a zero morphism Oxy : X — VY, the sum of the empty family.

Remark 6.12 In a PAMon-category C

1. The family of zero morphisms {Oxy } x yec satisfies: g0y, = Owy = Oxy f forany f: W — X
and g: 7 =Y.

2. If ¥ierfi = Oxy then all summands f; = Oxy in Home(X,Y).

Definition 6.13 Let C be a PAMon-category with countable coproducts @,., X;. Forany j €7

we define quasi projections PR; : @,.; X; — X as follows:

i€l

idy, ifk=j

Ox,x, else

Definition 6.14 A partially additive category (pac) C is a PAMon-category with countable cop-
roducts which satisfies the following axioms:

1. Compatible Sum Aziom: 1f (fi|i € T) € C(X,Y) is a countable family and there exists
f: X — .Y such that PR, f = f; (we say the f; are compatible), then 3" f; exists.

2. Untying Axiom: If f+¢g: X — VY exists then sodoes in, f +in.9: X — Y + VY.

The following facts about partially additive categories follow from Manes and Arbib [MA86]:

o Matriz Representation of maps: For any map [ : @,;c; Xi = D, ; Y, thereis a unique family

{fi; + Xi = Y} ierjes with f = Yieriertnifij PRy and PR; fin; = fi;. Notation: we write

fX,Vi for fm



Figure 11: Elgot Dagger ¢

s
o Flgot Tteration Given X L5 Y4X, there exists X -5V where g' = 2% gxy g% x, satisfying
the fized-point identity

(17) [1v.q'lg = g".

This corresponds to the flowchart scheme in Figure 11. The proof of Elgot iteration
([MA86],p.83) uses the Limit Axiom.

Proposition 6.15 A partially additive category C is traced monoidal with @ = coproduct and if
[ XU —>YaU,

(18) Tr?y(f) = [y, fIfi = fxv + Z fov firo fxu

n=0

where f=1[fi, o] with f, : X — Y & U, fo:U—Y $U.

Formula (18) corresponds to the data flow interpretation of trace-as-feedback in Figure 9 : see
the examples below. We should also remark that Formula (18) corresponds closely to Girard’s
Frecution Formula [Abr96] and is related to a construction of Geometry of Interaction categories
in the next section.

Remark 6.16 Conversely, a traced monoidal category where & is coproduct has an Elgot iterator
g" = Tr))g’y([g,g]), where g : X — Y 4+ X. An axiomatization of the opposite of such categories,
which correspond to categories with a parametrized Y combinator, is considered in Hasegawa
[MHas97]. More generally, Hasegawa considers traced monoidal categories built over cartesian
categories and it is shown how various typed lambda calculi with eyelic sharing are Sound and
Complete for such categorical models.

Finally, we should mention the general notion of Iteration Theories. These general categorical
theories of feedback and iteration, their axiomatization and equational logics have been studied
in detail by S.I.. Bloom and 7. Esik in their book [BE93]. A more recent 2-categorical study of
iteration theories is in [BET.M].

We shall now give a few important examples of pac’s:

Example 6.17 Rel, , the category of sets and relations. Objects are sets and maps are binary
relations. Composition means relational composition. The identity is the identity relation, and
the zero morphism Oxy is the empty set § C X x V. Coproducts @,.,; X; are as in Set, i.e.
disjoint union. All countable families are summable where ¥, (R;) = U;erR;. Finally, let R™ be
the reflexive, transitive closure of a relation K. Suppose

R: X +U -+ Y +U. Then formula (18) becomes:

(19) Triv(R) = RxyU | RoveRbpoRxu

n>0
ES
= BxyURyyoRyyeRxu.



Example 6.18 Pfn , the category of sets and partial functions. The objects are sets, the maps
are partial functions. Composition means the usual composition of partial functions. The zero map
Oxy is the empty partial function. A family {f;|i € T} is said to be summable iff Vi,j € 1,7 #
7, Dom(f;) N Dom(f;) = 0. Sicr f; is the partial function with domain U; Dom(f;) and where

[ he) itre Dom(f)
(Bier fi) () = { undefined else
The following example comes from Giry [Giry] (inspired from Lawvere) and is mentioned in
[Abr96]. The fact that this is a pac follows from work of P. Panangaden and E. Haghverdi.

Example 6.19 SRel, the category of Stochastic Relations. Objects are measurable spaces (X, ¥ x)
where X is a set and Yx is a o-algebra of subsets of X. An arrow f: (X,Xx) — (V,YXy) is a
transition probability, i.e., f: X x ¥y — [0,1] such that f(-, B) : X — [0, 1] is a measurable
function for fixed B € ¥y and f(x,-): ¥y — [0, 1] is a subprobability measure (i.e., a o-additive
set. function satisfying f(z,0) = 0 and f(2,Y) < 1). The identity morphism idx : (X,¥x) —
(X,Yx) is a map idyx : X x ¥x — [0, 1], with idx (2, A) = §(x, A), where for A fixed, §(z, A) is
the characteristic function of A and for x fixed, §(x, A) is the Dirac distribution.

Composition is defined as follows: given f: (X, ¥x) — (V,3y) and g : (V. 3y) — (7, 37),
gof (X, ¥x) — (74, %7)is gof(2,C) = [, gy, C)d{ f(x,-)}, where the notation d{ f(z,-)} means
that we are fixing z and using f(z, -) as the measure for the integration, the function being integrated
is the measurable function ¢(-,C').

Given (X,YXx) and (Y,Yy), the zero morphism Oxy : (X,Yx) — (V,Yy), is given by
Oxy(x, B)=0forall . € X and B € ¥y.

The partially additive structure on the homsets of SRel is as follows: we say an I-indexed family
of morphisms { f;|i € I'} is summable if for all 2 € X we have 3, ., fi(2,Y) < 1. Since we are dealing
with bounded, positive measures it is easy to verify that the sum so defined is a subprobability
measure. Note that we would have only trivial additive structure (only singleton families summable)
if we had used probability distributions rather than subprobability distributions.

Finally, let {X,|i € T} be a countable family of objects. We define the coproduct @,.; X, as
follows. We take the disjoint union of the sets X;, equipped with the evident o-algebra. Thus a
measurable subset will look like the disjoint union of measurable subsets of each of the X, say
WA, (of course some of the A; may be empty, and a point will be a pair (x,7) where i € I and
x € X;). The canonical injections in; : X; — @,.; X; are in;(x,WA;) = §(x, A;). Given Y and
Vi € I, arrows h; : X; — Y, we obtain the mediating morphism h : @,.; X; — Y by the formula
h((z,7), B) = h;(x, B). The verifications are all routine.

The next example, while not a pac, is essentially similar.

Example 6.20 Pinj, the category of sets and injective partial functions. This is a fundamental
example that arises in Girard’s Geometry of Interaction program. Although this category is traced
monoidal, with an iterative trace formula given in Abramsky [Abr96], it does not have coproducts.
However its pac-like aspects may be captured in a Kuros-style presentation via a generalization
of partially additive categories, in which countable coproducts are replaced by countable tensors,
and in which suitable axioms guarantee (analogously to pacs): a matrix representation of maps
Ricr Xi = ®,c; Y; and a trace formula as in (18).

7

6.3 Gol Categories
Girard’s Geometry of Interaction (Gol) program introduces some profound new twists into com-
putation theory. In particular, the idea that proofs are like dynamical systems, interacting locally.
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The dynamics of information flow in composition, via cut-elimination, is then related to tracing
out paths in certain algebraic structures (Girard originally used operator algebras but the results
can be expressed without them [Gi95b]). The connection of Girard’s functional analytic methods
in Gol with lambda calculus and proof nets is further explored in [DR95, MaRe91].

Starting with a traced monoidal category C, we now describe a compact closed category G(C)
(called Tnt(C) in [JSV9I6]) which captures in abstract form many of the features of Girard’s Geo-
metry of Interaction program, as well as the general ideas behind game semantics. We follow the
evocative treatment in Abramsky [Abr96]. The idea is to create a category whose composition is
given by an iterative feedback formula, using the trace.

Definition 6.21 (The Geometry of Interaction construction) Given a traced monoidal category C
we define a compact closed category, G(C), as follows [JSV96, Abr96]:

e Objects: Pairs of objects (AT, AL) where AT and A' are objects of C.

e Arrows: An arrow f: (AT, AY) — (BY,B") in G(C) is an arrow f: At @ B* — At @ BT
in C.

o Identity: Tia+ a-y) = s+ a-.

e Composition: given by symmetric feedback. Arrows f : (AT, A") — (B*,B") and ¢ :
(BT, B'Y) — (C*,C") have composite gof : (AT, AY) — (CT,C") given by:

S
gof = Trf+§gw\f®c+(ﬂ(f®g)a)
where o = (14+ @ 15— @ - g+ )(1a+ @ 0c- p- @ 1p+) and f=(14- @ 1o+ @ op+ =) (14- @

op+.c+ @ 1p-)(1a- @ 1p+ @ op- c+). An informal picture displaying gof is given below.

AT 't

L
A Y

e Tensor: (AT, A" @ (BT, B") = (AT @ BY, A" @ B") and for (AT, A") — (BT, B") and
g:(CH,CH) = (DY, DY), fog=(1a- @op+c- D 1pe)(f @ g)(1a+ @ 0cs p- @ 1p-)

e Unit: (I,7).

e Duality: The dual of (AT, A7) is given by (A%, A")" = (A", AT) where the unit 5 : (I,T) —
(AT, AN @ (AT, AT =4p 04— a+ and counit ¢ : (AT, AN @ (AT, AN — (I,1) =4y
TA- A+

e Internal Homs: As usual, (AT, A") o (BY,B") = (AT, AN @ (BT, B") = (A" @ BT, AT ®
Bh).



Remark 6.22 We have used a specific definition for e and g above; however, any other permuta-
tions AT@C @B @Bt — AT@B @Bt ®C" and At@BY@ B @CT — AT@CteB @Bt

for v and 3 respectively will yield the same result for gof due to coherence.

Translating the work of [JSV96] in our setting we obtain that G(C) is a kind of “free compact
closure” of C :

Proposition 6.23 let C be a traced symmetric monoidal category

e G(C) defined as in Definition 6.21 is a compact closed category. Moreover, F : C — G(C)
defined by Fe(A) = (A, 1) and Fe(f) = f is a full and faithful embedding.

o The inclusion of 2-categories CompC'l — TraMon has a left biadjoint with unit having
component at C given by Fg.

Following Abramsky [Abr96], we interpret the objects of G(C) in a game-theoretic manner: A*
is the type of “moves by Player (the System)” and At is the type of “moves by Opponent (the
Environment)”. The composition of morphisms in G(C) is the key to Girard’s Execution formula,
especially for pac-like traces. In [Abr96] it is pointed out that G(Pinj) is essentially the original
Girard formalism, while G(w-CPQ) is the data-flow model of Gol given in [AJ94a]. °

7 Literature Notes

In the above we have merely touched on the large and varied literature. The journals Mathematical
Structures in Computer Science (Camb. Univ. Press) and Theoretical Computer Science (Elsevier)
are standard venues for categorical computer science. Two recent graduate texts emphasizing
categorical aspects are J. Mitchell [Mit96] and R. Amadio and P.-T.. Curien [AC98]. Mitchell’s
book has an encyclopedic coverage of the major areas and recent results in programming language
theory. The Amadio-Curien book covers many recent topics in domain theory and lambda calculi,
including full abstraction results, foundations of linear logic, and sequentiality.

We regret that there are many important topics in categorical computer science which we
barely mentioned. We particularly recommend the compendia [PD97, FIP, AGM]. Tet us give a
few pointers with sample papers:

e Operational and Denotational Semantics: See the surveys in the Handbook[AGM]. The clas-
sical paper on solutions of domain equations is [SPR2]. For some recent directions in domain
theory, see [FiP196, ReSt97]. For recent categorical aspects of Operational Semantics, see
[Pi97, TP96] . Higher-dimensional category theory has also generated considerable theoretical
interest (e.g. [Ba97, HMP98]). Coalgebraic and coinductive methods are a fundamental tech-
nique and have considerable influence (e.g. see [AbJu94, Pi96a, Mul91, CSp91, JR, Mil89]).

e Fibrations and Indexed Category Models This important area arising from categorical logic
is fundamental in treating dependent types, System F, F,, --- models, and general variable-
binding (quantifier-like) operations, for example “hiding” in certain process calculi. For fibred
category models of dependent type-theories, see the survey by M. Hofmann [H97a] (cf. also
[PowTh97, HJ95, Pi9?7, See87]). Indexed category models for Concurrent Constraint Logic
Programming are given in [PSSS, MPSS95] (see also [FRS9R] for connections of this latter
paradigm to LL).

6 Added in proof: recent progress on these matters has been achieved in the PhD) thesis of Fsfan Haghverdi, Dept.
of Mathematics, U. Ottawa, Feb. 2000, and in a paper, to appear in the T.ambek Festschrift, Math. Structures in
Computer Science. See also hittp://aix1 . uottawa.ca/~ehaghver
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o Computational Monads: E. Moggi greatly influenced programming language semantics and
associated logics using the categorists’ notion of monads and comonads [Mac71]. Moggi’s ap-
proach permits a modular treatment of such important programming features as: exceptions,
side-effects, non-determinism, resumptions, dynamic allocation, ete, as well as their associ-
ated logics [M097, Mo91]. Practical uses of monads in functional programming languages are
discussed in P. Wadler ([W92]). More recently, E. Manes ([M98]) showed how to use monads
to implement, collection classes in Object-Oriented languages. Alternative category-theoretic
perspectives on Moggi’s work are in Power and Robinson’s [PowRob97].

o Concurrency Theory and Categorical Bisimulation: This large and important area is surveyed
in Winskel and Nielsen[WN97]. Tn particular, the fundamental notion of bisimulation via open
maps, is introduced in Joyal, Nielsen, and Winskel [JNW]. Presheaf models for Milner’s -
calculus ([Mil93a]) and other concurrent calculi are in [CaWi, CSW]. For categorical work
on Milner’s recent Action Calculi, see [GaHa, Mil93b, Mil94, P96].

e Complexity Theory: Characterizing feasible (e.g. polynomial-time) computation is a major
area of theoretical computer science (e.g. [Cob64, Cook75]). Typed lambda calculi for feasible
higher-order computation have recently been the subjects of intense work, e.g. [CoKa, CU93].
Versions of linear logic have been developed to analyze the fine structure of feasible computa-
tion ([GSS92, Gi97] ). Although there are some known models ([KOS97]), general categorical
treatments for these versions of LI, are not yet known. Recently, M. Hofmann (e.g. [H97a])
has analyzed the work of Cook and Urquhart [CU93] as well as giving higher-order extensions
of work of Bellantoni and Cook , using presheaf and sheaf categories.

Three volumes [MR97, FIJP, (GS89] are conferences specializing in applications of categories
in computer science (note [MR97] is the 7th Biennial such meeting). Similarly, see the biennial
meetings of MFPS (Mathematical Foundations of Programming Semantics) published in either
Springer Lecture Notes in Computer Science or the journal Theoretical Computer Science. There
is currently an electronic website of categorical logic and computer science, HYPATTA.

Other books covering categorical aspects of computer science and /or some of the topics covered
here include[AT.91, BW95, Cu93, DiCo95, Gun92, MA8G, Tay98]. Tn categorical logic and proof
theory, we should mention our own book with J. Lambek [1.586] which became popular in theoretical
computer science. The category theory book of Freyd and Scedrov [FrSc] is a source book for
Representation Theorems and categories of relations.
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