
This is a technical report. A modi�ed version of this report will be published in: Handbook ofAlgebra, Vol.2, edited by M. HazewinkelSome Aspects of Categories in Computer ScienceP. J. Scott�Dept. of MathematicsUniversity of OttawaOttawa, Ontario CANADASept,1998Contents1 Introduction 22 Categories, Lambda Calculi, and Formulas-as-Types 22.1 Cartesian Closed Categories : 22.2 Simply Typed Lambda Calculi : 62.3 Formulas-as-Types: the fundamental equivalence : 82.3.1 Some Datatypes : 112.4 Polymorphism : 142.4.1 Polymorphic lambda calculi : 152.4.2 What is a Model of System F ? : 172.5 The Untyped World : 182.5.1 Models and Denotational Semantics : 192.5.2 C-Monoids and Categorical Combinators : 192.5.3 Church vs Curry Typing : 202.6 Logical Relations and Logical Permutations : 202.6.1 Logical Relations and Syntax : 222.7 Example 1: Reduction-Free Normalization : 222.7.1 Categorical Normal Forms : 232.7.2 P-category theory and normalization algorithms : : : : : : : : : : : : : : : : 242.8 Example 2: PCF : 262.8.1 PCF : 262.8.2 Adequacy : 273 Parametricity 283.1 Dinaturality : 293.2 Reynolds Parametricity : 334 Linear Logic 344.1 Monoidal Categories : 344.2 Gentzen's proof theory : 374.2.1 Gentzen sequents : 38�Research partially supported by NSERC, Canada 1

4.2.2 Girard's Analysis of the Structural Rules : 394.2.3 Fragments and Exotic Extensions : 414.2.4 Topology of Proofs : 414.3 What is a categorical model of LL? : 424.3.1 General Models : 424.3.2 Concrete Models : 435 Full Completeness 445.1 Representation Theorems : 445.2 Full Completeness Theorems : 455.2.1 Linear L�auchli Semantics : 466 Feedback and Trace 476.1 Traced Monoidal Categories : 476.2 Partially Additive Categories : 496.3 GoI Categories : 537 Literature Notes 541 IntroductionOver the past 25 years, category theory has become an increasingly signi�cant conceptual andpractical tool in many areas of computer science. There are major conferences and journals de-voted wholly or partially to applying categorical methods to computing. At the same time, theclose connections of computer science to logic have seen categorical logic (developed in the 1970's)fruitfully applied in signi�cant ways in both theory and practice.Given the rapid and enormous development of the subject and the availability of suitable gradu-ate texts and specialized survey articles, we shall only examine a few of the areas that appear tothe author to have conceptual and mathematical interest to the readers of this Handbook. Alongwith the many references in the text, the reader is urged to examine the �nal section (LiteratureNotes) where we reference omitted important areas, as well as the Bibliography.We shall begin by discussing the close connections of certain closed categories with typed lambdacalculi on the one hand, and with the proof theory of various logics on the other. It cannot beoveremphasized that modern computer science heavily uses formal syntax but we shall try to treadlightly. The so-called Curry-Howard isomorphism (which identi�es formal proofs with lambdaterms, hence with arrows in certain free categories) is the cornerstone of modern programminglanguage semantics and simply cannot be overlooked.Notation: We often elide composition symbols, writing gf : A ! C for gof : A ! C, wheneverf : A! B and g : B ! C. To save some space, we have omitted large numbers of routine diagrams,which the reader can �nd in the sources referenced.2 Categories, Lambda Calculi, and Formulas-as-Types2.1 Cartesian Closed CategoriesCartesian closed categories (ccc's) were developed in the 1960's by F. W. Lawvere [Law66, Law69].Both Lawvere and Lambek [L74] stressed their connections to Church's lambda calculus, as well asto intuitionistic proof theory. In the 1970's, work of Dana Scott and Gordon Plotkin establishedtheir fundamental role in the semantics of programming languages. A precise equivalence betweenthese three notions (ccc's, typed lambda calculi, and intuitionistic proof theory) was published inLambek and Scott [LS86]. We recall the appropriate de�nitions from [LS86]:2

Objects Distinguished Arrow(s) EquationsTerminal 1 A !A�! 1 !A = f ,f : A! 1�A;B1 : A�B ! A �1ohf; gi = fProducts A�B �A;B2 : A �B ! B �2ohf; gi = gC f�! A C g�! BC hf;gi�! A�B h�1oh; �2ohi = h ,h : C ! A�BExponentials BA evA;B : BA �A! B evohf�o�1; �2i = fC � A f�! BC f��! BA (evohgo�1; �2i)� = g ;g : C ! BAFigure 1: CCC's EquationallyDe�nition 2.1(i) A cartesian category C is a category with distinguished �nite products (equivalently, binaryproducts and a terminal object 1.) This says there are isomorphisms (natural in A;B;C)HomC(A; 1) �= f�g(1) HomC(C;A�B) �= HomC(C;A)�HomC(C;B)(2)(ii) A cartesian closed category C is a cartesian category C such that, for each object A 2 C,the functor (�)� A : C ! C has a speci�ed right adjoint, denoted (�)A .That is, there is anisomorphism (natural in B andC)HomC(C �A;B) �= HomC(C;BA)(3)For many purposes in computer science, it is often useful to have categories with explicitly givenstrict structure along with strict functors that preserve everything on the nose. We may presentsuch ccc's equationally, in the spirit of multisorted universal algebra. The arrows and equationsare summarized in Figure 1. These equations determine the isomorphisms (1), (2), and (3). In thispresentation we say the structure is strict, meaning there is only one object representing each ofthe above constructs 1; A�B;BA. The exponential object BA is often called the function space ofA and B. In the computer science literature, the function space is often denoted A) B, while thearrow C f��! BA is often called currying of f .Remark 2.2 Following most categorical logic and computer science literature, we do not assumeccc's have �nite limits [Law69, LS86, AC98, Mit96]), in order to keep the correspondence withsimply typed lambda calculi, cf Theorem 2.20 below. Earlier books (cf. [Mac71]) do not alwaysfollow this convention.Let us list some useful examples of cartesian closed categories: for details see [LS86, Mit96,Mac71]Example 2.3 The category Set of sets and functions. Here A � B is a chosen cartesian productand BA is the set of functions from A to B. The map BA � A ev�! B is the usual evaluation map,while currying C f��! BA is the map c 7! (a 7! f(c; a)).3

An important subfamily of examples are Henkin models which are ccc's in which the terminalobject 1 is a generator ([Mit96], Theorem 7.2.41). More concretely, for a lambda calculus signaturewith freely generated types (cf Section 2.13 below), a Henkin model A is a type-indexed family ofsets A = fA� j � a type g where A1 = f�g; A��� = A� �A� ; A�)� � AA�� which forms a ccc withrespect to restriction of the usual ccc structure of Set. In the case of atomic base sorts b, Ab issome �xed but arbitrary set. A full type hierarchy is a Henkin model with full function spaces, i.e.A�)� = AA�� :Example 2.4 More generally, the functor category SetCop of presheaves on C is cartesian closed.Its objects are (contravariant) functors from C to Set, and its arrows are natural transformationsbetween them. We sketch the ccc structure: given F;G 2 SetCop , de�ne F � G pointwise onobjects and arrows. Motivated by Yoneda's Lemma, de�ne GF (A) = Nat(hA � F;G) , wherehA = Hom(A;�): This easily extends to a functor. Finally if H � F ��! G, de�ne H ���! GF by:��A(a)C(h; c) = �C(H(h)(a); c).Functor categories have been used in studying problematic semantical issues in Algol-like lan-guages [Rey81, Ol85, OHT92, Ten94], as well as recently in concurrency theory and models of�-calculus [CSW, CaWi]. Special cases of presheaves have been studied extensively [Mit96, LS86]:� Let C be a poset (qua trivial category). Then SetCop , the category of Kripke models over C,may be identi�ed with sets indexed (or graded) by the poset C. Such models are fundamentalin intuitionistic logic [LS86, TrvD88] and also arise in Kripke Logical Relations, an importanttool in semantics of programming languages [Mit96, OHT93, OHRi].� Let C = O(X), the poset of opens of the topological space X . The subcategory Sh(X) ofsheaves on X is cartesian closed.� Let C be a monoid M (qua category with one object). Then SetCop is the category of M -sets, i.e. sets X equipped with a left action; equivalently, a monoid homomorphism M !End(X), where End(X) is the monoid of endomaps of X . Morphisms of M -sets X and Yare equivariant maps (i.e. functions commuting with the action.) A special case of this iswhen M is actually a group G (qua category with one object, where all maps are isos). Inthat case SetCop is the category of G-sets, the category of permutational representations ofG. Its objects are sets X equipped with left actions G ! Sym(X) and whose morphismsare equivariant maps. We shall return to these examples when we speak of La�uchli semanticsand Full Completeness, Section 5.2Example 2.5 !-CPO. Objects are posets P such that countable ascending chains a0 � a1 � a2 �� � � have suprema. Morphisms are maps which preserve suprema of countable ascending chains (inparticular, are order preserving.) This category is a ccc, with products P � Q ordered pointwiseand QP = Hom(P;Q), ordered pointwise. In this case, the categories are !-CPO-enriched{i.e.the hom-sets themselves form an !-CPO, compatible with composition. An important subccc is!-CPO?, in which all objects have a distinguished minimal element ? (but morphisms need notpreserve it).The category !-CPO is the most basic example in a vast research area, domain theory, whichhas arisen since 1970. This area concerns the denotational semantics of programming languagesand models of untyped lambda calculi (cf. Section 2.5 below.) See also the survey article [AbJu94].Example 2.6 Coherent Spaces and Stable Maps. A Coherent Space A is a family of sets satisfying:(i) a 2 A and b � a implies b 2 A, and (ii) if B � A and if 8c; c0 2 B(c [c0 2 A) then [B 2 A.In particular, ; 2 A. Morphisms are stable maps, i.e. monotone maps preserving pullbacks and4

�ltered colimits. That is, f : A ! B is a stable map if (i) b � a 2 A implies f(b) � f(a),(ii) f([i2Iai) = [i2If(ai), for I directed, and (iii) a [b 2 A implies f(a \ b) = f(a) \ f(b).This gives a category Stab. Every coherent space A yields a reexive-symmetric (undirected)graph (jAj; _̂) where jAj = fa j fag 2 Ag and a _̂ b i� fa; bg 2 A. Moreover, there is a bijectivecorrespondence between such graphs and coherent spaces. Given two coherent spaces A;B theirproduct A � B is de�ned via the associated graphs as follows: (jA � Bj; _̂A�B) , with jA � Bj =jAj] jBj = (f1g � jAj) [(f2g � jBj) where (1; a) _̂A�B(1; a0) i� a _̂Aa0, (2; b) _̂A�B(2; b0) i�b _̂Bb0, and (1; a) _̂A�B(2; b) for all a 2 jAj; b 2 jBj. The function space BA = Stab(A;B) of stablemaps can be given the structure of a coherent space, ordered by Berry's order: f � g i� for alla; a0 2 A; a0 � a implies f(a0) = f(a) \ g(a0). For details, see [GLT, Tr92]. This class of domainsled to the discovery of linear logic (Section 4.2).Example 2.7 Per Models. A partial equivalence relation (per) is a symmetric, transitive relation�A� A2. Thus �A is an equivalence relation on the subset DomA = fx 2 A j x �A xg. A P-setis a pair (A;�A) where A is a set and �A is a per on A. Given two P-sets (A;�A) and (B;�B)a morphism of P-sets is a function f : A ! B such that a �A a0 implies f(a) �B f(a0) for alla; a0 2 A. That is, f induces a map of quotients DomA= �A! DomB= �B which preserves theassociated partitions.PSet, the category of P-sets and morphisms is a ccc, with structure induced from Set: wede�ne (A � B;�A�B), where (a; b) �A�B (a0; b0) i� a �A a0 and b �B b0 and (BA;�BA), wheref �BA g i� for all a; a0 2 A, a �A a0 implies f(a) �B g(a0). We shall discuss variants of the cccstructure of PSet in Section 2.7 below, with respect to reduction-free normalization.Other classes of Per models are obtained by considering pers on a �xed (functionally complete)partial combinatory algebra, for example built over a model of untyped lambda calculus (cf Section2.5 below). The prototypical example is the following category Per(N) of pers on the naturalnumbers. The objects are pers on N . Morphisms R f�! S are (equivalence classes of) partialrecursive functions (= Turing-machine computable partial functions) N * N which induce a totalmap on the induced partitions, i.e. for all m;n 2 N , mRn implies f(m); f(n) are de�ned andf(m)Sf(n). Here we de�ne equivalence of maps f; g : R ! S by: f � g i� 8m;n, mRn impliesf(m); g(n) are de�ned and f(m)Sg(n). The fact that Per(N) is a ccc uses some elementaryrecursion theory [BFSS90, Mit96, AL91]. (See also Section 2.4.1).Example 2.8 Free CCC's. Given a set of basic objects X , we can form FX , the free ccc generatedby X . Its objects are freely generated from X and 1 using � and (�)(�), its arrows are freelygenerated using identities and composition plus the structure in Figure 1, and we impose theminimal equations required to have a ccc. More generally, we may build FG , the free ccc generatedby a directed multigraph (or even a small category) G, by freely generating from the vertices (resp.objects) and edges (resp. arrows) of G and then{in the case of categories G{imposing the appropriateequations. The sense that this is free is related to De�nition 2.9 and discussed in Example 2.23.Cartesian closed categories can themselves be made into a category in many ways. This depends,to some extent, on how much 2- , bi-, enriched- , etc. structure one wishes to impose. The followingelementary notions have proved useful. We shall mention a comparison between strict and nonstrictccc's with coproducts in Remark 2.28. More general notions of monoidal functors, etc. will bementioned in Section 4.1.De�nition 2.9 CARTst is the category of strictly structured cartesian closed categories withfunctors that preserve the structure on the nose. 2-CARTst is the 2-category whose 0-cells arecartesian closed categories, whose 1-cells are strict cartesian closed functors, and whose 2-cells are5

natural isomorphisms.As pointed out by Lambek [L74, LS86], given a ccc A, we may adjoin an indeterminate arrow1 x�! A to A to form a polynomial cartesian closed category A[x] over A, with the expecteduniversal property in CARTst. The objects of A[x] are the same as those of A, while the arrows are\polynomials", i.e. formal expressions built from the symbol x using the arrow-forming operationsof A. The key fact about such polynomial expressions is a normal form theorem, stated here forccc's, although it applies more generally (see [LS86], p.61):Proposition 2.10 (Functional Completeness) For every polynomial '(x) in an indeterminate1 x�! A over a ccc A, there is a unique arrow 1 h�! CA 2 A such that evohh; xi =x '(x), where =xis equality in A[x].Looking ahead to lambda calculus notation in the next section, we write h � �x:A:'(x), so theequation above becomes evoh�x:A:'(x); xi =x '(x). The universal property of polynomial algebrasguarantees a notion of substitution of constants 1 a�! A 2 A for indeterminates x in '(x). Weobtain the following:Corollary 2.11 (The � rule) In the situation above, for any arrow 1 a�! A 2 Aevoh�x:A:'(x); ai= '(a)(4)holds in A.The �-rule is the foundation of the lambda calculus, fundamental in programming language theory.It says the following: we think of �x:A:'(x) as the function x 7! '(x). Equation 4 says: evaluatingthe function �x:A:'(x) at argument a is just substitution of the constant a for each occurrence ofx in '(x). However this process is far more sophisticated than simple polynomial substitution inalgebra. In our situation, the argument a may itself be a lambda term, which in turn may containother lambda terms applied to various arguments, etc. After substitution, the right hand side '(a)of Equation 4 may be far more complex than the left hand side, with many new possibilities forevaluations created by the substitution. Thus, if we think of computation as oriented rewritingfrom the LHS to the RHS, it is not at all obvious the process ever halts. The fact that it does is abasic theorem in the so-called Operational Semantics of typed lambda calculus. Indeed, the StrongNormalization Theorem (cf. [LS86], p. 81) says every sequence of ordered rewrites (from left toright) eventually halts at an irreducible term (cf. Remark 2.49 and Section 2.7 below).Remark 2.12 We may also form polynomial ccc's A[x1; � � � ; xn] by adjoining a �nite set of inde-terminates 1 xi�! Ai. Using product types, one may showA[x1; � � � ; xn] �= A[z], for an indeterminate1 z�! A1 � � � � �An.Polynomial cartesian or cartesian closed categories A[x] may be constructed directly, showingthey are the Kleisli category of an appropriate comonad on A (see [LS86], p.56). Extensions ofthis technique to allow adjoining indeterminates to �brations, using 2-categorical machinery areconsidered in [HJ95].2.2 Simply Typed Lambda CalculiLambda Calculus is an abstract theory of functions developed by Alonzo Church in the 1930's.Originally arising in the foundations of logic and computability theory, more recently it has becomean essential tool in the mathematical foundations of programming languages [Mit96]. The calculusitself, to be described below, encompasses the process of building functions from variables andconstants, using application and functional abstraction.6

Actually, there are many \lambda calculi"{typed and untyped{with various elaborate structuresof types, terms, and equations. Let us give the basic typed one. We shall follow an algebraic syntaxas in [LS86].De�nition 2.13 (Typed �-calculus) Let Sorts be a set of sorts (or atomic types). The typed�-calculus generated by Sorts is a formal system consisting of three classes: Types, Terms andEquations between terms. We write a : A for \a is a term of type A".Types: This is the class obtained from the collection of Sorts using the following rules: Sorts aretypes, 1 is a type, and if A and B are types then so are A�B and BA. We allow the possibilityof other types or type-forming operations and possible identi�cations between types.Terms: To every type A we assign a denumerable set of typed variables xAi : A; i = 0; 1; 2; : : : :We write x : A or xA for a typical variable x of type A. Terms are freely generated from vari-ables, constants, and term-forming operations. We require at least the following distinguishedgenerators:1. � : 1 ,2. If a : A; b : B; c : A� B, then ha; bi : A�B ; �A;B1 (c) : A; �A;B2 (c) : B;3. If a : A; f : BA; ' : B then evA;B(f; a) : B; �x:A:' : BA.There may be additional constants and term-forming operations besides those speci�ed.We shall abbreviate evA;B(f; a) by f `a, read \f of a", omitting types when clear. Intuitively,evA;B denotes evaluation, h�;�i denotes pairing, and �x:A:' denotes the function x 7! ',where ' is some term expression possibly containing x. The operator �x:A acts like a quan-ti�er, so the variable x in �x:A:' is a bound (or dummy) variable, just like the x in 8x:A' orin R f(x)dx. We inductively de�ne the sets of free and bound variables in a term t, denotedFV (t); BV (t), resp. (cf. [Bar84], p. 24). We shall always identify terms up to renaming ofbound variables. The expression '[a=x] denotes the result of substituting the term a : A foreach occurrence of x : A in ', if necessary renaming bound variables in ' so that no clashesoccur (cf. [Bar84].) Terms without free variables are called closed; otherwise, open.Equations between terms: A context � is a �nite set of (typed) variables. An equation in context� is an expression a =� a0, where a; a0 are terms of the same type A whose free variables arecontained in �.The equality relation between terms (in context) of the same type is generated using (at least)the following axioms and closure under the following rules:(i) =� is an equivalence relation,(ii) a =� ba =� b , whenever � � �(iii) =� must be a congruence relation with respect to all term-forming operations. It su�cesto consider closure under the following two rules (cf. [LS86])a =� bf `a =� f `b ' =�[fxAg '0�x:A:' =� �x:A:'0(iv) The following speci�c axioms (we omit subscripts on terms, when the types are obvious):Products(a) a =� � for all a : 1, 7

(b) �1(ha; bi) =� a for all a : A; b : B,(c) �2(ha; bi) =� b for all a : A; b : B,(d) h�1(c); �2(c)i =� c for all c : C,Lambda Calculus�-Rule (�x:A:')`a =� '[a=x] ,�-Rule �x:A:(f `x) =� f , where f : BA and x is not a free variable of f .Remark 2.14 There may be additional types, terms, or equations. Following standard conven-tions, we equate terms which only di�er by change of bound variables{this is called �- conversionin the literature [Bar84]. Equations are in context{i.e. occur within a declared set of free variables.This allows the possibility of empty types, i.e types without closed terms (of that type). This viewis fundamental in recent approaches to functional languages [Mit96] and necessary for interpretingsuch theories in presheaf categories, for example. However, if there happen to be closed terms a : Aof each type, we may omit the subscript � on equations, because of the following derivable rule (cf.[LS86], Prop. 10.1, p.75): for x 62 � and if all free variables of a are contained in �,'(x) =�[fxg (x)'[a=x] =� [a=x]Example 2.15 Freely generated simply typed lambda calculi. These are freely generated fromspeci�ed sorts, terms, and/or equations. In the minimal case (no additional assumptions) weobtain the simply typed lambda calculus with �nite products freely generated by Sorts. Typically,however, we assume that among the Sorts are distinguished datatypes and associated terms, possiblywith speci�ed equations. For example, basic universal algebra would be modelled by sorts A withdistinguished n-ary operations given by terms t : An) A and constants c : 1 ! A. Any speci�edterm equations are added to the theory as (nonlogical) axioms.Example 2.16 The internal language of a ccc A. Here the types are the objects of A, where�; (�)(�); 1 have the obvious meanings. Terms with free variables x1 : A1; � � � ; xn : An are polyno-mials in A[x1; � � � ; xn], where 1 xi�! Ai is an indeterminate, lambda abstraction is given by functionalcompleteness, as in Proposition 2.10, and we de�ne a =X b to hold i� a =X b as polynomials in A[X],where X = fx1; � � � ; xng.Remark 2.17(i) Historically, typed lambda calculi were often presented with only exponential types BA (noproducts) and the associated machinery [Bar84, Bar92]. This permits certain simpli�cationsin inductive arguments, athough it is categorically less \natural" (cf. also Remark 2.24).(ii) It is a fundamental property that lambda calculus is a higher-order functional language: termsof type BA can use an arbitrary term of type A as an argument, and A and B themselves maybe very complex. Thus, typed lambda calculus is often referred to as a theory of functionalsof higher type.2.3 Formulas-as-Types: the fundamental equivalenceLet us describe the third component of the trio: cartesian closed categories, typed lambda cal-culi, and formulas-as-types. The Formulas-as-Types view, sometimes called the Curry-Howard8

Formulas A ::= > jAtoms jA1 ^ A2 jA1) A2Provability ` is a reexive, transitive relation such that,for arbitrary formulas A;B;CA ` > , A ^ B ` A , A ^ B ` BC ` A ^B i� C ` A and C ` BC ^A ` B i� C ` A) BFigure 2: Intuitionistic >;^;) Logicisomorphism, is playing an increasingly inuential role in the logical foundations of computing,especially in the foundations of functional programming languages. Its historical roots lie inthe so-called Brouwer-Heyting-Kolmogorov (BHK) interpretation of intuitionistic logic from the1920's[GLT, TrvD88]. The idea is based on modelling proofs (which are programs) by functions,i.e. lambda terms. Since proofs can be modelled by lambda terms and the latter are themselvesarrows in certain free categories, it follows that functional programs can be modelled categorically.In modern guise, the Curry-Howard analysis says the following. Proofs in a constructive logicL may be identi�ed as terms of an appropriate typed lambda calculus �L, where:� types = formulas of L,� lambda terms = proofs (i.e. annotations of Natural Deduction proof trees),� provable equality of lambda terms corresponds to the equivalence relation on proofs generatedby Gentzen's normalization algorithm.Often researchers impose additional equations between lambda terms, motivated from categoricalconsiderations (e.g. to force traditional datatypes to have a strong universal mapping property).Remark 2.18 (Formulas = Speci�cations) More generally, the Curry-Howard view identi�estypes of a programming language with formulas of some logic, and programs of type A as proofswithin the logic of formula A. Constructing proofs of formula Amay then be interpreted as buildingprograms that meet the speci�cation A.For example, consider the intuitionistic f>;^;)g-fragment of propositional calculus, as inFigure 2. This logic closely follows the presentation of ccc's in De�nition 2.1 and Figure 1. Wenow identity (= Formulas-as-Types) the propositional symbols >;^;) with the type constructors1;�;), respectively. We assign lambda terms inductively. To a proof of A ` B we assign �-termsx : A ` t(x) : B, where t(x) is a term of type B with at most the free variable x : A (i.e. in contextfx : Ag) as follows:x : A ` x : A ; x : A ` s(x) : B y : B ` t(y) : Cx : A ` t[s(x)=y] : C ;x : A ` � : > ; x : A^B ` �1(x) : A ; x : A^B ` �2(x) : B ;x : C ` a : A x : C ` b : Bx : C ` ha; bi : A ^ B ; z : C ^ A ` t(z) : By : C ` �x:A:t[hy; xi=z] : A) B ;9

y : C ` t(y) : A) Bz : C ^A ` t[�1(z)=y]`�2(z) : BWe can now refer to entire proof trees by the associated lambda terms. We wish to put an equi-valence relation on proofs, according to the equations of typed lambda calculus. Given two proofsof an entailment A ` B, say x : A ` s(x) : B and x : A ` t(x) : B , we say they are equivalent if wecan derive s =fxg t in the appropriate typed lambda calculus.De�nition 2.19 Let �-Calc denote the category whose objects are typed lambda calculi andwhose morphisms are translations, i.e. maps � which send types to types, terms to terms (includingmapping the ith variable of type A to the ith variable of type �(A)), preserve all the speci�edoperations on types and terms on the nose, and preserve equations.Theorem 2.20 There are a pair of functors C : �-Calc! Cartst and L : Cartst ! �-Calc whichset up an equivalence of categories Cartst �= �-Calc.The functor L associates to ccc A its internal language, while the functor C associates to anylambda calculus L, a syntactically generated ccc C(L), whose objects are types of L and whosearrows A ! B are denoted by (equivalence classes of) lambda terms t(x) representing proofsx : A ` t(x) : B as above (see [LS86]).This leads to a kind of Soundness Theorem for diagrammatic reasoning which is important incategorical logic.Corollary 2.21 Verifying that a diagram commutes in a ccc C is equivalent to proving an equationin the internal language of C.The above result includes allowing algebraic theories modelled in the cartesian fragment [Mac82,Cr93], as well as extensions with categorical data types (like weak natural numbers objects, seeSection 2.3.1.) Theorem 2.20 also leads to concrete syntactic presentations of free ccc's [LS86,Tay98]. Let Graph be the category of directed multi-graphs [ST96].Corollary 2.22 The forgetful functor U : Cartst ! Graph has a left adjoint F : Graph! Cartst.Let FG denote the image of graph G under F . We call FG the free ccc generated by G.Example 2.23 Given a discrete graph G0 considered as a a set, FG0 = the free ccc generated by theset of sorts G0. It has the following universal property: for any ccc C and for any graph morphismF : G0 ! C, there is a unique extension to a (strict) ccc-functor � F : FG0 ! C.FG0 � F - C�����F�G06This says: given any interpretation F of basic atomic types (= nodes of G0) as objects of C, thereis a unique extension to an interpretation � F in C of the entire simply typed lambda calculusgenerated by G0 (identifying the free ccc FG0 with this lambda calculus.)Remark 2.24 A Pitts [Pi9?] has shown how to construct free ccc's syntactically, using lambdacalculi without product types. The idea is to take objects to be sequences of types and arrows10

Objects Distinguished Arrow(s) EquationsInitial 0 0 OA�! A OA = f ,f : 0! AinA;B1 : A! A +B [f; g]oin1 = fCoproducts A+B inA;B2 : B ! A+B [f; g]oin2 = gA f�! C B g�! CA+B [f;g]�! C [hoin1; hoin2] = h ,h : A +B ! CFigure 3: Coproductsto be sequences of terms. The terminal object is the empty sequence, while products are givenby concatenation of sequences. For a full discussion, see [CDS97] This is useful in reduction-freenormalization (see Section 2.7 below).Remark 2.25 There are more advanced 2- and bi-categorical versions of the above results. Weshall mention more structure in the case of cartesian closed categories with coproducts, in the nextsection.2.3.1 Some DatatypesComputing requires datatypes, for example natural numbers, lists, arrays, etc. The categoricaldevelopment of such datatypes is an old and established area. The reader is referred to any of thestandard texts for discussion of the basics, e.g. [MA86, BW95, Mit96, Ten94]. General categoricaltreatments of abstract datatypes abound in the literature. The standard treatment is to useinitial T -algebras (cf. Section 2.4.2 below) or �nal T -coalgebras for \de�nable" or \polynomial"endofunctors T . There are interesting common generalizations to lambda calculi with functorialtype constructors [Ha87, Wr89], categories with datatypes determined by strong monads[Mo91,CSp91], and using enriched categorical structures [K82]. There is recent discussion of datatypes indistributive categories, [Co93, W92] and the use of the categorical theory of sketches [BW95, Bor94].We shall merely illustrate a few elementary algebraic structures commonly added to a cartesianor cartesian closed category (or the associated term calculi).De�nition 2.26 A category C has �nite coproducts (equivalently, binary coproducts and an initialobject 0) if for every A;B 2 C there is a distinguished object A + B, together with isomorphisms(natural in A;B;C 2 C) HomC(0; A) �= f�g(5) HomC(A+B;C) �= HomC(A;C)�HomC(B;C)(6)We say C is bicartesian closed (= biccc) if it is a ccc with �nite coproducts 1.Just as in the case of products (cf. Figure 1), we may present coproducts equationally, asin Figure 3, and speak of strict structure, etc. In programming language semantics, coproductscorrespond to variant types, set-theoretically they correspond to disjoint union, while from thelogical viewpoint coproducts correspond to disjunction. Thus a biccc corresponds to intuitionisticf?;>;^;_;)g-logic. We add to the logic of Figure 2 formulas ? and A1 _ A2, together with the1Not to be confused with bicategories, cf. [Bor94] 11

rules ?` AA _B ` C i� A ` C and B ` Ccorresponding to equations (5),(6). The associated typed lambda calculus with coproducts is rathersubtle to formulate [Mit96, GLT]. The problem is with the copairing operator A+B [f;g]�! C whichin Sets corresponds to a de�nition-by-cases operator:[f; g](x) = (f(x) if x 2 Ag(x) if x 2 BThe correct lambda calculus formalism for coproduct types corresponds to the logicians' naturaldeduction rules for strong sums. The issue is not trivial, since the word problem for free biccc's(and the associated type isomorphism problem [DiCo95]) is among the most di�cult of this typeof question, and|at least for the current state of the art|depends heavily on technical subtletiesof syntax for its solution (see [Gh96]).Just as for ccc's, we may introduce various 2-categories of biccc's (cf. [Cu93]). For exampleDe�nition 2.27 The 2-category 2� BiCART st has 0-cells strict bicartesian closed categories,1-cells functors preserving the structure on the nose, and 2-cells natural isomorphisms.One may similarly de�ne a non-strict version 2�BiCART .Remark 2.28 Every bicartesian closed category is equivalent to a strict one. Indeed, this is partof a general 2-categorical adjointness between the above 2-categories, from a theorem of Blackwell,Kelly, and Power. (See �Cubri�c [Cu93] for applications to lambda calculi.).De�nition 2.29 In a biccc, de�ne Boole = 1 + 1, the type of booleans.Boole's most salient feature is that it has two distinguished global elements (boolean values)T; F : 1! Boole, corresponding to the two injections in1; in2, together with the universal propertyof coproducts. In Set we interpret Boole as a set of cardinality 2; similarly, in typed lambdacalculus, it corresponds to a type with two distinguished constants T; F : Boole and an appropriatenotion of de�nition by cases . In any biccc, we can de�ne all of the classical n-ary propositionallogic connectives as arrows Boolen ! Boole (see [LS86], I.8). A weaker notion of booleans in thecategory !-CPO? is illustrated in Figure 4.De�nition 2.30 A natural numbers object in a ccc C is an object N with arrows 1 0�! N S�! Nwhich is initial among diagrams of that shape. That is, for any object A and arrows 1 a�! A h�! A,there is a unique iterator Iah : N ! A making the following diagram commute:1 0 - N S - N@@@@@a R AIah? h - AIah?A weak natural numbers object is de�ned as above, but just assuming existence and not necessarilyuniqueness of Iah. 12

B? = ?�f @@ �� �t N? = ?�0 �1HHHH@@ �� !!!!!!�2 � � � �n � � �Figure 4: Flat Datatypes in !-CPO?In the category Set, the natural numbers (N; 0; S) is a natural numbers object, where Sn = n+1. In functor categories SetC, a natural numbers object is given by the constant functor KN , whereKN(A) = N , and KN(f) = idN , with obvious natural transformations 1 0�! KN S�! KN . In!-CPO there are numerous weak natural numbers objects: for example the at pointed naturalnumbers N? = N] f?g, ordered as follows: a � b i� a = b or a =?, where S(n) = n + 1 andS(?) =?, pictured in Figure 4.Natural numbers objects|when they exist|are unique up to isomorphism; however weak onesare far from unique. Typical programming languages and typed lambda calculi in logic assumeonly weak natural numbers objects.If a ccc C has a natural numbers object N , we can construct parametrized versions of iteration,using products and exponentiation in C [LS86, FrSc]. For example, in Set: given functions g : A!B and f : N�A�B ! B, there exists a unique primitive recursor Rgf : N�A! B satisfying: (i)Rgf(0; a) = g(a) and Rgf(Sn; a) = f(n; a;Rgf(n; a)): These equations are easily represented in anyccc with N , or in the associated typed lambda calculus (e.g. the number n 2 N being identi�edwith Sn0). In the case C has only a weak natural numbers object, we may prove the existence butnot necessarily the uniqueness of Rgf .An important datatype in Computer Science is the type of �nite lists of elements of some typeA. This is de�ned analogously to (weak) natural numbers objects:De�nition 2.31 Given an object A in a ccc C, we de�ne the object `ist(A) of �nite lists on Awith the following distinguished structure: arrows nil : 1 ! `ist(A), cons : A � `ist(A) ! `ist(A)satisfying the following (weak) universal property: for any object B and arrows b : 1 ! B andh : A� B ! B, there exists an \iterator" Ibh : `ist(A)! B satisfying (in the internal language):Ibhnil = b Ibhconsha; wi = hha; Ibhwi:Here nil corresponds to the empty list, and cons takes an element of A and a list and concatenatesthe element onto the head of the list.Analogously to (weak) natural numbers objectsN , we can use product types and exponentiationto extend iteration on `ist(A) to primitive recursion with parameters (cf. [GLT], p. 92).What n-ary numerical Set functions are represented by arrows Nn ! N in a ccc? The answer,of course, depends on the ccc. In general, the best we could expect is the following (cf. [LS86],Part III, Section 2):Proposition 2.32 Let FN be the free ccc with weak natural numbers object. The class of numericaltotal functions representable therein is properly contained between the primitive recursive and theTuring-machine computable functions.In general, such fast-growing functions as the Ackermann function are representable in any cccwith weak natural numbers object (see [LS86]). Analogous results hold for symmetric monoidaland monoidal closed categories, [PR89].The question of strong versus weak datatypes is of some interest. For example, althoughwe can de�ne addition + : N � N ! N by primitive recursion on a weak natural numbers type,13

commutativity of addition follows from having a strong natural numbers object; a weak parametrizedprimitive recursor would only allow us to derive x + n = n + x for each closed numeral n but wecannot then extend this to variables (this is similar to consequences of G�odel's incompletenesstheorem, cf. [LS86], p. 263). Notice that, on the face of it, the de�nition of a natural numbersobject appears not to be equational: informally, uniqueness of the arrow Iah requires an implication:for all f : N ! A (if f0 = a and fS = hf) then f = Iah .Here we remark on a curious observation of Lambek [L88]. Let us recall from universal algebrathat a Mal'cev operator on an algebra A is a function mA : A3 ! A satisfying mAxxz = z andmAxzz = x . For example, if A were a group, mA = xy�1z is such an operator. Similarly, thede�nition of a Mal'cev operator on an object A makes sense in any ccc (e.g. as an arrow A3 mA�! Asatisfying some diagrams) or, equivalently, in any typed lambda calculus (e.g. as a closed termmA : A3) A satisfying some equations) .Theorem 2.33 (Lambek) Let C be a ccc with weak natural numbers (N; 0; S) in which each objectA has a Mal'cev operator mA. Then the fact that (N; 0; S) is a natural numbers object is equationallyde�nable using the family fmA j A 2 Cg. In particular, if C = FN , the free ccc with weak naturalnumbers object, there are a �nite number of additional equations (as schema) that, when added tothe original data, guarantee that every type has a Mal'cev operator and N is a natural numbersobject.2.4 Polymorphism \The perplexing subject of polymorphism."C. Darwin Life & Lett, 1887Although Darwin was speaking of biology, he might very well have been discussing computerscience 100 years later. Christopher Strachey in the 1960's introduced various notions of poly-morphism into programming language design (see [Rey83, Mit96]). Perhaps the most inuentialwas his notion of parametric polymorphism. Intuitively, a parametric polymorphic function is onewhich has a uniformly given algorithm at all types. Imagine a \generic" algorithm capable of beinginstantiated at any arbitrary type, but which is the \same algorithm" at each type instance. It isthis idea of the \plurality of form" which inspired the biological metaphor.Example 2.34 (Reverse) Consider a simple algorithm that takes a �nite list and reverses it.Here \lists" could mean: lists of natural numbers, lists of reals, lists of arrays, indeed lists of lists of: : : . The point is, the types do not matter: we have a uniform algorithm for all types. Let list(�)denote the type of �nite lists of entities of type �.We thus might type this algorithmrev� : list(�)) list(�)where rev�(a1; � � � ; an) = (an; � � � ; a1).A second example, discussed by Strachey, isExample 2.35 (Map-list) This algorithm begins with a function of type �) � and a �nite �-list, applies the function to each element of the list, and then makes a �-list of the subsequentvalues. We might represent it as:map�;� : (�) �)) (list(�)) list(�))where map�;�(f)(a1; � � � ; an) = (f(a1); � � � ; f(an)).14

Formulas A ::= vbl jA1) A2 j 8�:AProvability ` is a relation between �nite sets of formulasand formulas� ` A if A 2 �� [fAg ` B� ` A) B , � ` A � ` A) B� [� ` B� ` A(�)� ` 8�A(�) , � ` 8�A(�)� ` A[B=�]where � 62 FV (�) for any formula B .Figure 5: Second Order Intuitionistic Propositional CalculusMany recent programming languages (e.g. ML, Ada) support sophisticated uses of generic typesand polymorphism. The mathematical foundations of such languages were a major challenge in thepast decade and category theory played a fundamental role. We shall briey recall the issues.2.4.1 Polymorphic lambda calculiThe logician J-Y. Girard[Gi71, Gi72] in a series of important works examined higher-order logicfrom the Curry-Howard viewpoint. He developed formal calculi of variable types, the so-calledpolymorphic lambda calculi, which correspond to proofs in higher-order logics. At the same timehe developed the proof theory of such systems . J. Reynolds[Rey74] independently discovered thesecond-order fragment of Girard's system, and proposed it as a syntax representing Strachey'sparametric polymorphism.Let us briey examine Girard's System F , second order polymorphic lambda calculus. Theunderlying logical system is intuitionistic second order propositional calculus. The latter theoryis similar to ordinary propositional calculus, except we can universally quantify over propositionalvariables.The syntax of second order propositional calculus is presented in Figure 5.The usual notions of free and bound variables in formulas are assumed. For example, in8�(�) �), � is a bound variable, while � is free. A[B=�] denotes A with formula B substi-tuted for free �, changing bound variables if necessary to avoid clashes. Notice in the quanti�errules that when we instantiate a universally quanti�ed formula to obtain, say, � ` A[B=�], theformula B may be of arbitrary logical complexity. Thus inductive proof techniques based on thecomplexity of subformulas are not available in higher-order logic. This is the essence of the problemof impredicativity in polymorphism.We now introduce Girard's second order lambda calculus. We use the notation FV (t) andBV (t) for the set of free and bound variables of term t, respectively. We write FTV (A) andBTV (A) for the set of free type variables and bound type variables of formula A, respectively.De�nition 2.36 (Girard's System F)Types: Freely generated from type variables �; �; � � � by the rules: if A;B are types, so are A) Band 8�:A .Terms: Freely generated from variables xAi of every type A by15

(1) First-order lambda calculus rules: if f : A) B; a : A;' : B then f `a : B and �x:A:' :A) B .(2) Speci�cally second-order rules:(a) If t : A(�), then ��:t : 8�A(�) where � 62 FTV (FV (t)),(b) If t : 8�A(�) then t[B] : A[B=�] for any type B.Equations: Equality is the smallest congruence relation closed under � and � for both lambdas,that is:(3) (�x:A:')`a =�1 '[a=x] and �x:A(f `x) =�1 f , where x 62 FV (f).(4) (��:)[B] =�2 [B=�] and ��:t[�] =�2 t, where � 62 FTV (t).Equations (3) are the �rst order �� equations, while equations (4) are second order ��.From the Curry-Howard viewpoint, the types of F are precisely the formulas of second orderpropositional calculus (Fig. 5), while terms denote proofs. For example, to annotate second orderrules we have: ~x : � ` t : A(�)~x : � ` ��:t : 8�A(�) ; ~x : � ` t : 8�A(�)~x : � ` t[B] : A[B=�]The �� equations of course express equality of proof trees.What about polymorphism? Suppose we think of a term t : 8�A(�) as an algorithm of typeA(�) varying uniformly over all types �. Then t[B] : A[B=�] is the instantiation of t at the speci�ctype B. Moreover, B may be arbitrarily complex. Thus the type variable acts as a parameter.In System F we can internally represent common inductive data types within the syntax as weakT -algebras, for covariant de�nable functors T . Weakness refers to the categorical fact that thesestructures satisfy existence but not uniqueness of the mediating arrow in the universal mappingproperty. Thus, for any types A;B we are able to de�ne the types 1; Nat; List(A); A � B;A +B; 9�:A, etc. (see [GLT] for a full treatment) .Let us give two examples and at the same time illustrate polymorphic instantiation.Example 2.37 The type of booleans is given byBoole = 8�:(�) (�) �))It has two distinguished elements T; F : Boole given by T = ��:�x:�:�y:�:x and F = ��:�x:�:�y:�:y,together with a De�nition by Cases operator (for each type A) DA : A) (A) (Boole) A))de�ned by DAuvt = (t[A]`u)`v where u; v : A, t : Boole. One may easily verify that DAuvT =� uand DAuvF =� v. (where � stands for �1 [�2).Example 2.38 The type of (Church) numeralsNat = 8�((�) �)) (�) �)) :The numeral n : Nat corresponds at each � to n-fold composition f 7! fn, where fn = f of o � � � of(n times) and f0 = Id� = �x�:x . Formally, it is the closed term n = ��:�f :�)�:fn : Nat. Thus forany type B we have a uniform algorithm: n[B] = �f :B)B :fn : (B) B)) (B) B). Successor isgiven by S = �n:Nat:n+1, where n+1 = ��:�f :�)�:fn+1 = ��:�f :�)�:f ofn = ��:�f :�)�f o(n[�]`f).Finally, iteration is given by: if a : A; h : A) A, Iah = �x:Nat:(x[A]`h)`a : Nat) A. The readermay easily calculate that Iah0 =� a and Iah(n+ 1) =� h`(Iahn) for numerals n.16

Let us illustrate impredicativity in this situation. Recall the discussion of Church vs. Currytyping, Section 2.5.3. Notice that for any type B, n[B) B]`n[B] makes perfectly good sense. Inparticular, let B = Nat, the type of n itself. This is a well-de�ned term and if we erase all its typeswe obtain the untyped expression n`n = �f:fn. This latter untyped term is not typable in simplytyped lambda calculus.Formal systems describing far more powerful versions of polymorphism have been developed.For example, Girard's thesis described the typed lambda calculus corresponding to !-order intu-itionist type theory, so-called F!. Programming in the various levels of Girard's theories fFng,n = 1; 2; � � � ; ! is described in [PDM89]. Other systems include Coquand-Huet's Calculus ofConstructions and its extensions [Luo94]. These theories include not only Girard's F! but alsoMartin-L�of's dependent type theories [H97a]. Indeed, these theories are among the most power-ful logics known, yet form the basis of various proof-development systems (e.g. LEGO and Coq)[LP92, D+93].2.4.2 What is a Model of System F ?The problem of �nding|and indeed de�ning precisely|a model of System F was di�cult.Cartesian closedness is not the issue. The problem, of course, is the universal quanti�er: clearlyin 8�:A the � is to range over all the objects of the model, and at the same time 8 should beinterpreted as some kind of product (over all objects). Such \large" products create havoc, asforeshadowed in the following theorem of Freyd (cf. [Mac71], Proposition 3, p. 110)Theorem 2.39 (Freyd) A small category which is small complete is a preorder.Cartesian closed preorders (e.g. complete Heyting algebras) are of no interest for modelling proofs;we seek \nontrivial" categories.Suppose instead we try to de�ne a naive \set-theoretic" model of System F , in which �;)have their usual meaning, and 8� is interpreted as a \large" product. Such models are de�ned indetail in [RP, Pi87]. John Reynolds proved the followingTheorem 2.40 There is no Set model for System F .There is an elegant categorical proof in Reynolds and Plotkin [RP]. Let us sketch the proof, whichapplies to somewhat more general categories than Set.Let C be a category with an endofunctor T : C ! C. A T -algebra is an object A together withan arrow TA a�! A. A morphism of T-algebras is a commutative square:TA Tf - TBAa? f - Bb?An initial T -algebra (resp. weakly initial T -algebra) is one for which there exists a unique morphism(resp. there exists a morphism) to any other T -algebra.We shall be interested in objects and arrows of the model category C which are \de�nable",i.e. denoted by types and terms of System F . There are simple covariant endofunctors T on Cwhose action on objects is de�nable by types and whose actions on arrows is de�nable by terms (ofSystem F). For example, the identity functor T (�) = � and the functor T (�) = (�) B)) B,for any �xed B, have this property. 17

Now it may be shown (see [RP]) that for any de�nable functor T , the System F expressionP = 8�:(T (�)) �)) � is a weakly initial T -algebra . Suppose the ambient model category Chas equalizers of all subsets of arrows (e.g. Set has this property). Essentially by taking a largeequalizer (cf. the Solution Set Condition in Freyd's Adjoint Functor Theorem, [Mac71], p. 116) wecould then construct a subalgebra of P which is an initial T -algebra. Call this initial T -algebra I.We then use the following important observation of Lambek :Proposition 2.41 (Lambek) If T (I) f�! I is an initial T -algebra, then f is an isomorphism.Applying this to the de�nable functor T (�) = (�) B)) B, we observe that T (I) �= I. Inparticular, let C = Set and B = Boole, and take the usual Set interpretation of � as cartesianproduct and) as the full function space. Notice card(B) � 2 (since there are always the twodistinct closed terms T and F). Hence we obtain a bijection BBI �= I, for some set I, which isimpossible for cardinality reasons. 2The search for models of System F led to some extraordinary phenomena that had considerableinuence in semantics of programming languages. Let us just briey mention the history. Noticethat the Reynolds-Plotkin proof depends on a simple cardinality argument, which itself dependson classical set theory. Similarly, the proof of Freyd's result, Theorem 2.39, depends on usingclassical (i.e. non-intuitionistic) logical reasoning in the metalanguage. This suggests that it isreally the non-constructive nature of the category Sets that is at fault; if we were to work within anon-classical universe|say within a model of intuitionistic set theory|there is still a chance thatwe could escape the above problems but still have a \set-theoretical" model of System F . And,from one point of view, that is exactly what happened.These ambient categories, called toposes [LS86, MM92], are in general models of intuitionistichigher-order logic (or set-theory), and include such categories as functor categories and sheaveson a topological space, as well as Sets. Moggi suggested constructing models of System F basedon an internally complete internal full subcategory of a suitable ambient topos. This ambienttopos would serve as our constructive set-theory, and function types would still be interpreted asthe full \set-theoretical" space of total functions. M. Hyland [Hy88] proved that the Realizability(or E�ective) Topos had (non-trivial) such internal category objects. The di�cult developmentand clari�cation of these internal models was undertaken by many researchers, e.g. D. Scott,M. Hyland, E. Robinson, P. Rosolini, A. Carboni, P. Freyd, A. Scedrov,A. Pitts et. al. (e.g.[HRR, Rob89, Ros90, CPS88, Pi87]).In a separate development, R. Seely [See87] gave the �rst general categorical de�nition of aso-called external model of System F , and more generally F!. The de�nition was based on thetheory of indexed or �bred categories. This view of logic was pioneered by Lawvere[Law69] whoemphasized that quanti�ers were interpretable as adjoint functors. Pitts[Pi87] clari�ed the relation-ship between Seely's models and internal-category models within ambient toposes of presheaves.Moreover, he showed that there are enough such internal models for a Completeness Theorem. Itis worth remarking that Pitts' work uses properties of Yoneda embeddings. For general expositionssee [AL91]. Extensions of \set-theoretical" models to cases where function spaces include partialfunctions (i.e. non-termination) is in [RR90].One can externalize these internal category models [Hy88, AL91] to obtain ordinary categories.And one such internal category in the Realizability Topos, the modest sets, when externalized isprecisely the ccc category Per(N) discussed in Section 2.1.Proposition 2.42 Per(N) is a model of System F .The idea is that in addition to the ccc structure of Per(N), we interpret 8 as a large intersection(the intersection of an arbitrary family of pers is again a per). We shall return to this example in18

Section 3.2.Ironically, in essence this model was already in Girard's original Phd thesis [Gi72]. Later,domain-theoretic models of System F were considered by Girard in [Gi86] and were instrumentalin his development of linear logic.2.5 The Untyped WorldThe advantages of types in programming languages are familiar and well-documented (e.g. [Mit96]).Nonetheless, there is an underlying untyped aspect of computation, already going back to the ori-ginal work on lambda calculus and combinatory logic in the 1930's, which often underlies concretemachine implementations. In this early view, developed by Church, Curry, and Sch�on�nkel, func-tions were understood in the old-fashioned (pre-Cantor) sense of \rules", as a computational processof going from an argument to a value. Such a functional process could take anything, even itself,as an argument. Let us just briey mention some key directions (see [Bar84, AGM]).2.5.1 Models and Denotational SemanticsFrom the viewpoint of ccc's, untypedness amounts to �nding a ccc C with an objectD 6�= 1 satisfyingthe isomorphism DD �= D(7)Thus function spaces and elements are \on the same level". It then makes sense to de�ne formalapplication f `g for constants f; g : DD by f `g = ev(f; '(g)), where ' : DD �=�! D is the isomorphismabove. In particular, self-application f `f makes perfectly good sense.Dana Scott found the �rst semantical (topological) models of the untyped lambda calculus in1970 [Sc72]; i.e. non-trivial solutions D to \equations" of the form (7) in various ccc's, perhaps thesimplest being in !-CPO. This was part of his general investigations (with Christopher Strachey)into the foundations of programming languages , culminating in the so-called Scott-Strachey ap-proach to the semantics of programming languages. Arguably, this has been one of the majorarenas in the use of category theory in Computer Science, with an enormous literature. For anintroduction, see [AbJu94, Gun92, Ten94].More generally, one seeks to �nd non-trivial domains D satisfying certain so-called \recursivedomain equations", of the form D �= � � �D � � �(8)where � � �D � � � is some expression built from type constructors. The di�culty is that the variableD may appear both co- and contravariantly. Such recursive de�ning \equations" are used to specifythe semantics of numerous notions in computer science, from datatypes in functional programminglanguages, to modelling nondeterminism, concurrency, etc. (cf. also [DiCo95]).The seminal early paper on categorical solutions of domain equations is the paper of Smyth andPlotkin [SP82]. More recent work has focussed on Axiomatic and Synthetic Domain Theory (e.g.[AbJu94, FiPl96, ReSt97]) and use of bisimulations and relation-theoretic methods for reasoningabout recursive domains [Pi96a]. These methods rely on fundamental work of Peter Freyd onrecursive types (e.g [Fre92]).2.5.2 C-Monoids and Categorical CombinatorsOn a more algebraic level, a model of untyped lambda calculus is a ccc with (up to isomorphism)one non-trivial object. That is, a ccc C with an object D 6�= 1 satisfying the domain equations:D �= DD �= D �D :(9) 19

An example of such a D in !-CPO is given in [LS86], using the constructions of D. Scott andSmyth-Plotkin mentioned above. An interesting axiomatization of such D's comes from simplyconsidering HomC(D;D) �= HomC(1; DD) as an abstract monoid. It turns out that the axioms areeasy to obtain: take the axioms of a ccc, remove the terminal object, and erase all the types!. Thatis (following the treatment in [LS86], p. 93):De�nition 2.43 A C-monoid (C for Curry, Church, Combinatory, or CCC) is a monoid (M; o; id)together with extra structure structure (�1; �2; "; (�)�; h�;�i) where �i; " are elements ofM, (�)�is a unary operation onM, and h�;�i is a binary operation onM, satisfying untyped versions ofthe equations of a ccc (cf. Figure 1):�1ha; bi = a�2ha; bi = bh�1c; �2ci = c "hh��1; �2i = h("hk�1; �2i)� = k .for any a; b; c; h; k 2 M (where we elide the monoid operation o).C-monoids were �rst discovered independently by D. Scott and J. Lambek around 1980. Theelementary algebraic theory and connections with untyped lambda calculus were developed in[LS86] (and independently in [Cur93], where they were called categorical combinators). ObviouslyC-monoids form an equational class; thus, just like for general ccc's, we may form free algebras,polynomial algebras, prove Functional Completeness, etc. The associated internal language isuntyped lambda calculus with pairing operators. As above, this language is obtained from simplytyped lambda calculus by omitting the type 1 and erasing all the types from terms.The rewriting theory of categorical combinators has been discussed by Curien, Hardin, et. al.(e.g. see [Har93]). Categorical combinators form a particularly e�cient mechanism for implement-ing functional languages; for example, the language CAML is a version of the functional languageML based on categorical combinators (see [Hu90], Part 1).The deepest mathematical results to date on the cartesian fragment of C-monoids were ob-tained by R. Statman [St96]. Statman characterizes the free cartesian monoid F (in terms of arepresentation into certain continuous shift operators on Cantor space), as well as characterizingthe �nitely generated submonoids of F and the recursively enumerable subsets of F . The lattertwo results are based on projections of (suitably encoded) uni�cation problems.2.5.3 Church vs Curry TypingThe fundamental feature of the untyped lambda calculus is self-application. The �-rule �x:'(x)`a ='[a=x] is now totally unrestricted with respect to typing constraints. This permits non-haltingcomputations: for example, the term
 =def (�x:x`x)`(�x:x`x) has no normal form and only �-reduces to itself, while the �xed point combinator Y =def �f:(�x:f `(x`x))`(�x:f `(x`x)) satis�esf `(Y`f) =�� Y`f , hence Y`f is a �xed point of f , for any f . Hence we immediately obtain: all termsof the untyped lambda calculus have a �xed point.Untyped lambda calculus suggests a di�erent approach to the typed world: \typing" untypedterms. The Church view (which we have adopted here) insists all terms be explicitly typed, startingwith the variables. On the other hand Curry, the founder of the related but older subject ofCombinatory Logic, had a di�erent view: start with untyped terms, but add \type inference rules"to algorithmically infer appropriate types (when possible). Many modern typed programminglanguages (e.g. ML) essentially follow this Curry view and use \typing rules" to assign appropriatetype schema to untyped terms. This leads to the so-called Type Inference Problem: given anexplicitly typed language L and type erasure function L Erase�! U (where U is untyped lambda20

calculus), decide if an untyped term t satis�es t = Erase(M) for some M 2 L. It turns out that aproblem of type inference is essentially equivalent to a so-called uni�cation problem, familiar fromLogic Programming (cf. [Mit96]). Fortunately in the case of ML and other typed programminglanguages there are known type inference algorithms; however in general (e.g. for System F ;F!; � � �)the problem is undecidable. To the best of our knowledge, the Church-vs-Curry view of typedlanguages has not yet been systematically analyzed categorically.2.6 Logical Relations and Logical PermutationsLogical relations play an important role in the recent proof theory and semantics of typed lambdacalculi [Mit96, Plo80, St85]. Recall the notion of Henkin model (Section 2.1) as a subccc of Set.De�nition 2.44 Given two Henkin models A and B, a logical relation from A to B is a family ofbinary relations R = fR� � A� �B� j � a type g satisfying (we write aR�b for (a; b) 2 R�) :1. �R1�2. (a; a0)R���(b; b0) if and only if aR�b and a0R�b0, for any (a; a0) 2 A��� ; (b; b0) 2 B��� , i.e.ordered pairs are related exactly when their components are.3. For any f 2 A�)� , g 2 B�)� , fR�)� g if and only if for all a 2 A�; b 2 B�(aR�b implies fa R� gb), i.e. functions are related when they map related inputs to relatedoutputs.For each (atomic) base type b, �x a binary relation Rb � Ab�Bb . Then: there is a smallest familyof binary relations R = fR� � A� � B� j � a type g de�ned inductively from the Rb's by 1,2,3above. That is, any property (relation) at base-types can be inductively lifted to a family R at allhigher types, satisfying 1, 2, 3 above. We write aRb to denote aR�b for some �. If A = B and Ris a logical relation from A to itself, we say an element a 2 A is invariant under R if aRa.The fundamental property of logical relations is the Soundness Theorem [Mit96, St85]. Let~x : � ` M : � denote that M is a term of type � with free variables ~x in context �. ConsiderHenkin models A with �A an assignment function, assigning variables to elements in A. Let M �Adenote the meaning of term M in model A w.r.t. the given variable assignment (following [Mit96],we only consider assignments � such that �A(xi) 2 A� if xi : � 2 �). The following is proved byinduction on the form of M :Theorem 2.45 (Soundness) Let R � A � B be a logical relation between Henkin modelsA;B . Let ~x : � ` M : �. Suppose assignments �A; �B of the variables are related, i.e. for allxi;R(�A(xi); �B(xi)). Then R(M �A ; M �B).In particular, if A = B and M is a closed term (i.e. contains no free variables), its meaningM in a model A is invariant under all logical relations. This holds also for languages which haveconstants at base types, by assuming c is invariant, for all such constants c.This result has been used by Plotkin, Statman, Sieber , et. al [Plo80, Sie92, St85] to showcertain elements (of models) are not lambda de�nable: it su�ces to �nd some logical relation onA for which the element in question is not invariant.There is no reason to restrict ourselves to binary logical relations: one may speak of n-arylogical relations, which relate n Henkin models [St85]. Indeed, since Henkin models are closedunder products, it su�ces to consider unary logical relations, known as logical predicates.Example 2.46 (Hereditary Permutations) Consider a Henkin model A, with a speci�ed per-mutation �b : Ab ! Ab at each base type b. We extend � to all types as follows: (i) on producttypes we extend componentwise: ���� = �� � �� : A��� ! A��� ; (ii) on function spaces, extend21

by conjugation: ��)� (f) = �� of o��1� , where f 2 A�)� . We build a logical relation R on A byletting R� = the graph of permutation �� : A� ! A� , i.e. R�(a; b), ��(a) = b. Members of Rwill be called hereditary permutations. R�invariant elements a 2 A� are simply �xed points of thepermutation: ��(a) = a.Hereditary permutations and invariant elements also arise categorically by interpretation intoSetZ :Proposition 2.47 The category SetZ of (left) Z-sets is equivalent to the category whose objects aresets equipped with a permutation and whose maps (= equivariant maps) are functions commutingwith the distinguished permutations. Invariant elements of A are arrows 1! A 2 SetZ :Alas, SetZ is not a Henkin model (1 is not a generator). In the next section we shall slightlygeneralize the notion of logical relation to work on a larger class of structures.2.6.1 Logical Relations and SyntaxLogical predicates (also called computability predicates) originally arose in proof theory as atechnique for proving normalization and other syntactical properties of typed lambda calculi[LS86, GLT]. Later, Plotkin, Statman, and Mitchell [Plo80, St85, Mit96] constructed logical re-lations on various kinds of structures more general than Henkin models. Following Statman andMitchell, we extend the notion of logical relation to certain applicative typed structures A for which(i) appropriate meaning functions on the syntax of typed lambda calculus, M �A , are well-de�ned,and (ii) all logical relations R are (in a suitable sense) congruence relations with respect to the syn-tax. This guarantees that the meanings of lambda abstraction and application behave appropriatelyunder these logical relations. Following [Mit96, St85] we call them admissible logical relations.The Soundness Theorem still holds in this more general setting, now using admissible logicalrelations on applicative typed structures (see [Mit96], Lemma 8.2.10).Example 2.48 Let A be the hereditary permutations in Example 2.46. Consider a free simplytyped lambda calculus, without constants. Then as a corollary of Soundness we have: the meaningof any closed term M is invariant under all hereditary permutations . This conclusion is itself aconsequence of the universal property of free cartesian closed categories when interpreted in SetZ(cf. Corollary 2.22 and L�auchli's Theorem 5.4).Remark 2.49 The rewriting theory of lambda calculi is a prototype for Operational Semanticsof many programming languages (recall the discussion after the �-rule, Corollary 2.11). See alsoSection 2.8.1 below on PCF. Logical Predicates (so-called computability predicates) were �rst intro-duced to prove strong normalization for simply typed lambda calculi (with natural numbers types)by W. Tait in the 1960's. Highly sophisticated computability predicates for polymorphically typedsystems like F and F! were �rst introduced by Girard in his thesis [Gi71, Gi72]. For a partic-ularly clear presentation, see his book [GLT]. These techniques were later revisited by Statmanand Mitchell{using more general logical relations{to also prove Church-Rosser and a host of othersyntactic and semantic results for such calculi (see [Mit96]).For general categorical treatments of logical relations, see [Mit96, MitSce, MaRey] and referencesthere. Uses of logical relations in operational semantics of typed lambda calculi are covered in[AC98, Mit96]. A categorical theory of logical relations applied to data re�nement is in [KOPTT].Use of operationally-based logical relations in programming language semantics is in [Pi96b, Pi97].For techniques of categorical rewriting applied to lambda calculus, see [JGh95].22

2.7 Example 1: Reduction-Free NormalizationThe operational semantics of �-calculi have traditionally been based on rewriting theory or prooftheory, e.g. normalization or cut-elimination, Church-Rosser, etc. More recently, Berger andSchwichtenberg [BS91] gave a model-theoretic extraction of normal forms{a kind of \inverting"of the canonical set-theoretic interpretation used in Friedman's Completeness Theorem (cf. 5.2below).In this section we sketch the use of categorical methods (essentially from Yoneda's Lemma,cf. Theorem 5.1) to obtain the Berger-Schwichtenberg analysis. A �rst version of this techniquewas developed by Altenkirch, Ho�man, and Streicher [AHS95, AHS96]. The analysis given herecomes from the article [CDS97], which also mentions intriguing analogues to the Joyal-Gordon-Power-Street techniques for proving coherence in various structured (bi-)categories. The essentialidea common to these coherence theorems is to use a version of Yoneda's lemma to embed into a\stricter" presheaf category.To actually extract a normalization algorithm from these observations requires us to construct-ively reinterpret the categorical setting in PSet, as explained below. This leads to a non-trivialexample of program extraction from a structured proof, in a manner advocated by Martin-L�of andhis school [ML82, Dy95, H97a, CD97] The reader is referred to [CDS97] for the �ne details of theproof.In a certain sense, the results sketched below are \dual" to Lambek's original goal of categoricalproof theory [L68, L69], in which he used cut-elimination to study categorical coherence problems.Here, we use a method inspired from categorical coherence proofs to normalize simply typed lambdaterms (and thus intuitionistic proofs.)2.7.1 Categorical Normal FormsLet L be a language, T the set of L-terms and � a congruence relation on T . One way to decidewhether two terms are �-congruent is to �nd an abstract normal form function, i.e. a computablefunction nf : T ! T satisfying the following conditions for some (�ner) congruence relation � :NF1 nf (f) � fNF2 f � g) nf (f) � nf(g)NF3 ���NF4 � is decidable.From (NF1), (NF2) and (NF3) we see that f � g , nf (f) � nf(g). This clearly permits a decisionprocedure: to decide if two terms are �-related, compute nf of each one, and see if they are �related, using (NF4). The normal form function nf essentially \reduces" the decision problem of� to that of �. This view is inspired from [CD97].Here we let L be typed lambda calculus, T the set of �-terms, � be ��-conversion, and �be �-congruence. Let us see heuristically how category theory can be used to give simply typed�-calculus a normal form function nf .Recall 2.22 that �-terms modulo ��-conversion ��� determine the free ccc FX on the set ofsorts (atoms) X . 2 By the universal property 2.22, for any ccc C and any interpretation of theatoms X in ob(C), there is a unique (up to iso) ccc-functor � : FX ! C freely extending thisinterpretation. Let C be the presheaf category SetFXop . There are two obvious ccc-functors: (i) theYoneda embedding Y : FX ! SetFXop (cf. 5.1) and (ii) if we interpret the atoms by Yoneda, there2We actually use the free ccc of sequences of �-terms as de�ned by Pitts [Pi9?]23

is also the free extension to the ccc-functor � : FX ! SetFX op . By the universal property, thereis a natural isomorphism q : Y ! � . By the Yoneda lemma we shall invert the interpretation� on each hom-set, according to the following commutative diagramFX(A;B) -Y�A (1A) qB o � o q�1ASetFopX (A ; B)SetFopX (YA;YB)�SSSSSwSSSSSo �����/That is, for any f 2 FX (A;B), we obtain natural transformations YA q�1A�! A f�! B qB�! YB.Then evaluating these transformations at A gives the Set functions: FX (A;A) q�1A;A�! A A f A�!B A qB;A�! FX (A;B). Hence starting with 1A 2 FX (A;A), we can de�ne an nf function by:nf(f) =def qB;A (f A(q�1A;A(1A)))(10)Clearly nf(f) 2 FX (A;B). But, alas, by Yoneda's Lemma, nf(f) = f ! Indeed, this is just arestatement of part of the Yoneda isomorphism. But all is not lost: recall NF1 says nf (f) � f .This suggests we should reinterpret the entire categorical argument, including the use of functorcategories and Yoneda's Lemma, in a setting where \=" becomes \�", a (partial) equivalencerelation. Diagrams which previously commuted now should commute \up to �".This viewpoint has a long history in constructive mathematics, where it is common to use sets(X;�) equipped with explicit equivalence relations in place of quotients X=� (because of problemswith the Axiom of Choice). Thus, along with specifying elements of a set, one must also say whatit means for two elements to be \equal" (see [Bee85]).2.7.2 P-category theory and normalization algorithmsMotivated by enriched category theory [K82, Bor94], this view leads to the setting of P-categorytheory in [CDS97]. In P-category theory (i) hom-sets are PSets, i.e. sets equipped with a partialequivalence relation (per) �, (ii) all operations on arrows are PSet maps, i.e. preserve �, (iii) func-tors are �-versions of enriched functors, (iv) P-functor categories and P-natural transformationsare �-versions of appropriate enriched structure, etc. One then proves a P-version of Yoneda'slemma. In essence, P-category theory is the development of ordinary (enriched) category theory ina constructive setting, where equality of arrows is systematically replaced by explicit pers, makingsure every operation on arrows is a congruence with respect to the given pers. For an example, seeFigure 6.Now consider the free ccc (FX ;�) as a P-category, where the arrows are actually sequences of�-terms and the per � on arrows is ��-equality =�� . Analogously to the above, freeness in theP-setting yields a unique P-ccc functor� : (FX ;�)! PSet(FX ;�)opwhere atomsX 2 X are interpreted by P-Yoneda, i.e. as Hom(FX ;�)(�; X). Just as in the ordinarycase, the P-Yoneda functor Y is a P-ccc functor, so we have a P-natural isomorphism q : � ! Yof P-ccc P-functors: 24

P-Products� c � c for any constant c 2 f!A; �1; �2g,� f � f 0 for any f; f 0 : A! 1,� fi � gi implies hf1; f2i � hg1; g2i, �ihf1; f2i � fi where fi; gi : C ! Ai,� h�1k; �2ki � k, for k : C ! A1 �A2P-Exponentials� ev � ev for BA � A ev�! B ,� h � h0 implies h� � h0� : C ! BA, where h; h0 : C �A! B� h � h0 implies evhh��1; �2i � h0,� l � l0 implies (evhl�1; �2i)� � l0 : C ! BA.P-Functor� f � f 0 implies Ff � Ff 0 for all f; f 0,� f � f 0, g � g0 implies F (gf) � Fg0Ff 0 for all composable f; g and f 0; g0,� F (idA) � idF (A),� Speci�ed P-isomorphisms 1 �=�! F1, FA� FB �=�! F (A�B),(FB)FA �=�! F (BA)Figure 6: P-ccc's and P-ccc Functors(FX ;�) PSet(FX ;�)opq # " q�1�Y --In this setting nf as de�ned by Equation (10) will be a per-preserving function on terms themselvesand not just on ��-equivalence classes of terms (recall that, classically, a free ccc has for its arrowsequivalence classes of terms modulo the appropriate equations). Arguing as before, but now usingthe P-Yoneda isomorphism, it follows immediately that nf is an identity P-function. But thismeans nf (f) � f , which is precisely the statement of NF1. Moreover, the part of P-categorytheory that we use is constructive in the sense that all functions we construct are algorithms.Therefore nf is computable.It remains to prove NF2: f � g) nf(f) � nf(g): This is the most subtle point. Here too theP-version of a general categorical fact will help us (cf 2.4): the P-presheaf category PSetCop is aP-ccc for any P-category C. In particular, let C be the P-category (FX ;�) of sequences of �-termsup to \change of bound variable" �. This is a trivially decidable equivalence relation on terms(called �-congruence in the literature) and obviously � � =�� . Note that this P-category has thesame objects and arrows as (FX ;�), but the pers on arrows are di�erent.By the freeness of (FX ;�), we have another interpretation P-functor� � : (FX ;�)! PSet(FX ;�)opwhere we interpret atoms X 2 X by the P-presheaf Hom(FX ;�)(�; X). The key fact is that thisP-functor � � has exactly the same set-theoretic e�ect on objects and arrows as � . That is,one proves by induction:Lemma 2.50 For all objects C and arrows f in (FX ;�), j C j = j C �j and similarly j f j =j f �j, where j � j means taking the underlying set-theoretic structure.25

Hence, we can conclude that f � g implies f � g (here � refers to the per on arrows inPSet(FX ;�)op). We can show that qB and q�1B are �-natural, in particular qB;A and q�1B;A preserve�. It then follows that nf(f) � nf (g), as desired.Remark 2.51(i) The normal forms obtained by this method can be shown to coincide with the so-called long�� normal forms used in lambda calculus [CDS97].(ii) The direct inductive proofs used above correspond more naturally to a more-involved bicat-egorical de�nition of freeness ([CDS97], Remark 3.17).Finally, in [CDS97] it is shown how to apply the method to the word problem for typed �-calculi with additional axioms and operations, i.e. to freely-generated ccc's modulo certain theories.This employs appropriate free P-ccc's (over a P-category, a P-cartesian category, etc.) These aregenerated by various notions of �-theory, which are determined not only by a set of atomic types,but also by a set of basic typed constants as well as a set of equations between terms. Although theYoneda methods always yield an algorithm nf it does not necessarily satisfy NF4 (the decidabilityof �). What is obtained in these cases is a reduction of the word problems for such free ccc's tothose of the underlying generating categories.2.8 Example 2: PCFThe language PCF, due to Dana Scott in 1969, has deeply inuenced recent programming languagetheory. Much of this inuence arises from seminal work of Gordon Plotkin in the 1970's on opera-tional and denotational semantics for PCF. We shall briey outline the syntax and basic semanticalissues of the language following from Plotkin's work. We follow the treatment in [AC98, Sie92],although the original paper ([Plo77]) is highly recommended.2.8.1 PCFThe language PCF is an explicitly typed lambda calculus with the following structure:Types: Generated from nat; boole by).Lambda Terms: generated from typed variables using the following speci�ed constants:n : nat, for each n 2 NT : booleF : boolesucc : nat) natpred : nat) nat zero? : nat) boolecondnat : boole) (nat) (nat) nat))condboole : boole) (boole) (boole) boole))?� : �Y� : (�) �)) �.Categorical ModelsThe standard model of PCF is de�ned in the ccc !-CPO? as follows: interpret the base types asin Figure 4: nat = N? ; boole = B?; �) � = �) � (= function space in !-CPO).Interpret constants as follows (for clarity, we omit writing �): succ; pred : Nat? ! Nat?,zero? : Nat? ! B? , cond� : boole� �2 ! �, � 2 fnat; booleg (cond is for conditional, sometimescalled if then else), T = t, F = f; n = n,26

(�x:')`a ! '[a=x]Y `f ! f `(Y `f)succ`n ! n+ 1pred`(n+ 1) ! n zero?`(0) ! tzero?`(n + 1) ! fcond tab ! acond fab ! bf ! gf `a! g`a f ! gu`f ! u`g where u 2 fsucc; pred; zero?gf ! gcond fab! cond gab where cond xyz = ((cond`x)`y)`zFigure 7: Operational Semantics for PCFsucc(x) = (x+ 1 if x 6=?? if x =?pred(x) = (x� 1 if x 6=?; 0? elsezero?(x) = 8><>: t if x = 0f if x 6= 0;?? if x =? cond�(p; y; z) = 8><>: y if p = tz if p = f? if p =??� is the least element of � (denoting \non-termination" or \divergent").Y� is the least �xed point operatorY�(f) = Wffn(?�) j n � 0g (see Example 3.5).More generally, a standard model of PCF is an !-CPO-enriched ccc C, in which each homset C(A;B)has a smallest element ?AB : A ! B with the following properties: (i) pairing and currying aremonotonic, (ii) ? of = f and evoh?; fi =? for all f of appropriate type, (iii) there are objects natand boole whose sets of global elements satisfy C(1; nat) �= N? and C(1; boole)�= B? and in whichthe constants are all interpreted in the internal language of C as in the standard model above (e.g.interpreting succ(x) by evohsucc; xi, etc.). A model is order-extensional if 1 is a generator and theorder on hom-sets coincides with the pointwise ordering.The operational semantics of PCF is given by a set of rewriting rules, displayed in Figure 7.This is intended to describe the dynamic evaluation of a term, as a sequence of 1-step transitions.The �xed-point combinator Y guarantees some computations may not terminate. It is importantto emphasize that in operational semantics with partially-de�ned (i.e. possibly non-terminating)computations, di�erent orders of evaluation (e.g. left-most outermost vs innermost) may lead tonon-termination in some cases and may also e�ect e�ciency, etc. (See [Mit96], Chapter 2). Wehave chosen a simple operational semantics for PCF, given by a deterministic evaluation relation,following [AC98].2.8.2 AdequacyA PCF program is a closed term of base type (i.e. either nat or boole). The observable behaviourof a PCF program P : nat is the set Beh(P) = fn 2 N j P ��! ng, and similarly for P : boole.The set Beh(P) is either empty if P diverges or a singleton if P converges to a (necessarily unique)normal form. The following theorem is proved using a logical relations argument.27

Theorem 2.52 (Computational Adequacy) Let C be any standard model of PCF. Then for allprograms P : nat and n 2 N , P ��! n i� P = nand similarly for P : boole. Hence P = Q i� their sets of behaviours are equal.We are interested in a notion of \observational equivalence" arising from the operational se-mantics. A program (a closed term of base type) can be observed to converge to a speci�c numeralor boolean value. More generally, what can we observe about arbitrary terms of any type? The ideais to plug them into arbitrary program code, and observe the behaviour. More precisely, a programcontext C[�] is a program with a hole in it (the hole has a speci�ed type) which is such that ifwe formally plug a PCF term M into (the hole of) C[�] (we don't care about possible clashes ofbound variables) we obtain a program C[M]. We are looking at the convergence behaviour (withrespect to the operational semantics) of the resulting program. (cf. [AC98]).De�nition 2.53 Two PCF terms M;N of the same type are observationally equivalent (denotedM � N) i� Beh(C[M]) = Beh(C[N]) for every program context C[�].That is, M � N means that for all program contexts C[�], C[M] ��! c i� C[N] ��! c (forc either a boolean value or a numeral). Thus, by the previous Theorem, M � N i� C[M] =C[N] . In order to prove observational equivalence of two PCF terms, R. Milner showed it su�cesto pick applicative contexts, i.e.Lemma 2.54 (Milner) Two closed PCF expressions M;N : �1) (�2) � � � (� � �(�n) nat) � � �)are observationally equivalent i� MP1 : : :Pn = NP1 : : :Pn for all closed Pi : �i , 1 � i � n.Finally, the main de�nition of the subject is:De�nition 2.55 (Full Abstraction) A model is called fully abstract if observational equivalencecoincides with denotational equality in the model, i.e. for any two PCF terms M;NM � N i� M = NWhich models are fully abstract? There are two main theorems, due to Milner and Plotkin.First we introduce the \parallel-or" function por : B? �B? ! B? on the standard model of PCF:por(a; b) = 8><>: t if a = t or b = tf if a = b = f? elseTheorem 2.56 (Plotkin)� por is not de�nable in PCF.� The standard model is not fully abstract.� The standard model is fully abstract for the language PCF + por.The proof of the �rst two parts of the theorem use logical relations ([Sie92, AC98, Gun92]) . In1977, R. Milner proved the following [Mil77]:Theorem 2.57 (Milner) There is a unique (up to isomorphism) fully abstract order-extensionalmodel of PCF. 28

Milner's construction is syntactical, so the question became: �nd a more \ mathematical" (i.e.not explicitly syntactical) characterization of the unique fully abstract model. This is related to theFull Completeness Problems discussed in Section 5.2. A satisfying solution to the Full AbstractionProblem for PCF was recently given by S. Abramsky, R. Jagadeesan, and P. Malacaria and also M.Hyland and L. Ong who use various monoidal categories of games. This has recently led to highlyactive subject of games semantics for programming languages (see Section 4.3.2 and the articlesmentioned there).3 ParametricityWhat is parametricity in polymorphism? We have already seen such notions as� Uniformity of algorithms across types.� Passing types as parameters in programs.But the problem is that a type like 8�(�) �), when interpreted in a model as a large product overall types, may contain in Strachey's words unintended ad hoc elements. In addition to removingsome entities, we may wish to include yet others. For example, should we consider closure ofparametric functions under isomorphism of types?We have already mentioned the idea of types being functors, in Section 2.4.2. Indeed, thissuggests an obvious kind of modelling� Types = functors� Terms (programs) = natural transformationsall de�ned over some ccc C. This view of categorical program semantics has had a fruitful history.Reynolds, Oles, and later O'Hearn and Tennent have used functor categories to develop semantics oflocal variables, block structure, non-interference, etc. in Algol-like languages (see [OHT92, Ten94]and references there).In the case of polymorphism this is also not such a far-fetched idea. Imagine a term t : 8�:�) �.We know that for each type A, t[A] : A) A. Thus, from our Curry-Howard viewpoint, we thinkof this as an object-indexed family of arrows. Combining this idea with the mild parametricitycondition of naturality then seems reasonable. In the mid 1980's, Girard gave functor categorymodels of System F [Gi86]. However to handle the functorial problem of co/contravariance in anexression like �) � (or worse, in �) �, which is not a functor at all) he introduced categories ofembedding-projection pairs (as in domain theory, Section 2.5). Below we shall consider dinaturality,a multivariant notion of naturality which takes into account such problems.Reynolds[Rey83] also proposed an analysis of parametricity using the notion of logical relations,a fundamental tool in the theory of typed lambda calculi. The paper [BFSS90] studied the abovetwo frameworks for parametricity: Reynolds' relational approach and the dinaturality approach.This work was extended and formalized in [ACC93, BAC95, PlAb93].3.1 DinaturalityOne attempt to understand parametric polymorphism is to require certain naturality conditions onfamilies interpreting universal types. In this view we begin with some appropriate ccc C of valuesand interpret polymorphic type expressions A(�1; : : : ; �n) , with type variables �i, as certain kindsof multivariant \de�nable" functors F : (Cop)n�Cn �! C. Terms or programs t are then interpretedas certain multivariant (= dinatural) transformations between (the interpretations of) the types.We need to account for naturality not only in positive (covariant) positions, but also in negative(contravariant) ones. As we shall see, the di�culty will be compositionality.29

De�nition 3.1 Let C be a category, and F;G : (Cop)n � Cn ! C functors. A dinatural transform-ation � : F ! G is a family of C-morphisms � = f�A : FAA ! GAA jA 2 Cng satisfying (for anyn-tuple f : A! B 2 Cn): FAA �A - GAA���FfA � @@@GAfRFBA GAB@@@FBf R ���GfB�FBB �B - GBBFor a history of this notion, see [Mac71]. Dinatural transformations include ordinary natural trans-formations as a special case (e.g. construe covariant F;G as bifunctors, dummy in the contravariantvariable), as well as transformations between co- and contravariant functors. The parametric aspectof naturality here is that �A may be varied along an arbitrary map f : A! B in both the co- andcontravariant positions.In the following examples, KA denotes the constant functor with value A (where KA(f) = idA). We use set-theoretic notation, but the examples make sense in any ccc (e.g. using the internallanguage). We follow the treatment in [BFSS90].Example 3.2 (Polymorphic Identity) Let F = K1, let G(�;�) = (�)(�). Consider the familyI = fIA : 1! AA j A 2 Cg where IA(�) = �x:A:x = (1� A �2�! A)�. De�nition 3.1 reduces to thefollowing commuting square: AA���IA � @@@fAR1 BA@@@IB R ���Bf�BBwhich essentially says f oidA = idBof . This equation is true (in Set or in the internal language ofany ccc) since both sides equal f .Example 3.3 (Evaluation) Fix an object D 2 C. Let F (�) = D(�) and G = KD. The familyEv = fevA : (DA)�A! D j A 2 Cg : F ! G is a dinatural transformation, where evA is the usualevaluation in any ccc. De�nition 3.1 reduces to the following commuting square, for any f : A! BDA �A���Df � A � @@@evARDB �A D@@@DB � f R ���evB�DB � BThis says, for any g : DB; a : A, evA(gof; a) = evB(g; f(a)). More informally, (gof)(a) = g(f(a)).Again, this is a truism in any ccc. 30

Extending the above example, generalized evaluation EV = fevA;A0 : A0A�A! A0 j A;A0 2 Cgdetermines a dinatural transformation between appropriate functors (cf [BFSS90]). Dinaturalitycorresponds to the true equation f 0((gof)(a)) = (f 0og)(f(a)) for g : A0B, a : A, and any f : A !B; f 0 : A0 ! B0.Example 3.4 (Church Numerals) De�ne n : (�)(�) ! (�)(�) to be the family where nA :AA ! AA is given by mapping h 7! hn, with hn = hohoh � � � oh (n times). Dinaturality correspondsto the diagram (for any f : A! B) AA nA - AA��Af� @@fARAB BA@@fBR ��Bf�BB nB - BBi.e. if g : AB , (f og)nof = f o(gof)n , an instance of associativity.We shall see dinaturality again in Section 6.1 . Observe that each of the families � = f�A jA 2 Cgabove|which in essence arise from the syntax of ccc's|have uniform algorithms �A across all typesA. For example, nA = �h:AA :hn, uniform in each type A.We end with an operator which is fundamental to denotational semantics.Example 3.5 (Fixed Point Combinators) In many ccc's C used in programming languagesemantics, e.g. certain subcategories of !-CPO, there is a dinatural �xed point combinatorY(�) : (�)(�) ! (�). That is, we have a family fYA : AA ! A j A 2 Cg making the follow-ing diagram commute, for any f : A! B:AA YA - A��Af� @@fRAB B@@fBR ��idB�BB YB - BThis says, using informal set-theoretic notation, if g : AB ; f(YA(gof)) = YB(f og). In particular,setting B = A and letting g = idB, we have the �xed-point equation f(YA(f)) = YA(f).For example, consider !-CPO?{the subccc of !-CPO whose objects A have a least element ?Abut the morphisms need not preserve it. It may be shown that the family given by YA(f) = theleast �xed-point of f = Wffn(?A) j n � 0g is dinatural (see [BFSS90, Mul91, Si93]).There is a calculus of multivariant functors F;G : (Cop)n� Cn ! C functors. For example basictype constructors may be de�ned (using products and exponentials in C) by setting(F � G)AB = FAB �GAB(11) (GF)AB = GABFBA(12)Here A is the list of n contravariant and B the list of n covariant arguments. Note the twist ofthe arguments in the de�nition of exponentiation. Much of the structure of cartesian closedness31

(e.g. evaluation maps, currying, projections, pairing, etc.) exists within the world of dinaturaltransformations and there is a kind of abstract functorial calculus (cf. [BFSS90], Appendix A6,[Fre93]).Unfortunately, there is a serious problem: in general, dinaturals do not compose. That is,given dinatural families fFAA �A�! GAA j A 2 Cg and fGAA A�! HAA j A 2 Cg, the compositefFAA Ao�A�! HAA j A 2 Cg does not always make the appropriate hexagon commute. However,with respect to the original question of closure of parametric functions under isomorphisms oftypes, we note that families dinatural with respect to isomorphisms f do in fact compose. But thisclass is too weak for a general modelling . Detailed studies of such phenomena have been done in[BFSS90, FRRa, FRRb].Remarkably, there are certain categories C over which there are large classes of multivariantfunctors and dinatural transformation which provide a compositional semantics:� In [BFSS90] it is shown that if C = Per(N), that so-called realizable dinatural transformationsbetween realizable functors compose. Realizable functors include almost any functors thatarise in practice, (e.g. those de�nable from the syntax of System F) while realizable dinaturaltransformations are families of per morphisms whose action is given uniformly by a singleTuring machine. This semantics also has a kind of universal quanti�er modelling SystemF(see below).� In [GSS91] it is shown that the syntax of simply typed lambda calculus with type variables|i.e. C = a free ccc|admits a compositional dinatural semantics (between logically de�nablefunctors and dinatural families). This uses the cut-elimination theorem from proof theory.This work was extended to Linear Logic by R. Blute [Blu93].� In [BS96] there is a compositional dinatural semantics for the multiplicative fragment of linearlogic (generated by atoms). Here C = RT VEC, a category of reexive topological vector spaces�rst studied by Lefschetz [Lef63], with functors being syntactically de�nable. In [BS96b, BS98]this was extended to a compositional dinatural semantics for Yetter's noncommutative cycliclinear logic. In both cases, one demands certain uniformity conditions on dinatural families,involving equivariance w.r.t. continuous group (respectively Hopf-algebra) actions inducedfrom actions on the atoms (see also Section 5.2 below). For the non-cyclic fragment, this isautomatic.Associated with dinaturality is a kind of \parametric" universal quanti�er �rst described byYoneda and which plays a fundamental role in modern category theory [Mac71].De�nition 3.6 An end of a multivariant functor G on a category C is an object E = RAGAA anda dinatural transformation KE ! G, universal among all such dinatural transformations.In more elementary terms, there is a family of arrows fRAGAA �X�! GXX jX 2 Cg makingthe main square in the following diagram commute, for any X f�! Y , and such that given anyother family u = fuX j X 2 Cg such that GXf ouX = GfY ouY , there is a unique �u making the
32

appropriate triangles commute:RAGAA�����@@@@R GXYGXf�X�Y GfYGXX @@@@R�����GY Y
uXuYD�u..................?AAAAAAAAAAAAAU

QQQQQs
One may think of RAGAA as a subset of �AGAA (note, this is a \large" product over all A 2 C,so C must have appropriate limits for this to exist)ZAGAA = fg 2 �AGAA j GXf o�X = GfY o�Y ; for all X; Y; f : X ! Y 2 CgIn [BFSS90] versions of such ends over Per(N) are discussed with respect to parametric modellingof System F .In a somewhat di�erent direction, co-ends (dual to ends) are a kind of sum or existentialquanti�er. Their use in categorical computer science was strongly emphasized in early work ofBainbridge [B72, B76] on duality theory for machines in categories. A useful observation is that wemay consider functors R : C�D ! Set and S : D�E ! Set as generalized relations, with relationalcomposition being determined by the coend formula R;S(C;E) = RD(R(C;D)� S(D;E)). Thisview has recently been applied to relational semantics of dataow languages in [HPW].We should mention that dinaturality is also intimately connected with categorical coherencetheorems and geometrical properties of proofs [Blu93, So87]. It also seems to be hidden in deeperaspects of Cut-Elimination [GSS91], although here there is still much to understand. We shall meetdinaturality again in several places (e.g. in Traced Monoidal Categories, Section 6.1).3.2 Reynolds ParametricityReynolds [Rey83] analyzed Strachey's notion of parametric polymorphism using a relational modelof types. Although his original idea of using a Set-based model was later shown by Reynoldshimself to be untenable, the framework has greatly inuenced subsequent studies. As a concreteillustration, following [BFSS90] we shall sketch a relational model over Per(N). Related resultsin more general frameworks were obtained by Hasegawa [RHas94, RHas95] and Ma and Reynolds[MaRey]. Although originally Reynolds' work was semantical, general logics for reasoning aboutformal parametricity, supported by such Per models, were developed in [BAC95, PlAb93, ACC93].Given pers A;A0 2 Per(N), a saturated relation R : A �! A0 is a relation R � domA � domA0satisfying R = A;R;A0, where ; denotes relational composition. For all pers A;A0; B; B0, saturatedrelations R : A �! A0 and S : B �! B0 and elements a 2 domA; a0 2 domA0 ; b 2 domB; b0 2 domB0we de�ne a relational System F type structure as follows:� R� S : (A� B) �! (A0 � B0), given componentwise by (a; b)R� S(a0; b0) i� aRa0 and bSb0.33

� R) S : (A) B) �! (A0) B0), where f(R) S)g i� f; g are (codes of) Turing computablefunctions satisfying aRa0 implies faSga0 for any a; a0 as above.� 8�:�(�; S) : 8�:�(�;B) �!8�:�(�;B0) is de�ned by a simultaneous inductive de�nition basedon the formation of type expression �(�; �). We shall omit the technical construction (see[BFSS90], p.49) but the key idea is to rede�ne the Per-interpretation of 8�:�(�) by trimingdown the intersection \A�(A) to only those elements invariant under all saturated relations,while 8�:�(�; S) = \R�(R; S), the intersection being over all pers A;A0 and saturated R :A �! A0.The somewhat involved construction of 8�:�(�) ensures the type expressions �(�) act like functorswith respect to saturated relations. More precisely, Reynolds' parametricity entails:� If R : A �!A0 is a saturated relation, then for any polymorphic type � , �(R) : �(A) �!�(A0)is a saturated relation.� Identity Extension Lemma: � preserves identity relations, i.e. �(idA) = id�(A), as saturatedrelations �(A) �! �(A) (and similarly for �(idA1 ; : : : ; idAn))One obtains a Soundness Theorem, essentially the interpretation of the free term model ofSystem F into the relational Per model above. For simplicity, consider terms with only onevariable. Let � = �(�1; : : : ; �n) and � = �(�1; : : : ; �n) denote polymorphic types with free typevariables � f�1; : : : ; �ng. Let x : � ` t : � denote term t : � with free variable x : �. Associatedto every System F term t is a Turing computable numerical function ft, obtained by essentiallyerasing all types and considering the result as an untyped lambda term, qua computable partialfunction (see [BFSS90], Appendix A.1).Theorem 3.7 (Soundness) Let Ai; A0i be pers and Ri : Ai �! A0i saturated relations. Thenif m�(~R)m0 then ft(m)�(~R)ft(m0). Also, if t = t0 in System F , then ft = ft0 as Per(N) maps�(~A)! �(~A):Thus terms (programs) become \relation transformers" �(~R) ! �(~R) (cf. [MitSce, Fre93]) of theform ---: : : : : : : : : : : : : : : : : :�(~R) 9 ftft9 �(~R)����@@@R�(~A) �(~A)�(~A0)����@@@R�(~A0)In particular this exempli�es Reynolds' interpretation of Strachey's parametricity: if one instanti-ates an element of polymorphic type at two related types, then the two values obtained must berelated themselves.Reynolds parametricity has the following interesting consequence [BFSS90, RHas94]. Recallthe category of T -algebras, for de�nable functors T (cf. the proof of Theorem 2.40).Theorem 3.8 Let T be a System F -de�nable covariant functor. Then in the parametric Permodel, 8�:((T�) �)) �) is the initial T -algebra.34

This property becomes a general theorem in the formal logics of parametricity (e.g. [PlAb93,RHas95]), and hence would be true in any appropriate parametric model. Thus, although thesyntax of second-order logic in general only guarantees weakly initial data types as in [GLT], inparametric models of System F the usual de�nitions actually yield strong data types.The reader might rightly enquire: do relational parametricity and dinaturality have anything incommon? This is exactly the kind of question that requires a logic for reasoning about parametricity.Plotkin and Abadi's logic [PlAb93] extends the equational theory of System F with quanti�cationover functions and relations, together with a schema expressing Reynolds' relational parametricity.The dinaturality hexagon in De�nition 3.1, for de�nable functors and families, is expressible as aquanti�ed equation in this logic.Proposition 3.9 In the formal system above, relational parametricity implies dinaturality.Reynolds' work on parametricity continues to inspire fundamental research directions in pro-gramming language theory, even beyond polymorphism. For example, O'Hearn and Tennent[OHT92, OHT93] use relational parametricity to examine di�cult problems in local-variable de-clarations in Algol-like languages. Their framework is particularly interesting. They use ccc's offunctor categories and natural transformations, �a la Oles and Reynolds, but internal to the categoryof reexive directed multigraphs. The same framework, somewhat generalized, was then used by A.Pitts [Pi96a] in a general relational approach to reasoning about properties of recursively de�neddomains. Pitts work has led to new approaches to induction and co-induction, etc. (see Section2.5). The reader is referred to Pitts [Pi96a], p.74 and O'Hearn and Tennent [OHT93] for manyexamples of these so-called relational structures over categories C.4 Linear Logic4.1 Monoidal CategoriesWe briey recall the relevant de�nitions. For details, the reader is referred to [Mac71, Bor94].De�nition 4.1 A monoidal category is a category C equipped with a functor
 : C � C ! C, anobject I , and speci�ed natural isomorphisms:aABC : (A
 B)
 C '�! A
 (B
 C)`A : I
 A '�! A and rA : A
 I '�! Asatisfying coherence equations: associativity coherence (Mac Lane's Pentagon) and the unit coher-ence.A symmetric monoidal category is a monoidal category with a natural symmetry isomorphismsAB : A
 B '�! B
 A satisfying: sBAsAB = idA
B, for all A;B, and (omitting subscripts)r = `s; asa = (1
 s)a(s
 1).Symmetric monoidal categories include cartesian categories (with
 = �) and cocartesian cat-egories (with
 = +). However in the two latter cases, the structure is uniquely determined(up to isomorphism)|and similarly for the coherence isomorphisms|by the universal property ofproducts (resp. coproducts). This is not true in the general case{there may be many symmetricmonoidal structures on the same category.We now introduce the monoidal analog of ccc's:35

De�nition 4.2 A symmetric monoidal closed category (= smcc) (C;
; I;��) is a symmetric mon-oidal category such that for each object A 2 C, the functor �
 A : C ! C has a speci�ed rightadjoint A �� �, i.e. for each A there is an isomorphism, natural in B;C:HomC(C
A;B) �= HomC(C;A �� B) :(13)As a consequence, in any smcc there are \evaluation" and \coevaluation" maps (A �� B)
A evAB�! Band C �! (A �� (C
 A)) determined by the adjointness (13). We shall try to keep close toour ccc notation, Section 2.1. In particular the analog of Currying arising from (13) is denotedC f��! (A �� B) Moreover, this data actually determines a (bi)functor � �� � : Cop � C ! C.No special coherences have to be supposed for � �� �: they follow from coherence for
 andadjointness..For the purposes of studying linear logic below, we need (among other things) a notion of ansmcc, equipped with an involutive negation or duality, reminiscent of �nite dimensional vectorspaces. The general theory of such categories, due to M. Barr [Barr79], was developed in the mid1970's, some ten years before linear logic.Consider an smcc C, with a distinguished object ?. Consider the map evA?osA? : A
 (A ��?) �!?. By (13) this corresponds to a map �A : A ! (A ��?) ��?. Let us write A? for A ��?.Thus we have a morphism �A : A ! A??. Objects A for which �A is an isomorphism are calledreexive, or more precisely reexive with respect to ?.De�nition 4.3 A �-autonomous category (C;
; I;��;?) is an smcc C with a distinguished object? such that all objects are reexive, i.e. the canonical map �A : A! A?? is an isomorphism forall A 2 C. The object ? is called the dualizing object .It may be shown that a �-autonomous category C has a contravariant dualizing functor (�)? :Cop ! C, de�ned on objects by A 7! A?. There is a natural isomorphism : HomC(A;B) �=HomC(B?; A?).In any �-autonomous category C there are isomorphisms(A �� B)? �= A
 B?I �= ??The reader is referred to [Barr79] for many examples. Let us mention the obvious one:Example 4.4 The category V ecfd of �nite dimensional vector spaces over a �eld k is �-autonomous. Here A �� B = Lin(A;B), the space of linear maps from A to B and the dualizingobject ?= k. In particular A? = A� is the usual dual space. More generally, within the smcccategory V ec of k-vector spaces (with ?= k), an object is reexive i� it is �nite dimensional.In a �-autonomous category, we may de�ne the cotensor ... by de Morgan duality: A... B =(A?
 B?)?. The above example V ecfd is somewhat \degenerate" since
 and ... are identi�ed(see the De�nition 4.10 of compact category) . In a typical �-autonomous category this is not thecase; indeed in linear logic one does not want to identify tensor and cotensor.To obtain more general �-autonomous categories of vector spaces, we add a topological structure,due to Lefschetz [Lef63]. The following discussion is primarily based on work of M. Barr [Barr79],following the treatment in Blute [Blu96]. 36

De�nition 4.5 Let V be a vector space. A topology � on V is linear if it satis�es the followingthree properties:� Addition and scalar multiplication are continuous, when the �eld k is given the discretetopology.� � is hausdor�� 0 2 V has a neighborhood basis of open linear subspaces.Let T VEC denote the category whose objects are vector spaces equipped with linear topologies,and whose morphisms are linear continuous maps.Barr showed that T VEC is a symmetric monoidal closed category, when V �� W is de�ned to bethe vector space of linear continuous maps, topologized with the topology of pointwise convergence.(It is shown in [Barr96] that the forgetful functor T VEC!VEC is tensor-preserving) . Let V ? denoteV �� k. Lefschetz proved that the embedding V!V ?? is always a bijection, but need not be anisomorphism. This is analogous to Dana Scott's method of solving domain equations in denotationalsemantics, using the topology to cut down the size of the function spaces.Theorem 4.6 (Barr) RT VEC, the full subcategory of reexive objects in T VEC, is a complete,cocomplete �-autonomous category, with I? = I = k the dualizing object.Moreover, in RT VEC,
 and ... are not equated. More generally, other classes of �-autonomouscategories arise by taking a linear analog of G-sets, namely categories of group representations.De�nition 4.7 Let G be a group. A continuous G-module is a linear action of G on a space Vin T VEC, such that for all g 2 G, the induced map g:() : V ! V is continuous. Let TMOD(G)denote the category of continuous G-modules and continuous equivariant maps. Let RTMOD(G)denote the full subcategory of reexive objects.We have the following result, which in fact holds in the more general context of Hopf algebras(see below).Theorem 4.8 The category TMOD(G) is symmetric monoidal closed. The categoryRTMOD(G)is �-autonomous, and a reective subcategory of TMOD(G) via the functor ()??. Furthermorethe forgetful functor j j : RTMOD(G)! RT VEC preserves the �-autonomous structure.Still more general classes of �-autonomous categories may be obtained from categories of mod-ules of cocommutative Hopf algebras. Given a Hopf algebra H , a module over H is a linear action� : H
 V ! V satisfying the appropriate diagrams, analogous to the notion of G-module. LetMOD(H) denote the category of H -modules and equivariant maps. Similarly, TMOD(H) , thecategory of continuous H -modules, is the linearly topologized version ofMOD(H) where H is giventhe discrete topology and all vector spaces and maps are in T VEC.Proposition 4.9 If H is a cocommutative Hopf algebra,MOD(H) and TMOD(H) are symmetricmonoidal categories.We then obtain precisely the same statement as Theorem 4.8 by replacing the group G by acocommutative Hopf algebra H . Later we shall mention noncommutative Hopf algebra models forlinear logic, with respect to full completeness theorems, Section 5.2.The case where we do identify
 and ... is an important class of monoidal categories:37

De�nition 4.10 A �-autonomous category is compact if (A
B)? �= A?
B? (i.e. equivalentlyif A �� B �= A?
 B).In addition to the obvious example of V ecfd, there are compact categories of relations, whichhave considerable importance in computer science. One such is:Example 4.11 Rel� is the category whose objects are sets and whose maps R : X ! Y are(binary) relations R � X � Y . Composition is relational composition, etc. This is a compactcategory, with X
 Y = X �� Y =def X � Y , the ordinary set-theoretic cartesian product. De�ne?= f�g, a one-element set; hence X? = X ��?= X . On maps we have R? = Rop, where yRopxi� xRy.Given two smcc's C and D (we shall not distinguish the structure) what are the morphismsbetween them?De�nition 4.12 A symmetric monoidal functor is a functor F : C ! D together with two naturaltransformations mI : I ! F (I) and mUV : F (U)
 F (V) ! F (U
 V) such that three coherencediagrams commute. In the case of the closed structure, we can de�ne another natural transformationm̂UV : F (U �� V) ! (FU �� FV) by m̂UV = (F (evU��V;U)omU��V;U)�. A symmetric monoidalfunctor is strong (resp. strict) if mI and mUV are natural isomorphisms (resp. identities) for allU; V . A symmetric monoidal functor is strong closed (resp. strict closed) if mI and m̂UV are naturalisomorphisms (resp. identities) for all U; V . Similarly, one de�nes �-autonomous functors.Finally, we need an appropriate notion of natural transformation for monoidal functors.De�nition 4.13 A natural transformation � : F ! G is monoidal if it is compatible with bothmI and mUV , for all U; V , in the sense that the following equations hold:�IomI = mImUV o(�U
 �V) = �U
V omUV :4.2 Gentzen's proof theoryGentzen's proof theory [GLT], especially his sequent calculi and his fundamental theorem on Cut-Elimination, have had a profound inuence not only in logic, but in category theory and computerscience as well.In the case of category theory, J. Lambek[L68, L69] introduced Gentzen's techniques to studycoherence theorems in various free monoidal and residuated categories. This logical approach tocoherence for such categories was greatly extended by G. Mints, S. Soloviev, B. Jay, et al [Min81,So87, So95, J90] For a comparison of Mints' work with more traditional Kelly-Mac Lane coherencetheory see [Mac82] . More recently, coherence for large classes of structured monoidal categoriesarising in linear logic has been established in a series of papers by Blute, Cockett, Seely et al. This isbased on Girard's extensions of Gentzen's methods. (see [BCST96, BCS96, BCS97, CS91, CS96b].)Recent coherence theorems of Gordon-Power-Street, Joyal-Street, et. al. [GPS96, JS91, JS93]have made extensive use of higher dimensional category theory techniques and Yoneda methods,rather than logical methods. Related Yoneda techniques are now being introduced, in the reversedirection into proof theory, as we outlined in Section2.7 above.In computer science, entire research areas: proof search (AI, Logic Programming), operationalsemantics, type inference algorithms, logical frameworks, etc. are a testimonial to Gentzen's work.Indeed, Gentzen's Natural Deduction and Sequent Calculi are fundamental methodological as wellas mathematical tools. 38

A profound and exciting analysis of Gentzen's work has arisen recently in the rapidly growingarea of Linear Logic (=LL), developed by J-Y. Girard in 1986. While classical logic is aboutuniversal truth, and intuitionistic logic is about constructive proofs, LL is a logic of resources andtheir management and reuse. (e.g. see [Gi87, Gi89, GLR, Sc93, Sc95, Tr92])4.2.1 Gentzen sequentsGentzen's analysis of Hilbert's proof theory begins with a fundamental reformulation of the syntax.We follow the presentation in [GLT].A sequent for a logical language L is an expressionA1; A2; � � � ; Am ` B1; B2; � � � ; Bn(14)where A1; A2; � � � ; Am and B1; B2; � � � ; Bn are �nite lists (possibly empty) of formulas of L. Sequentsare denoted � ` �, for lists of formulas � and �. Gentzen introduced formal rules for generatingsequents, the so-called derivable sequents. Gentzen's rules analyze the deep structure and implicitsymmetries hidden in logical syntax . Computation in this setting arises from one of two methods:� The traditional method is Gentzen's Cut-Elimination Algorithm, which allows us to take aformal sequent calculus proof and reduce it to cut-free form. This is closely related to bothnormalization of lambda terms (cf. Sections 2.7) as well as the operational semantics of suchprogramming languages as PROLOG.� More recent is the proof search paradigm , which is the bottom-up, goal-directed view ofbuilding sequent proofs and is the basis of the discipline of Logic Programming [MNPS,HM94, Mill].Categorically, the cut elimination algorithm is at the heart of the proof-theoretic approach tocoherence theorems previously mentioned. On the other hand, Logic Programming and the proof-search paradigm have only recently attracted the attention of categorists (cf. [FiFrL, PK96]).Lambek pointed out that Gentzen's sequent calculus was analogous to Bourbaki's method ofbilinear maps. For example, given sequences � = A1 � � �Am and � = B1B2 � � �Bn ofR�R bimodulesof a given ring R, there is a natural isomorphismMult(�AB�; C) �=Mult(�A
 B�; D)(15)between m + n + 2-linear and m + n + 1-linear maps. Bourbaki derived many aspects of tensorproducts just from this universal property. Such a formal bijection is at the heart of Linear Logic(e.g. [L93]).Traditional logicians think of sequent (14) as saying : the conjunction of the Ai entails thedisjunction of the Bj . More generally, following Lambek and Lawvere (cf. Section2.1), categoristsinterpret such sequents (modulo equivalence of proofs) as arrows in appropriate categories. Forexample, in the case of logics similar to linear logic [CS91], the sequent (14) determines an arrowof the form A1
 A2
 � � �
 Am �! B1 ... B2 � � � ... Bn(16)in a symmetric monoidal category with a \cotensor" ... (see Section 4.1 below).4.2.2 Girard's Analysis of the Structural RulesGentzen broke down the manipulations of logic into two classes of rules applied to sequents: struc-tural rules and logical rules. All rules come in pairs (left/right) applying to the left (resp. right)side of a sequent. 39

Gentzen's Structural Rules (Left/Right)Permutation � ` ��(�) ` � � ` �� ` �(�) �; � permutations.Contraction �; A; A ` ��; A ` � � ` �; B; B� ` �; BWeakening � ` ��; A ` � � ` �� ` �; BFor simplicity, consider intuitionistic sequents , i.e. those of the form A1; A2; � � �Am ` B withone conclusion. So the right rules disappear and we consider the left rules above. We can give aCurry-Howard-style analysis to Gentzen's intuitionistic sequents (cf. Section 2.3), assigning lambdaterms (qua functions) to sequents, e.g. x1 : A1; � � � ; xm : Am ` t(~x) : B. The structural rules say thefollowing: Permutation says that the class of functions is closed under permutations of arguments;Contraction says that the class of functions is closed under duplicating arguments{i.e. setting twoinput variables equal; and Weakening says the class of functions is closed under adding dummyarguments. In the absence of such rules, we obtain the so called linear lambda terms, terms whereall variables occur exactly once. (see [GSS91, Abr93, L89]):By removing these traditional structural rules, logic takes on a completely di�erent character3(see Figure 8). Previously equivalent notions now split into subtle variants based on resourceallocation. For example, the rules for Multiplicative connectives simply concatenate their inputhypotheses � and �0, whereas the rules for Additive connectives merge two input hypotheses �into one. The situation is analogous for outputs � and �0 (see Figure 8). The resultant logicalconnectives can represent linguistic distinctions related to resource use which are simply impossibleto formulate in traditional logic (see [Gi86, Abr93, Sc93, Sc95]).Remark 4.14 First we should remark that on the controversial subject of notation in LL, we havechosen a reasonable categorical notation, somewhere between [Gi87] and [See89]. Observe thatin CLL, two-sided sequents can be replaced by one-sided sequents, since � ` � is equivalent to` �?;�, with �? the list A?1 ; � � � ; A?n , where � is A1; � � � ; An.Thus the key aspect of linear logic proofs is their resource sensitivity. We think of a linearentailment A1; � � � ; Am ` B not as an ordinary function, but as an action{a kind of process that in asingle step consumes the inputs Ai and produces output B. For example, this permits representingin a natural manner the step-by-step behaviour of various abstract machines, certain models ofconcurrency like Petri Nets, etc. Thus, linear logic permits us to describe the instantaneous stateof a system, and its step-wise evolution, intrinsically within the logic itself (e.g. with no need forexplicit time parameters, etc.)But linear logic is not about simply removing Gentzen's structural rules, but rather modulatingtheir use. To this end, Girard introduces a new connective !A, which indicates that contractionand weakening may be applied to formula A. This yields the Exponential connectives in Figure 8.From a resource viewpoint, an hypothesis !A is one which can be reused arbitrarily. Moreover, thispermits decomposing \)" (categorically, the ccc function space) into more basic notions:A) B = (!A) �� B3Formulas of LL are generated from literals p; q; r; � � � ; p?; q?; r?; � � � and constants I;?;1; 0 using binary operations
; ... ;�;� and unary !; ?. Negation (�)? is de�ned inductively: I? =?;??= I; 1? = 0; 0? = 1; p?? = p; (A
B)? =A?... B?; (A... B)? = A?
 B?; (A� B)? = (A? � B?); (A� B)? = A? � B?; (!A)? =?(A?); (?A)? =!(A?): Alsowe de�ne A �� B = A?... B: 40

Structural Perm � ` ��(�) ` �(�) �; � permutations.Axiom&Cut Axiom A ` ACut � ` A;� �0; A ` �0�;�0 ` �;�0Negation � ` A;��; A? ` � �; A ` �� ` A?;�Multiplicatives Tensor �; A; B ` ��; A
B ` � � ` A;� �0 ` B;�0�;�0 ` A
B;�;�0Par �; A ` � �0; B ` �0�;�0; A... B ` �;�0 � ` A;B;�� ` A... B;�Units � ` ��; I ` � ` I? ` � ` �� `?;�Implication � ` A;� �0; B ` �0�;�0; A �� B ` �;�0 �; A ` B;�� ` A �� B;�Additives Product �; A ` ��; A�B ` � �; B ` ��; A� B ` � � ` A;� � ` B;�� ` A�B;�Coproduct �; A ` � �; B ` ��; A+B ` � � ` A;�� ` A+ B;� � ` B;�� ` A+B;�Units �; 0 ` � � ` 1;�Exponentials Weakening � ` ��; !A ` � Contraction �; !A; !A ` ��; !A ` �Storage !� ` A!� ` !A Dereliction �; A ` ��; !A ` �Figure 8: Rules for Classical Propositional LL
41

Finally, nothing is lost: classical (as well as intuitionistic) logic can be faithfully translated intoCLL. [Gi87, Tr92].4.2.3 Fragments and Exotic ExtensionsThe richness of LL permits many natural subtheories (cf.[Gi87, Gi95a]). For a survey of the sur-prisingly intricate complexity-theoretic structure of many of the fragments of LL see Lincoln [Li95].These results often involve direct and natural simulation of various kinds of abstract computingmachines within the logic [Sc95, Ka95]. Of course there are speci�c fragments corresponding tovarious subcategories of categorical models, in the next section. There are also fragments directlyconnected with classifying complexity classes in computing [GSS92, Gi97] but these latter have notbeen the object of categorical analysis.More exotic \noncommutative" fragments of LL are obtained by eliminating or modifying thepermutation rule; i.e. one no longer assumes
 is symmetric. One such precursor to LL is the workof J. Lambek in the 1950's on categorial grammars in mathematical linguistics (for recent surveys,see [L93, L95]). Here the language becomes yet more involved, since there are two implications ��and �� and two negations A? and ?A. It has been proven by Pentus [Pen93] that Lambek grammarsare equivalent to context-free grammars. In [L89] there is a formulation of Lambek grammars usingthe notion of multicategory, an idea currently of some interest in higher-dimensional category theoryand higher dimensional rewriting theory [HMP98].D.Yetter [Y90] considered cyclic linear logic, a version of LL in which the permutation rule ismodi�ed to only allow cyclic permutations. This will be discussed briey below in Section 5.2with respect to Full Completeness. A proposed classi�cation of di�erent fragments of LL, includingbraided versions, based on Hopf-algebraic models is in Blute [Blu96], see also Section 5.2.4.2.4 Topology of ProofsLet us briey mention one of the main novelties of linear logic. Traditional Gentzen proof theorywrites proofs as trees. In order to give a Curry-Howard isomorphism to arbitrary sequents � ` �,Girard introduced multiple-conclusion graphical networks to interpret proofs. These proof netsuse graph rewriting moves for their operational semantics. It is here that one sees the dynamicaspects of cut-elimination. In essense these networks are the \lambda terms" of linear logic. Thereare known mathematical criteria to classify which (among arbitrary) networks arise from Gentzensequent proofs, i.e. in a sense which of these parallel networks are \sequentializable" into a Gentzenproof tree. Homological aspects of proof nets are studied in [M�et94]The technology of proof nets has grown into an intricate subject. In addition to their uses inlinear logic, proof nets are now used in category theory, as a technical tool in graphical approachesto coherence theorems for structured monoidal categories (e.g. [Blu93, BCST96, CS91, CS96b]).There are proof net theories for numerous non-commutative, cyclic, and braided linear logics, e.g.[Abru91, Blu93, Fl96, FR94, Y90].The method of proof nets has been extended by Y. Lafont [Laf95] to a general graphical languageof computation, his interaction nets. These latter provide a simple model of parallel computationwith, at the same time, new insights into sequential computation.4.3 What is a categorical model of LL?4.3.1 General ModelsAs in Section 2.1, we are interested in �nding the categories appropriate to modelling linear lo-gic proofs (just as cartesian closed categories modelled intuitionistic ^;);> proofs). The basicequations we postulate arise from the operational semantics{that is normalization of proofs. Inthe case of sequent calculi, this is Gentzen's Cut-Elimination process [GLT]. However, there are42

sometimes natural categorical equations which are not decided by traditional proof theory. Theproblem is further compounded in linear logic (and monoidal categories) in that there may beseveral (non-canonical) candidates for appropriate monoidal structure.The �rst categorical semantics of LL is in Seely's paper [See89], which is still perhaps themost readable account. Subsequent development of appropriate term calculi [Abr93, Bie95, BBPH,W94, BCST96, CS91, CS96b] have modi�ed and enlarged the scope, but not essentially changed theoriginal analysis for the case of classical linear logic (= CLL). We impose the following equationsbetween CLL proofs, in order to form a category C, where sequents are interpreted as (equivalenceclasses of) arrows according to formula (16), based on the rules in Figure 8.� C is a symmetric monoidal closed category with products, coproducts, and units (from therules: Axiom, Cut, Perm, the Multiplicatives and the Additives).� C is �-autonomous (from the Negation rule) with
 and ... related by de Morgan duality.� ! : C ! C is an endofunctor, with associated monoidal transformations " :!! idC and � :!!!!satisfying:1. (!; �; ") forms a monoidal comonad on C.2. There are natural isomorphismsI �= !1 and !A
!B �= !(A� B) :making ! : (C;�; 1)! (C;
; I) a symmetric monoidal functor.3. In particular, I eA �!A dA�! !A
!A is a cocommutative comonoid, for all A in C andthe coalgebra maps "A :!A ! A and �A :!A !!!A are comonoid maps. In fact, theseconditions are a consequence of (2), but are required explicitly in weaker settings.For modi�cations appropriate to more general situations (e.g. various fragments of LL withoutproducts, linearly distributive categories, etc.) see [Bie95, BCS96].The essence of Girard's translation of intuitionistic logic into LL is the following easy result (cf[See89, Bie95]).Proposition 4.15 If C is a categorical model of CLL, as above, then the Kleisli category KC of thecomonad (!; �; ") is a ccc. Moreover �nite products in KC and C coincide, while exponentials in KCare given by: A) B = (!A) �� B.We should mention one formal rule, MIX, which appears frequently in the literature. To expressit, we use one-sided sequents:Mix ` � ` �` �;�Categorically, MIX entails there is a map A
 B ! A... B. This rule seems to be valid in mostmodels, certainly so in ones based on RT VEC.Remark 4.16 The categorical comonad approach to models of linear logic has been put to use byAsperti in clarifying optimal graph reduction techniques in the untyped lambda calculus [Asp] (seealso [GAL92]). 43

4.3.2 Concrete ModelsThere are by now many categorical models of LL and its interesting fragments. Let us just mentiona few [Gi95a, Tr92]:� Posetal Models or Girard's Phase semantics. These are �-autonous posets with additionalstructure. This gives an algebraic semantics analogous to Boolean or Heyting algebras forclassical (resp. intuitionistic) logic. As categories they are trivial (each hom set has at mostone element); hence they do not model proofs but rather provability. There is associated atraditional Tarski semantics, with Soundness and Completeness Theorems. Recently, thesemodels have been applied in Linear Concurrent Constraint Programming, for proving \safety"properties of programs [FRS98].� Domain-Theoretic Models. The category LIN = coherent spaces and linear maps gave the�rst non-trivial model of LL proofs. This model arose from Girard's analysis of the ccc STAB,realizing that there were many other logical operations available. Indeed, STAB is the Kleislicategory of an approproate comonad (!; �; ") on LIN (cf. Proposition 4.15). In the model LIN,!A is a minimal solution of the domain equation !A �= I � A � (!A
!A), indeed is a cofreecomonoid.� Relational Models. As discussed in Barr [Barr91], many compact categories are completeenough to interpret !A �=? �A� E2(A)� � � � �En(A)� � � �where En(A) is the equalizer of the n! permutations of the nth tensor power A
n, for n � 2.For example, Barr proves Rel� has that property. More generally, Barr [Barr91] constructsmodels based on the Chu-space construction in [Barr79]. Chu spaces are themselves aninteresting class of models of LL and have been the subject of intensive investigation by M.Barr and by Vaughn Pratt [Pra95]� Games Models. Categories of Games now provide some of the most exciting new semanticsfor LL and Programming Languages. This so-called intensional semantics provides a �ner-grained analysis of computation than traditional (categorical) models, taking into accountthe dynamic or interactive aspects of computation. For example, such games can be used tomodel interactions between a System and its Environment and provided the �rst syntax-freefully abstract models of PCF, answering a long-standing open problem. Games categorieshave been extended to handle programming languages with many additional properties, e.g.control features, call-by-value languages, languages with side-e�ects and store, etc. as wellas modern logics like LL, System F , etc. For basic introductions, see [Abr97, Hy97]. For asmall sample of more recent work, see [Mc97, AHMc98, AMc98, BDER97].� GoI and Functional Analytic Models: The Geometry of Interaction Program (see e.g. [Gi88,Gi90, Gi95b, DR95]) aims to model the dynamics of cut-elimination by interpreting proofsas objects of a certain C� algebra, with logical rules corresponding to certain �-isomorphisms.The essence of Gentzen's cut-elimination theorem is summarized by the so-called executionformula. We shall look at an abstract form of the GoI program (in traced monoidal categories)in Section 6.1. The GoI program itself has inuenced both game semantics and work onoptimal reduction.� Finally, as the name suggests, linear logic is roughly inspired from linear algebra. Thus !Ais analogous to the Grassmann algebra. Indeed, in categories of Hilbert or Banach spaces,44

one is reminded of the symmetric and antisymmetric Fock space construction [Ge85]. For a(non-categorical) Banach space interpretation of LL, see Girard [Gi96].5 Full Completeness5.1 Representation TheoremsThe most basic representation theorem of all is the Yoneda embedding:Theorem 5.1 (Yoneda) If A is locally small, the Yoneda functor Y : A ! SetAop, where Y(A) =HomA(�; A), is a fully faithful embedding.Indeed, Yoneda preserves limits as well as cartesian closedness.We seek mathematical models which describe the behaviour of programs. From the viewpointof the Curry-Howard isomorphism (which identi�es proofs with programs) we seek representationtheorems for proofs{i.e. mathematical models which fully and faithfully represent proofs. Fromthe viewpoint of a logician, these are Completeness Theorems, but now at the level of proofs ratherthan provability.One of the �rst such theorems was proved by H. Friedman [Frie73]. Friedman showed com-pleteness of typed lambda calculus with respect to ordinary set-theoretic reasoning. Consider thepure typed lambda calculus L), whose types are generated from some base sorts by) only. Weinterpret L) set-theoretically in a full type hierarchy A (see Example 2.3).Theorem 5.2 (Friedman) Let A be a full type hierarchy with base sorts interpreted as in�nitesets. Then for any pure typed lambda terms M;N , M =� N is true in A i� M =� N is provableusing the rules of typed lambda calculus.Similar results but using instead full type hierarchies over !-CPO or Per-based models havebeen given by Plotkin and by Mitchell using logical relations (see [Mit96]). Friedman's originalSet-based theorem has been extended by Cubric to the entire ccc language);�; 1 [Cu93] to yieldthe followingTheorem 5.3 (Cubric) Let C be a free ccc generated by a graph. Then there exists a faithful cccfunctor F : C ! Set.Alas this representation is not full.Let BG = the free ccc with binary coproducts generated by discrete graph G, given syntacticallyby types and terms of typed lambda calculus. For any group G, the functor category SetG is accc with coproducts. So according to the universal property, if F is an initial assignment of G-setsto atomic types then a proof of formula �, qua closed term M : �, qua FG-arrow M : 1 ! �,corresponds to a G-set (= equivariant) map M F : 1! � F . Such maps are �xed points underthe action. In particular, letting G = Z, we obtain the easy half of the following theorem, due toL�auchli [Lau]:Theorem 5.4 (L�auchli) A f>;^;);_g-formula � of intuitionistic propositional calculus is prov-able if and only if for every interpretation F of the base types, its SetZ-interpretation � F has aninvariant element.Indeed, Harnik and Makkai extend L�auchli's theorem to a representation theorem. Recall, a functor� is weakly full if Hom(A;B) = ; implies Hom(�(A);�(B)) = ; .Theorem 5.5 (Harnik, Makkai [HM92]) Let B be a countable free ccc with binary coproducts.There is a weakly full representation � of B into a countable power of SetZ. If in addition the45

terminal object 1 is indecomposable, then there is a weakly full representation into SetZ.A weakly full representation of B corresponds to completeness with respect to provability: i.e.HomSetZ(1;�(B)) 6= ; implies HomB(1; B) 6= ;, so B is provable. We shall give stronger repres-entation theorems still based on the idea of invariant elements.5.2 Full Completeness TheoremsA recent topic of considerable interest is full completeness theorems. Suppose we have a freecategory F . We shall say that a model category M is fully complete for F or that we have fullcompleteness of F with respect toM if the unique free functor (with respect to any interpretationof the generators) � : F ! M is full. It is even better to demand that � is a fully faithfulrepresentation.For example, suppose F is a free ccc generated by the typed lambda calculus (cf. Example2.22). To say a ccc M is fully complete for F means the following: given any interpretation ofthe generators as objects of M, any arrow A ! B 2 M between de�nable objects is itselfde�nable, i.e. of the form f for f : A ! B. If the representation is fully faithful, f is unique.Thus, by Curry-Howard, any morphism in the model between de�nable objects is itself the imageof a proof (or program); indeed of a unique proof if the representation is fully faithful. Thus, suchmodelsM, while being semantical, really capture aspects of the syntax of the language.Such results are mainly of interest when the modelsM are \genuine" mathematical models notapparently connected to the syntax. In that case Full Completeness results are more surprising(and interesting). For example, an explicit use of the Yoneda embedding Y : C ! SetCop is notwhat we want, since SetCop depends too much on C.Probably the �rst full completeness results for free ccc's were by Plotkin [Plo80], using categoriesof logical relations. In the case of simply typed lambda calculus generated from a �xed base type(= the free ccc on one object), Plotkin proved the following result. Consider the Henkin model TB= the full type hierarchy over a set B, i.e. the full sub-ccc of Sets generated by some set B. TheSoundness Theorem for logical relations says that if a term f is lambda de�nable, it is invariantunder all logical relations. We ask for the converse.The rank of a type is de�ned inductively: rank(b) = 0 , where b is a base type, rank(�) �)= max f rank(�) + 1, rank(�)g, rank(� � �) = max f rank(�), rank(�)g. The rank of an elementf 2 B� in TB is the rank of the type �.Theorem 5.6 (Plotkin, [Plo80]) In the full type hierarchy TB over an in�nite set B, all elementsf of rank � 2 satisfy: if f is invariant under all logical relations, then f is lambda de�nable.This result has been extended by Statman [St85], but the same question for terms of arbitraryrank is still open. However Plotkin [Plo80] did prove the above result for lambda terms of arbit-rary rank, by moving to Kripke Logical Relations rather than Set-based logical relations. Kripkerelations occur essentially by replacing Set by a functor category SetPop , P a poset, i.e. by look-ing at P -indexed families of sets and relations. Extensions, with new characterizations of lambdade�nability, are in work of Jung and Tiuryn [JT93]. A clear categorical treatment of their work,and logical-relations-based full completeness theorems, is in Alimohamed [Ali95] (cf. also [Mit96]).The name \Full Completeness" �rst arose in Game Semantics, where the fundamental paper ofAbramsky and Jagadeesan [AJ94b] proved full completeness for multiplicative linear logic (+ theMix rule), using categories of games with history-free winning strategies as morphisms. It is shownthere that \uniform" history-free winning strategies are the denotations of unique proof nets. Amore involved notion of game, developed by Hyland and Ong (see [Hy97]), permits eliminating theMix rule in proofs of full completeness for the multiplicatives. These results paved the way for themost spectacular application of these game-theoretic methods: the solution of the Full Abstraction46

problem for PCF, by Abramsky,Jagadeesan, and Malacaria and by Hyland and Ong , referred toin Section 4.3.2.In [BS96, BS96b, BS98] Full Completeness for MLL + Mix and for Yetter's Cyclic Linear Logicwere also proved using dinaturality and a generalization of La�uchli semantics. Let us briey recallthat view.5.2.1 Linear L�auchli SemanticsLet C be a �-autonomous category. Given an MLL formula '(�1; : : : ; �n) built from
;��; ()? ,with type variables �1; : : : ; �n, we inductively de�ne its functorial interpretation '(�1; : : : ; �n) :(Cop)n � Cn! C as follows:� ' (AB) = (Bi if '(�1; : : : ; �n) � �iA?i if '(�1; : : : ; �n) � �?i� '1
 '2 (AB) = '1 (AB)
 '2 (AB).� '1 �� '2 (AB) = '1 (BA) �� '2 (AB).The last two clauses correspond to Equations 11 and 12 (following Example 3.5 in Section 3.1). Itis readily veri�ed that '? = ' ?. Also recall that in MLL, A �� B is de�ned as A?... B. Fromnow on, let C = RT VEC.The set Dinat(F;G) of dinatural transformations from F toG is a vector space, under pointwiseoperations. We call it the space of proofs associated to the sequent F ` G (where we identifyformulas with de�nable functors.) If ` � is a one-sided sequent, then Dinat(�) denotes the set ofdinaturals from k to ... � . In such sequents, we sometimes abbreviate ... � to � .The following is proved in [BS96, BS98]. A binary sequent is one where each atom appearsexactly twice, with opposite variances.Theorem 5.7 (Full Completeness for Binary Sequents) Let F and G be formulas in multi-plicative linear logic, interpreted as de�nable multivariant functors on RT VEC. Given a binarysequent F ` G, then Dinat(F;G) is zero or 1-dimensional, depending on whether or not F ` Gis provable. If it is provable, every dinatural is a scalar multiple of the denotation of the uniquecut-free proof (qua Girard proof-net).A diadditive dinatural transformation is one which is a linear combination of substitution in-stances of binary dinaturals. Under the same hypotheses as above we obtain:Theorem 5.8 (Full Completeness) The proof space Dinat(F;G) of diadditive dinatural trans-formations has as basis the denotations of cut-free proofs in the theory MLL+MIX.Example 5.9 The proof space of the sequent�1; �1 �� �2; �2 �� �3; : : : ; �n�1 �� �n ` �nhas dimension 1, generated by the evaluation dinatural.The proofs of the above results actually yield a fully faithful representation theorem for a free�-autonomous category with MIX , canonically enriched over vector spaces ([BS98]).In [BS98], a similar Full Completeness Theorem and fully faithful representation theorem isgiven for Yetter's Cyclic Linear Logic. In this case one employs the category RTMOD(H) for aHopf algebra H . This is based on the following observation [Blu96]:47

Proposition 5.10 If H is a hopf algebra with an involutive antipode, i.e. S2 = id thenRTMOD(H) is a cyclic �-autonomous category, i.e. a model of Yetter's cyclic linear logic.The particular Hopf algebra used is the shu�e Hopf algebra, described in [Ben, Haz, BS98]. Onceagain we consider formulas as multivariant functors on RT VEC, but restrict the dinaturals to so-called uniform dinaturals �jV1j;���;jVnj, i.e. those which are equivariant with respect to the H -actioninduced from the atoms, for H -modules Vi 2 RTMOD(H). This is completely analogous to thetechniques used in logical relations.Related results using Chu spaces are in [Pra97]. 46 Feedback and Trace6.1 Traced Monoidal CategoriesThis new class of categories, introduced by Joyal, Street, and Verity [JSV96], have shown surprisingconnections to models of computation and iteration. The original versions were very general, in-cluding braided and tortile categories arising in several branches of mathematics. At the moment,most of the applications to computing omit any braided structure. But even at the abstract levelof [JSV96], the authors illustrate a computational, geometric calculus somewhat akin to Girard'sproof nets in linear logic [Gi87], and indeed some precise connections have been made [BCS98].Moreover, the main construction in [JSV96] has been shown by Abramsky [Abr96] to have fascin-ating connections with Girard's GoI program, as already hinted by Joyal, Street, and Verity.We now give a version of traced symmetric monoidal categories. For ease of readability andwithout loss of generality, we consider strict monoidal categories (recall, from Mac Lane's coherencetheorem, that every monoidal category is equivalent to a strict one).De�nition 6.1 A traced symmetric monoidal category (= tmc) is a symmetric monoidal category(C;
; I; s) (where sX;Y : X
 Y �! Y
X is the symmetry morphism) with a family of functionsTrUX;Y : C(X
 U; Y
 U) �! C(X; Y), called a trace, subject to the following conditions:� Natural in X , TrUX;Y (f)g = TrUX0;Y (f(g
 1U)), wheref : X
 U �! Y
 U , g : X 0 �! X ,� Natural in Y , gTrUX;Y (f) = TrUX;Y 0((g
 1U)f), wheref : X
 U �! Y
 U , g : Y �! Y 0,� Dinatural in U , TrUX;Y ((1Y
 g)f) = TrU 0X;Y (f(1X
 g)),where f : X
 U �! Y
 U 0, g : U 0 �! U ,� Vanishing, TrIX;Y (f) = f and TrU
VX;Y (g) = TrUX;Y (TrVX
U;Y
U(g))for f : X
 I �! Y
 I and g : X
 U
 V �! Y
 U
 V .� Superposing, g
 TrUX;Y (f) = TrUW
X;Z
Y (g
 f)� Yanking, TrUU;U(sU;U) = 1U .4Added in proof: there has been recent progress on the above work. Masahiro Hamano (JAIST) has managed toeliminate the use of dinaturals in the full completeness proofs in both of the Blute-Scott papers [BS96, BS98], givinga direct denotational interpretation of MLL + Mix-full completeness in the categories of reexive topological vectorspaces above. This paper will appear in Ann. Pure and Applied Logic. Also Hamano has proved MLL (withoutMix) full completeness in Barr's category of Reexive Topological Abelian Groups, using Pontrjagin duality and thedinatural framework above. This will appear in Math. Struc. in Computer Science, in a volume dedicated to the75th birthday of J. Lambek. 48

fXU YU----Figure 9: The trace TrUX;Y (f)From a computer science viewpoint, the essential feature is to think of TrUX;Y (f) as \feedbackalong U", as in Figure 9. The axiomatization given here di�ers slightly from those in [Abr96, JSV96],although it can be shown to be equivalent. We shall leave it to the reader to draw the diagrams forthe trace axioms. We note however that Vanishing expresses trace along a tensor U
 V in termsof iterated traces along U and V . This is related to the so-called Beki�c Lemma in Domain Theory.The above notion is really a parametrized trace. The usual notion from linear algebra is whenX = Y = I (see Example 6.3) below.Example 6.2 Rel�: The objects are sets,
 = � (cartesian product), and maps are binaryrelations. Composition means composition of relations, and x TrUX;Y y i� there exists a u such that(x; u)R(y; u).Example 6.3 V ecfd : Given f : X
 U ! Y
 U , de�ne TrUX;Y (f)(xi) = Pj;k �kjij yk, wheref(xi
 uj) = Pk;m �kmij yk
 um, where (ui); (xj); (yk) are bases for U;X; Y , resp. In the case thatX; Y are one-dimensional, this reduces to the usual trace of a linear map f : U ! U , i.e. the usualtrace determines a function TrU : Hom(U; U)! Hom(I; I), where I = k.Example 6.4 More generally, any compact category has a canonical trace TrUX;Y (f) = X �= X
I id
��! X
 U
 U? f
id�! Y
 U
 U? id
ev0�! Y
 I �= Y , where ev0 = evos.Example 6.5 !-CPO?: with
 = �, I = f?g. In this case the dinatural least-�xed-pointcombinator Y� : (�)(�) ! (�) induces a trace, given as follows (using informal lambda calculusnotation): for any f : X � U ! Y � U , TrUX;Y (f)(x) = f1(x;YU(�u:f2(x; u))), where f1 = �1of :X � U ! Y; f2 = �2of : X � U ! U: Hence TrUX;Y (f)(x) = f1(x; u0), where u0 is the smallestelement of U such that f2(x; u0) = u0. A generalization of this idea to traced cartesian categories isin [MHas97] and mentioned in Remark 6.16 in the next Section.Unfortunately, these examples do not really illustrate the notion of feedback as data ow: themovement of tokens through a network. More natural examples of traced monoidal categories inthe next section, given by partially additive and similar iterative categories, more fully illustratethis aspect.Example 6.6 Bicategories of Processes: The paper of Katis, Sabadini, and Walters [KSW95]develops a general theory of processes with feedback circuits in symmetric monoidal bicategories.They prove their bicategories Circ(C) have a parametrized trace operator. A small di�erencewith the above treatment is that their feedback is given by a family of partially-de�ned functorsfbUX;Y : Circ(C)(X
 U; Y
 U) �! Circ(C)(X; Y).Remark 6.7 The paper [ABP97] develops a general theory of traced ideals in tensored �-categories.The categoryHILB, the tensored �-category of Hilbert spaces and bounded linear maps, illustratesthe di�culty. In passing from the �nite dimensional case (cf. Example 6.3 above) to the in�nitedimensional one, not all endomorphisms have a trace; for example, the identity on an in�nitedimensional space. However TrU may be de�ned on traced ideals of maps, and this extends toparametrized traces. See [ABP97] for many examples.49

X fgY Y ZZ = X f�! Y g�! Z-- -- --@@R���6 Figure 10: Generalized YankingAn amusing folklore about traced monoidal categories is that general composition is actuallyde�nable using traces of simple compositions:Proposition 6.8 (Generalized Yanking) Let C be a traced symmetric monoidal category, witharrows f : X ! Y and g : Y ! Z. Then gof = TrYX;Z(sY;Zo(f
 g)):Although a fairly short algebraic proof is possible, the reader may wish to stare at the diagramin Figure 10 , and do a \string-pulling" argument (cf. [JSV96]). Similar calculations are in [KSW95,Mil94]De�nition 6.9 Let C and D be traced symmetric monoidal categories. A strong monoidal functorF : C �! D is traced if it is symmetric and satis�esTrFUFA;FB(��1B;U(Ff)�A;U) = F (TrUA;B(f))where A
U f�! B
U and FA
 FU �A;U�! F (A
U) Ff�! F (B
U) ��1B;U�! FB
 FU: In the case ofstrict monoidal functors, they are traced if they preserve the trace on the nose.We de�ne TraMon and TraMonst to be the 2-categories whose 0-cells are traced monoidalcategories (resp. strict traced monoidal categories) , whose 1-cells are traced monoidal functors(resp. strict traced monoidal functors), and whose 2-cells are monoidal natural transformations.6.2 Partially Additive CategoriesWe shall be interested in special kinds of traced monoidal categories: those whose homsets areenriched with certain partially-de�ned in�nite sums, which permits canonical calculation of iterationand traces (see formulas 17 and 18 below). A useful example is Manes and Arbib's partially additivecategories, which �rst arose in their categorical analysis of iterative and owchart schema [MA86]).Categories with similar additive structure on the hom-sets had already been considered in the1950's by Kuro�s [Ku63] with regards to categorical Krull-Schmidt-Remak theorems.De�nition 6.10 A partially additive monoid is a pair (M;�), where M is a nonempty set and �is a partial function which maps countable families in M to elements of M (we say that (xiji 2 I)is summable if �(xiji 2 I) is de�ned)5 subject to the following:1. Partition-Associativity Axiom. If (xiji 2 I) is a countable family and if (Ij j j 2 J) is a(countable) partition of I , then (xi j i 2 I) is summable if and only if (xi j i 2 Ij) is summablefor every j 2 J and (�(xi j i 2 Ij) j j 2 J) is summable. In that case,�(xi j i 2 I) = �(�(xi j i 2 Ij) j j 2 J)5We sometimes abbreviate �(xi j i 2 I) by �i2Ixi. Throughout, \countable" means �nite or denumerable. Allindex sets are countable. A partition fIj j j 2 Jg of I satis�es: Ij � I , Ii \ Ij = ; if i 6= j, and [fIj j j 2 Jg = I.But we also allow Ij = ; for countably many j. 50

2. Unary Sum Axiom. Any family (xi j i 2 I) in which I is a singleton is summable and �(xi j i 2I) = xj if I = fjg.3�. Limit Axiom. If (xi j i 2 I) is a countable family and if (xi j i 2 F) is summable for every�nite subset F of I then (xi j i 2 I) is summable.We observe the following facts about partially additive monoids:(i) Axioms 1 and 2 imply that the empty family is summable. We denote �(xi j i 2 ;) by 0,which is an additive identity for summation.(ii) Axiom 1 implies the obvious equations of commutativity and associativity for the sum (whende�ned).(iii) Although Manes and Arbib use the Limit Axiom to prove existence of Elgot-style iteration(see below), Kuro�s did not have it. And for many aspects of the theory below, it is notneeded.De�nition 6.11 The category of partially additive monoids, PAMon, is de�ned as follows. Itsobjects are partially additive monoids (M;�). Its arrows (M;�M) f�! (N;�N) are maps fromM to N which preserve the sum, in the sense that: f(�M(xi j i 2 I)) = �N(f(xi) j i 2 I) for allsummable families (xi j i 2 I) in M . Composition and identities are inherited from Sets.A PAMon-category C is a category enriched in PAMon. This means the hom-sets carry aPAMon-structure, compatible with composition. In particular, in each homset HomC(X; Y) thereis a zero morphism 0XY : X �! Y , the sum of the empty family.Remark 6.12 In a PAMon-category C1. The family of zero morphisms f0XY gX;Y 2C satis�es: g0WZ = 0WY = 0XY f for any f :W ! Xand g : Z ! Y .2. If �i2Ifi = 0XY then all summands fi = 0XY in HomC(X; Y).De�nition 6.13 Let C be a PAMon-category with countable coproducts Li2IXi. For any j 2 Iwe de�ne quasi projections PRj :Li2I Xi �! Xj as follows:PRjink = (idXj if k = j0XkXj elseDe�nition 6.14 A partially additive category (pac) C is a PAMon-category with countable cop-roducts which satis�es the following axioms:1. Compatible Sum Axiom: If (fi j i 2 I) 2 C(X; Y) is a countable family and there existsf : X �! I:Y such that PRif = fi (we say the fi are compatible), then P fi exists.2. Untying Axiom: If f + g : X �! Y exists then so does in1f + in2g : X �! Y + Y .The following facts about partially additive categories follow from Manes and Arbib [MA86]:� Matrix Representation of maps: For any map f :Li2IXi ! Lj2J Yj there is a unique familyffij : Xi ! Yjgi2Ij2J with f = Pi2Ij2J injfijPRi and PRjfini = fij . Notation: we writefXiYj for fij . 51

gX YX ---6Figure 11: Elgot Dagger gy� Elgot IterationGivenX g�! Y +X , there existsX gy�! Y where gy =P1n=0 gXY gnXX , satisfyingthe �xed-point identity [1Y ; gy]g = gy:(17)This corresponds to the owchart scheme in Figure 11. The proof of Elgot iteration([MA86],p.83) uses the Limit Axiom.Proposition 6.15 A partially additive category C is traced monoidal with
 = coproduct and iff : X � U �! Y � U , TrUX;Y (f) = [1Y ; f y2]f1 = fXY + 1Xn=0 fUY fnUUfXU(18)where f = [f1; f2] with f1 : X �! Y � U , f2 : U �! Y � U .Formula (18) corresponds to the data ow interpretation of trace-as-feedback in Figure 9 : seethe examples below. We should also remark that Formula (18) corresponds closely to Girard'sExecution Formula [Abr96] and is related to a construction of Geometry of Interaction categoriesin the next section.Remark 6.16 Conversely, a traced monoidal category where
 is coproduct has an Elgot iteratorgy = TrXX;Y ([g; g]), where g : X ! Y + X . An axiomatization of the opposite of such categories,which correspond to categories with a parametrized Y combinator, is considered in Hasegawa[MHas97]. More generally, Hasegawa considers traced monoidal categories built over cartesiancategories and it is shown how various typed lambda calculi with cyclic sharing are Sound andComplete for such categorical models.Finally, we should mention the general notion of Iteration Theories. These general categoricaltheories of feedback and iteration, their axiomatization and equational logics have been studiedin detail by S.L. Bloom and Z. �Esik in their book [BE93]. A more recent 2-categorical study ofiteration theories is in [BELM].We shall now give a few important examples of pac's:Example 6.17 Rel+ , the category of sets and relations. Objects are sets and maps are binaryrelations. Composition means relational composition. The identity is the identity relation, andthe zero morphism 0XY is the empty set ; � X � Y . Coproducts Li2I Xi are as in Set, i.e.disjoint union. All countable families are summable where �i2I(Ri) = [i2IRi. Finally, let R� bethe reexive, transitive closure of a relation R. SupposeR : X + U �! Y + U . Then formula (18) becomes:TrUX;Y (R) = RXY [[n�0RUY oRnUUoRXU(19) = RXY [RUY oR�UUoRXU :52

Example 6.18 Pfn , the category of sets and partial functions. The objects are sets, the mapsare partial functions. Composition means the usual composition of partial functions. The zero map0XY is the empty partial function. A family ffi j i 2 Ig is said to be summable i� 8i; j 2 I; i 6=j; Dom(fi) \Dom(fj) = ;: �i2Ifi is the partial function with domain [iDom(fi) and where(�i2Ifi)(x) = (fj(x) if x 2 Dom(fj)unde�ned elseThe following example comes from Giry [Giry] (inspired from Lawvere) and is mentioned in[Abr96]. The fact that this is a pac follows from work of P. Panangaden and E. Haghverdi.Example 6.19 SRel, the category of Stochastic Relations. Objects are measurable spaces (X;�X)where X is a set and �X is a �-algebra of subsets of X . An arrow f : (X;�X) �! (Y;�Y) is atransition probability, i.e., f : X � �Y �! [0; 1] such that f(�; B) : X �! [0; 1] is a measurablefunction for �xed B 2 �Y and f(x; �) : �Y �! [0; 1] is a subprobability measure (i.e., a �-additiveset function satisfying f(x; ;) = 0 and f(x; Y) � 1). The identity morphism idX : (X;�X) �!(X;�X) is a map idX : X � �X �! [0; 1], with idX(x;A) = �(x;A), where for A �xed, �(x;A) isthe characteristic function of A and for x �xed, �(x;A) is the Dirac distribution.Composition is de�ned as follows: given f : (X;�X) �! (Y;�Y) and g : (Y;�Y) �! (Z;�Z),gof : (X;�X) �! (Z;�Z) is gof(x; C) = RY g(y; C)dff(x; �)g, where the notation dff(x; �)g meansthat we are �xing x and using f(x; �) as the measure for the integration, the function being integratedis the measurable function g(�; C).Given (X;�X) and (Y;�Y), the zero morphism 0XY : (X;�X) �! (Y;�Y), is given by0XY (x;B) = 0 for all x 2 X and B 2 �Y .The partially additive structure on the homsets of SRel is as follows: we say an I-indexed familyof morphisms ffiji 2 Ig is summable if for all x 2 X we havePi2I fi(x; Y) � 1: Since we are dealingwith bounded, positive measures it is easy to verify that the sum so de�ned is a subprobabilitymeasure. Note that we would have only trivial additive structure (only singleton families summable)if we had used probability distributions rather than subprobability distributions.Finally, let fXiji 2 Ig be a countable family of objects. We de�ne the coproduct Li2IXi asfollows. We take the disjoint union of the sets Xi, equipped with the evident �-algebra. Thus ameasurable subset will look like the disjoint union of measurable subsets of each of the Xi, say]Ai (of course some of the Ai may be empty, and a point will be a pair (x; i) where i 2 I andx 2 Xi). The canonical injections inj : Xj �! Li2IXi are inj(x;]Ai) = �(x;Aj). Given Y and8i 2 I , arrows hi : Xi �! Y , we obtain the mediating morphism h :Li2I Xi �! Y by the formulah((x; j); B) = hj(x;B). The veri�cations are all routine.The next example, while not a pac, is essentially similar.Example 6.20 Pinj, the category of sets and injective partial functions. This is a fundamentalexample that arises in Girard's Geometry of Interaction program. Although this category is tracedmonoidal, with an iterative trace formula given in Abramsky [Abr96], it does not have coproducts.However its pac-like aspects may be captured in a Kuro�s-style presentation via a generalizationof partially additive categories, in which countable coproducts are replaced by countable tensors,and in which suitable axioms guarantee (analogously to pacs): a matrix representation of mapsNi2I Xi !Nj2J Yj and a trace formula as in (18).6.3 GoI CategoriesGirard's Geometry of Interaction (GoI) program introduces some profound new twists into com-putation theory. In particular, the idea that proofs are like dynamical systems, interacting locally.53

The dynamics of information ow in composition, via cut-elimination, is then related to tracingout paths in certain algebraic structures (Girard originally used operator algebras but the resultscan be expressed without them [Gi95b]). The connection of Girard's functional analytic methodsin GoI with lambda calculus and proof nets is further explored in [DR95, MaRe91].Starting with a traced monoidal category C, we now describe a compact closed category G(C)(called Int(C) in [JSV96]) which captures in abstract form many of the features of Girard's Geo-metry of Interaction program, as well as the general ideas behind game semantics. We follow theevocative treatment in Abramsky [Abr96]. The idea is to create a category whose composition isgiven by an iterative feedback formula, using the trace.De�nition 6.21 (The Geometry of Interaction construction) Given a traced monoidal category Cwe de�ne a compact closed category, G(C), as follows [JSV96, Abr96]:� Objects: Pairs of objects (A+; A�) where A+ and A� are objects of C.� Arrows: An arrow f : (A+; A�) �! (B+; B�) in G(C) is an arrow f : A+
B� �! A�
B+in C.� Identity: 1(A+;A�) = �A+;A� .� Composition: given by symmetric feedback. Arrows f : (A+; A�) �! (B+; B�) and g :(B+; B�) �! (C+; C�) have composite gof : (A+; A�) �! (C+; C�) given by:gof = TrB�
B+A+
C�;A�
C+(�(f
 g)�)where � = (1A+
 1B�
 �C�;B+)(1A+
 �C�;B�
 1B+) and � = (1A�
 1C+
 �B+ ;B�)(1A�
�B+;C+
 1B�)(1A�
 1B+
 �B�;C+). An informal picture displaying gof is given below.?? ??���������� ?BBBBBBBBBB?A+ B� B+ C�B+ B� C+A� gf� Tensor: (A+; A�)
 (B+; B�) = (A+
 B+; A�
 B�) and for (A+; A�) �! (B+; B�) andg : (C+; C�) �! (D+; D�), f
 g = (1A�
 �B+ ;C�
 1D+)(f
 g)(1A+
 �C+;B�
 1D�)� Unit: (I; I).� Duality: The dual of (A+; A�) is given by (A+; A�)? = (A�; A+) where the unit � : (I; I) �!(A+; A�)
 (A+; A�)? =def �A�;A+ and counit � : (A+; A�)?
 (A+; A�) �! (I; I) =def�A�;A+ :� Internal Homs: As usual, (A+; A�) �� (B+; B�) = (A+; A�)?
 (B+; B�) = (A�
B+; A+
B�). 54

Remark 6.22 We have used a speci�c de�nition for � and � above; however, any other permuta-tions A+
C�
B�
B+ �=�! A+
B�
B+
C� and A�
B+
B�
C+ �=�! A�
C+
B�
B+for � and � respectively will yield the same result for gof due to coherence.Translating the work of [JSV96] in our setting we obtain that G(C) is a kind of \free compactclosure" of C :Proposition 6.23 Let C be a traced symmetric monoidal category� G(C) de�ned as in De�nition 6.21 is a compact closed category. Moreover, FC : C �! G(C)de�ned by FC(A) = (A; I) and FC(f) = f is a full and faithful embedding.� The inclusion of 2-categories CompCl ,! TraMon has a left biadjoint with unit havingcomponent at C given by FC.Following Abramsky [Abr96], we interpret the objects of G(C) in a game-theoretic manner: A+is the type of \moves by Player (the System)" and A� is the type of \moves by Opponent (theEnvironment)". The composition of morphisms in G(C) is the key to Girard's Execution formula,especially for pac-like traces. In [Abr96] it is pointed out that G(Pinj) is essentially the originalGirard formalism, while G(!-CPO) is the data-ow model of GoI given in [AJ94a]. 67 Literature NotesIn the above we have merely touched on the large and varied literature. The journals MathematicalStructures in Computer Science (Camb. Univ. Press) and Theoretical Computer Science (Elsevier)are standard venues for categorical computer science. Two recent graduate texts emphasizingcategorical aspects are J. Mitchell [Mit96] and R. Amadio and P.-L. Curien [AC98]. Mitchell'sbook has an encyclopedic coverage of the major areas and recent results in programming languagetheory. The Amadio-Curien book covers many recent topics in domain theory and lambda calculi,including full abstraction results, foundations of linear logic, and sequentiality.We regret that there are many important topics in categorical computer science which webarely mentioned. We particularly recommend the compendia [PD97, FJP, AGM]. Let us give afew pointers with sample papers:� Operational and Denotational Semantics: See the surveys in the Handbook[AGM]. The clas-sical paper on solutions of domain equations is [SP82]. For some recent directions in domaintheory, see [FiPl96, ReSt97]. For recent categorical aspects of Operational Semantics, see[Pi97, TP96] . Higher-dimensional category theory has also generated considerable theoreticalinterest (e.g. [Ba97, HMP98]). Coalgebraic and coinductive methods are a fundamental tech-nique and have considerable inuence (e.g. see [AbJu94, Pi96a, Mul91, CSp91, JR, Mil89]).� Fibrations and Indexed Category Models This important area arising from categorical logicis fundamental in treating dependent types, System F ;F!; � � � models, and general variable-binding (quanti�er-like) operations, for example \hiding" in certain process calculi. For �bredcategory models of dependent type-theories, see the survey by M. Hofmann [H97a] (cf. also[PowTh97, HJ95, Pi9?, See87]). Indexed category models for Concurrent Constraint LogicProgramming are given in [PSSS, MPSS95] (see also [FRS98] for connections of this latterparadigm to LL).6Added in proof: recent progress on these matters has been achieved in the PhD thesis of Esfan Haghverdi, Dept.of Mathematics, U. Ottawa, Feb. 2000, and in a paper, to appear in the Lambek Festschrift, Math. Structures inComputer Science. See also http://aix1.uottawa.ca/�ehaghver55

� Computational Monads: E. Moggi greatly inuenced programming language semantics andassociated logics using the categorists' notion of monads and comonads [Mac71]. Moggi's ap-proach permits a modular treatment of such important programming features as: exceptions,side-e�ects, non-determinism, resumptions, dynamic allocation, etc, as well as their associ-ated logics [Mo97, Mo91]. Practical uses of monads in functional programming languages arediscussed in P. Wadler ([W92]). More recently, E. Manes ([M98]) showed how to use monadsto implement collection classes in Object-Oriented languages. Alternative category-theoreticperspectives on Moggi's work are in Power and Robinson's [PowRob97].� Concurrency Theory and Categorical Bisimulation: This large and important area is surveyedin Winskel and Nielsen[WN97]. In particular, the fundamental notion of bisimulation via openmaps, is introduced in Joyal, Nielsen, and Winskel [JNW]. Presheaf models for Milner's �-calculus ([Mil93a]) and other concurrent calculi are in [CaWi, CSW]. For categorical workon Milner's recent Action Calculi, see [GaHa, Mil93b, Mil94, P96].� Complexity Theory: Characterizing feasible (e.g. polynomial-time) computation is a majorarea of theoretical computer science (e.g. [Cob64, Cook75]). Typed lambda calculi for feasiblehigher-order computation have recently been the subjects of intense work, e.g. [CoKa, CU93].Versions of linear logic have been developed to analyze the �ne structure of feasible computa-tion ([GSS92, Gi97]). Although there are some known models ([KOS97]), general categoricaltreatments for these versions of LL are not yet known. Recently, M. Hofmann (e.g. [H97a])has analyzed the work of Cook and Urquhart [CU93] as well as giving higher-order extensionsof work of Bellantoni and Cook , using presheaf and sheaf categories.Three volumes [MR97, FJP, GS89] are conferences specializing in applications of categoriesin computer science (note [MR97] is the 7th Biennial such meeting). Similarly, see the biennialmeetings of MFPS (Mathematical Foundations of Programming Semantics){published in eitherSpringer Lecture Notes in Computer Science or the journal Theoretical Computer Science. Thereis currently an electronic website of categorical logic and computer science, HYPATIA.Other books covering categorical aspects of computer science and/or some of the topics coveredhere include[AL91, BW95, Cu93, DiCo95, Gun92, MA86, Tay98]. In categorical logic and prooftheory, we should mention our own book with J. Lambek [LS86] which became popular in theoreticalcomputer science. The category theory book of Freyd and Scedrov [FrSc] is a source book forRepresentation Theorems and categories of relations.References[ACC93] M. Abadi, L. Cardelli, and P.-L. Curien, Formal parametric polymorphism. TheoreticalComp. Science 121 , 1993, pp. 9-58.[Abr93] S. Abramsky, Computational Interpretations of Linear Logic, Theoretical Comp. Science111 , 1993, pp. 3-57.[AbJu94] S. Abramsky and A. Jung, Domain Theory, in [AGM], pp. 1{168.[Abr96] S. Abramsky, Retracing some paths in process algebra, in CONCUR '96, U. Montanariand V. Sassone, eds., Springer Lecture Notes in Computer Science 1119, 1996, pp. 1{17.[Abr97] S. Abramsky. Semantics of Interaction: An Introduction to Game Semantics, in [PD97],pp. 1-31. 56

[ABP97] S. Abramsky, R. Blute, and P. Panangaden, Nuclear and trace ideals in tensored �-categories, preprint, 1997. (To appear in Journal of Pure and Applied Algebra.)[AGM] S. Abramsky, D. Gabbay, T. Maibaum, eds. Handbook of Logic in Computer Science, Vol3, Oxford, 1994.[AGN] S. Abramsky, S. Gay, R. Nagarajan, A Type-Theoretic Approach to Deadlock-Freedom ofAsynchronous Systems, in Theoretical Aspects of Computer Software, TACS'97, M. Abadi,T. Ito Eds. Springer Lecture Notes in Computer Science 1281, 1997.[AHMc98] S. Abramsky, K. Honda, G. McCusker. A fully abstract game semantics for generalreferences, 13th Annual IEEE Symp. on Logic in Computer Science (LICS) , IEEE Press,1998, pp. 334{344.[AJ94a] S. Abramsky and R. Jagadeesan, New Foundations for the Geometry of Interaction, In-formation and Computation 111, Number 1, 1994, pp. 53-119. Preliminary version, in 7thAnnual IEEE Symp. on Logic in Computer Science (LICS) , 1992, IEEE Publications, pp.211-222.[AJ94b] S. Abramsky and R. Jagadeesan, Games and Full Completeness Theorem forMultiplicativeLinear Logic, J. Symbolic Logic, Vol.59, No.2, 1994, pp. 543-574.[AMc98] S. Abramsky and G. McCusker, Full Abstraction for Idealized Algol with Passive Expres-sions. To appear in Theoretical Computer Science.[Abru91] V.M. Abrusci, Phase Semantics and Sequent Calculus for Pure Noncommutative ClassicalLinear Propositional Logic, J. Symbolic Logic Vol. 56, 1991, pp. 1403{1456.[Ali95] M. Alimohamed, A characterization of lambda de�nability in categorical models of implicitpolymorphism, Theoretical Comp. Science 146 , 1995, pp. 5-23.[AHS95] T. Altenkirch, M. Hofmann, T. Streicher, Categorical reconstruction of a reduction-freenormalisation proof, Proc. CTCS '95 Springer Lecture Notes in Computer Science 953, pp.182{199.[AHS96] T. Altenkirch, M. Hofmann, T. Streicher, Reduction- free normalisation for a polymorphicsystem, Proc.of the 11th Annual IEEE Symposium of Logic in Computer Science, 1996, pp.98-106.[AC98] R. M. Amadio, P-L. Curien, Selected Domains and Lambda Calculi, Camb. Univ. Press,1998.[Asp] A. Asperti, Linear Logic, Comonads, and Optimal Reductions, to appear in Fund. Inform-atica.[AL91] A. Asperti and G. Longo. Categories, Types, and Structures. MIT Press, 1991. (Currentlyout of print but publicly available on the Web).[Ba97] J.C. Baez, An Introduction to n-Categories, in Category Theory and Computer Science,CTCS'97, E. Moggi and G. Rosolini Eds., Springer Lecture Notes in Computer Science1290, 1997. 57

[BDER97] P. Baillot, V. Danos, T. Ehrhard, L. Regnier, Believe it or not: AJM games model is amodel of classical linear logic, in 12th Annual IEEE Symp. on Logic in Computer Science(LICS) , 1997, IEEE Press.[B72] E.S. Bainbridge. A Uni�ed Minimal Realization Theory , with Duality. Dissertation, Depart-ment of Computer & Communication Sciences, University of Michigan, 1972.[B75] E.S. Bainbridge, Addressed Machines and Duality, in Category Theory Applied to Compu-tation and Control, E. Manes, Ed., Springer Lecture Notes in Computer Science 25, 1975,pp. 93{98.[B76] E.S. Bainbridge, Feedback and Generalized Logic, Information and Control 31, 1976, pp.75{96.[B77] E.S. Bainbridge, The Fundamental Duality of System Theory, in Systems: Approaches,Theories, Applications, W.E. Hartnett Ed., D. Reidel Publishing Company, 1977, pp. 45{61.[BFSS90] E.S. Bainbridge, P. Freyd , A. Scedrov, and P. J. Scott, Functorial Polymorphism, The-oretical Computer Science 70 (1990), pp. 35{64.[Bar84] H. P. Barendregt. The Lambda Calculus, Studies in Logic, Vol. 103, North- Holland, 1984.[Bar92] H. P. Barendregt, Lambda Calculus with Types,Handbook of Logic in Computer Science,Vol. 2, ed. by S. Abramsky, D. Gabbay, T. Maibaum. Oxford U. Press, 1992.[Barr79] M. Barr, �-Autonomous Categories, Springer Lecture Notes in Mathematics 752 , 1979.[Barr91] M. Barr, �- Autonomous categories and linear logic, Math. Structures in Compter Science1 , 1991, pp. 159{178.[Barr95] M. Barr, Non-symmetric �- autonomous categories, Theoretical Comp. Science 139 139,1995, pp. 115{130.[Barr96] M. Barr, Appendix to [Blu96], 1994.[BW95] M. Barr, C. Wells. Category Theory for Computing Science, second edition, Prentice-Hall,1995.[Bee85] M. Beeson. Foundations of Constructive Mathematics, Springer-Verlag, Berlin, Heidelberg,New York, 1985.[BAC95] R. Bellucci, M. Abadi, P.-L. Curien, A model for Formal Parametric Polymorphism: aPER Interpretation for System R, in Springer Lecture Notes in Computer Science 902,TLCA'95 , 1995, pp. 32-46.[Ben] D.B. Benson, Bialgebras: Some Foundations for Distributed and Concurrent Computation,Fundamenta Informaticae 12, 1989, pp. 427-486.[BBPH] Benton B.N., G. Bierman, V. de Paiva, M. Hyland, Term assignment for intuitionisticlinear logic, M. Bezem and J. F. Groote, eds, Proceedings of the International Conferenceon Typed Lambda Calculi and Applications, Springer Lecture Notes in Computer Science664, 1992, pp. 75{90. 58

[BS91] U. Berger and H. Schwichtenberg, An inverse to the evaluation functional for typed �-calculus,Proc. of the 6th Annual IEEE Symposium of Logic in ComputerScience, 1991, pp.203-211.[BD95] I. Beylin and P. Dybjer, Extracting a proof of coherence for monoidal categories froma proof of normalization for monoids, in: Types for Proofs and Programs, TYPES'95, S.Berardi, M. Coppo Eds., Springer Lecture Notes in Computer Science 1158, 1995.[Bie95] G.M. Bierman, What is a categorical model of intuitionistic linear logic?. In: TLCA'95, M.Dezani-Ciancaglini, G. Plotkin, eds, 1995, pp. 78{93.[Bla92] A. Blass. A game semantics for linear logic. Annals of Pure and Applied Logic, 56, 1992 ,pp. 183-220.[BE93] S.L. Bloom, Z. �Esik. Iteration theories; the equational logic of iterative processes, Berlin,Springer-Verlag, 1993.[BELM] S.L. Bloom, Z. �Esik, A. Labella, E. Manes, Iteration 2-theories: Extended Abstract, inAlgebraic Methodology and Software Technology, AMAST'97, M. Johnson Ed., SpringerLecture Notes in Computer Science 1349, 1997, pp. 30-44.[Blu93] R. Blute, Linear Logic, Coherence and Dinaturality, Theoretical Computer Science 115,1993 , pp. 3- 41.[Blu96] R. Blute, Hopf Algebras and Linear Logic, Math. Structures in Compter Science 6 , 1996,pp. 189-217.[BCS96] Blute, R.F., J.R.B. Cockett, and R.A.G. Seely, ! and ? : Storage as tensorial strength,Math. Structures in Compter Science 6 , 1996, pp. 313{351.[BCST96] R.F. Blute, J.R.B. Cockett, R.A.G. Seely, and T.H. Trimble Natural deduction andcoherence for weakly distributive categories,J. Pure and Applied Algebra 113, 1996, pp.229{296.[BCS97] Blute, R.F., J.R.B. Cockett, and R.A.G. Seely, Categories for computation in context anduni�ed logic,J. Pure and Applied Algebra 116, 1997, pp. 49{98.[BCS98] R. Blute, J.R.B. Cockett, and R.A.G. Seely, Feedback for linearly dictributive categories:traces and �xpoints, preprint, McGill University, 1998.[BS96] R.F. Blute, P.J. Scott, Linear L�auchli Semantics, Annals of Pure and Applied Logic 77,1996, pp.101-142.[BS96b] R.F. Blute, P.J. Scott, A Noncommutative Full Completeness Theorem (ExtendedAb-stract), Electronic Notes in Theoretical Computer Science 3 1996, Elsevier Science B.V.[BS98] R. Blute and P. J. Scott. The Shu�e Hopf Algebra and Noncommutative Full Completeness,J. Symbolic Logic, to appear.[Bor94] F. Borceux. Handbook of Categorical Algebra, Cambridge University Press, 1994.[Brea-T,G] V. Breazu-Tannen and J. Gallier, Polymorphic rewriting conserves algebraic normaliz-ation, Theoretical Comp. Science 83 . 59

[CPS88] a. Carboni, P. Freyd, A. Scedrov, A categorical approach to realizability and polymorphictypes, in Springer Lecture Notes in Computer Science 298 (Proc. 3rd MFPS), pp. 23-42.[C86] Cartmell, J. Generalized Algebraic Theories and Contextual Categories, Annals of Pureand Applied Logic, 32, 1986, pp. 209{243.[CSW] G.L. Cattani, I. Stark, G. Winskel, Presheaf Models for the �-Calculus, in Category Theoryand Computer Science, CTCS'97, E. Moggi and G. Rosolini Eds., Springer Lecture Notesin Computer Science 1290, 1997.[CaWi] G.L. Cattani and G. Winskel, Presheaf Models for Concurrency, in Computer ScienceLogic, CSL'96, D. van Dalen and M. Bezem Eds., Springer Lecture Notes in ComputerScience 1258, 1996.[Cob64] A. Cobham, The intrinsic computational di�culty of functions. Proc. of the 1964 Interna-tions Congress for Logic,Methodology and Philosophy of Science , Y. Bar- Hillel, ed. North-Holland Publishing Co., Amsterdam, 1964, pp. 24-30[Co93] J.R.B. Cockett, Introduction to distributive categories.Math. Structures in Compter Science3 , 1993, pp. 277{308.[CS91] J.R.B. Cockett, R.A.G. Seely, Weakly distributive categories, in J. Pure and Applied Algebra114, 1997, pp. 133-173. (Preliminary version in [FJP], pp. 45{65.)[CS96a] J.R.B. Cockett, R.A.G. Seely, Linearly distributive functors, preprint,McGill University,1996.[CS96b] J.R.B. Cockett, R.A.G. Seely, Proof theory for full intuitionistic linear logic, bilinear lo-gic,and mix categories, Theory and Applications of Categories 3, 1997, pp. 85{131.[CSp91] J.R.B. Cockett, D.L. Spencer, Strong categorical datatypes I, in R.A.G. Seely, ed.,CategoryTheory 1991, Montreal, CMS Conference Proceedings, 13, 1991, pp. 141{169.[Cook75] S. A. Cook, Feasibly constructive proofs and the propositional calculus, in Proc. 7thAnnual ACM Symp. on Theory of Computing , 1975, pp. 83-97.[CoKa] S. A. Cook and B. M. Kapron, Characterizations of the Basic Feasible Functionals ofFiniteType, in: Feasible Mathematics, S. Buss and P. Scott, eds., Birkhauser, pp. 71-96.[CD97] T. Coquand and P. Dybjer, Intuitionistic Model Constructions and Normalization Proofs, Math. Structures in Compter Science 7 , 1997, pp. 75-94.[Coq90] T. Coquand, On the Analogy Between Propositons and Types, in [Hu90], pp. 399-417.[CU93] S. A. Cook and A. Urquhart. Functional interpretations of feasibly constructive arithmetic,Ann.Pure & Applied Logic 63, No. 2, 1993, pp. 103-200.[CoGa] A. Corradini and F. Gadducci, A 2-Categorical Presentation of Term Graph Rewriting, inCategory Theory and Computer Science, CTCS'97, E. Moggi and G. Rosolini Eds., SpringerLecture Notes in Computer Science 1290, 1997.[Cr93] R. Crole. Categories for Types, Cambridge Mathematical Textbooks, 1993.60

[Cu93] D. �Cubri�c, Results in Categorical Proof Theory, Phd thesis, Dept. of Mathematics, McGillUniversity, 1993.[CDS97] D. �Cubri�c, P. Dybjer and P.J.Scott. Normalization and the Yoneda Embedding, Math.Structures in Compter Science 8 , No.2, 1997, pp. 153-192.[Cur93] P-L. Curien. Categorical combinators, sequential algorithms, and functional programming, Pitman 1986 (revised edition, Birkh�auser, 1993).[D90] V. Danos. La logique lin�eaire appliqu�ee �al'�etude de divers processus de normalisation etprincipalement du �-calcul, Th�ese de doctorat, , U. Paris VII, U.F.R. de Math�ematiques,1990.[DR95] V. Danos and L. Regnier, Proof-nets and the Hilbert space, in [GLR], pp. 307{328.[DR89] V. Danos and L. Regnier. The structure of Multiplicatives, Arch. Math. Logic (1989) 28,pp. 181-203.[DJ] N. Dershowitz and J.- P. Jouannaud, Rewrite Systems, Handbook of Theoretical ComputerScience, Chapter 15, North-Holland, 1990.[DiCo95] R. Di Cosmo. Isomorphism of Types:from �-calculus to information retrieval and languagedesign, Birkh�aus r, 1995.[D+93] G. Dowek, et. al. The Coq proof assistant user's guide, version 5.8. Technical Report,INRIA-Rocquencourt, Feb. 1993.[DuRe94] D. Duval and J-C Reynaud, Sketches and computation I: basic de�nitions and staticevaluation, Math. Structures in Compter Science 4 , No. 2, 1994, pp. 185-238.[Dy95] P. Dybjer, Internal Type Theory, in Types for Proofs and Programs, TYPES'95, S. Berardi,M. Coppo Eds., Springer Lecture Notes in Computer Science 1158, 1995.[EK66] S. Eilenberg and G. M Kelly, A generalization of the functorial calculus, J. Algebra 3(1966), 366- 375.[EsLa] Z. �Esik, A. Labella, Equational Properties of Iteration in Algebraically Complete Categories,in MFCS'96, Springer Lecture Notes in Computer Science 1113, 1996.[FRS98] F. Fages, P. Ruet, S. Soliman, Phase Semantics and Veri�cation of Concurrent ConstraintPrograms, in 13th Annual IEEE Symp. on Logic in Computer Science (LICS) , 1998, IEEEPress, pp. 141-152.[FiFrL] S. Finkelstein, P. Freyd, J. Lipton, A new Framework for Declarative Programming, Th.Comp. Science (to appear).[FiPl96] M.P. Fiore, G.D. Plotkin. An Extension of Models of Axiomatic Domain Theory to Modelsof Synthetic Domain Theory, in CSL'96 , Springer Lecture Notes in Computer Science 1258,1996.[Fl96] A. Fleury, Thesis, Th�ese de doctorat, U. Paris VII, U.F.R. de Math�ematiques, 1996.[FR94] A. Fleury, C. R�etor�e, The MIX Rule, Math. Structures in Compter Science 4 , p. 273-285(1994). 61

[FJP] M. P. Fourman, P. T. Johnstone, and A. M. Pitts, eds. Applications of Categories in Com-puter Science, London Math. Soc. Lecture Notes 177, Camb. U. Press, 1992.[Fre92] P. Freyd. Remarks on algebraically compact categories, in [FJP], pp. 95-107.[Fre93] P. Freyd. Structural Polymorphism, Theoretical Comp. Science 115 , 1993, pp. 107-129.[FRRa] P. Freyd, E. Robinson, G. Rosolini. Dinaturality for free, in [FJP], pp. 107-118.[FRRb] P. Freyd, E. Robinson, G. Rosolini, Functorial Parametricity, manuscript.[FrSc] P. Freyd and A. Scedrov. Categories, Allegories, North-Holland, 1990.[Frie73] H. Friedman, Equality between functionals, Logic Colloquium '73, Springer Lecture Notesin Computer Science 453, 1975, pp. 22-37.[GaHa] P. Gardner, M. Hasegawa, Types and Models for Higher-Order Action Calculi, in TACS'97,Springer Lecture Notes in Computer Science 1281, 1997.[Ge85] R. Geroch. Mathematical Physics, University of Chicago Press, 1985.[Gh96] N. Ghani, ��-equality for coproducts. in TLCA '95 Springer Lecture Notes in ComputerScience 902, 1995, pp. 171-185.[Gi71] J-Y. Girard, Une Extension de l'Interpr�etation de G�odel a l'Analyse, et Son Application al'Elimination des Coupures dans l'Analyse et la Th�eorie des Types, in: J. E. Fenstad, ed.Proc. 2nd Scandanavian Logic Symposium , North-Holland, 1971, pp. 63-92.[Gi72] J-Y. Girard, Interpr�etation Fonctionnelle et Elimination des Coupures dans l'Arithm�etiqued'Ordre Sup�erieur. Th�ese de doctorat d'�etat, U. Paris VII, 1972.[Gi86] J-Y. Girard. The System F of Variables Types, Fifteen Years Later, Theoretical Comp.Science 45 , 1986, pp. 159-192.[Gi87] J-Y. Girard, Linear Logic, Theoretical Computer Science, 50, 1987, pp. 1-102[Gi88] J-Y.Girard, Geometry of Interaction I: Interpretation of System F, in: Logic Colloquium '88, ed. R. Ferro, et al. North-Holland, 1989, pp. 221-260.[Gi89] J-Y. Girard, Towards a Geometry of Interaction, in: Categories in Computer Science andLogic, ed. by J.W. Gray and A. Scedrov, Contemp. Math, 92, AMS , 1989, pp. 69-108.[Gi90] J-Y.Girard. Geometry of Interaction 2: Deadlock- free Algorithms. COLOG-88 (P. Martin-Lof, G. Mints, eds.) Springer Lecture Notes in Computer Science 417, 1990, pp. 76-93.[Gi91] J-Y. Girard, A new constructive logic: classical logic. Math. Structures in Compter Science1 , 1991, pp. 255{296.[Gi93] J.-Y. Girard, On the unity of logic, Annals of Pure and Applied Logic 59, 1993, pp. 201{217.[Gi95a] J.-Y. Girard, Linear Logic: its syntax and semantics, in [GLR], pp. 1{42.[Gi95b] J.-Y. Girard, Geometry of Interaction III: Accommodating the Additives, in [GLR], pp.329{389. 62

[Gi96] J.-Y. Girard, Coherent Banach Spaces, preprint, (1996) and lectures delived at Keio Uni-versity, Linear Logic'96, April 1996[Gi97] J.-Y. Girard, Light linear logic, preprint, 1995, (revised 1997). url: ftp://lmd.univ-mrs.fr/pub/girard/ LL.ps.Z[GLR] J.-Y. Girard, Y. Lafont, L. Regnier, eds. Advances in Linear Logic, London Math. Soc.Series 222, Camb. Univ. Press, 1995.[GLT] J.-Y. Girard, Y. Lafont, P.Taylor. Proofs and Types, Cambridge Tracts in Theoretical Com-puter Science 7, 1989.[GSS91] J. Y. Girard, A. Scedrov, P. Scott, Normal Forms and Cut-free Proofs as Natural Trans-formations, in : Logic From Computer Science, Mathematical Science Research InstitutePublications 21, (1991),pp. 217-241. (Also available by anonymous ftp from:theory.doc.ic.acuk, in: papers/Scott).[GSS92] Girard, J.-Y., A. Scedrov, and P.J. Scott Bounded linear logic, Theoretical Comp. Science97 , 1992, pp. 1{66.[Giry] M. Giry A categorical approach to probability theory, in Springer Lecture Notes in Math-ematics 915, Proc. of a Conference on Categorical Aspects of Topology, 1981, pp. 68-85.[GAL92] G. Gonthier, M. Abadi, and J.J. Levy, Linear logic without boxes. In: 7th Annual IEEESymp. on Logic in Computer Science (LICS) , 1992, IEEE Publications, pp. 223-234.[GPS96] R. Gordon, A. Power, and R. Street. Coherence for tricategories, Memoirs of the AmericanMathematical Society, 1996.[GS89] J. Gray and A. Scedrov, eds. Categories in Computer Science and Logic, Contemp. Math92, AMS, 1989.[Gun92] C. Gunter. Semantics of Programming Languages, MIT Press, 1992.[Gun94] C. Gunter, The semantics of types in programming languages, in [AGM], pp. 395-475.[Ha87] T. Hagino. A Typed Lambda Calculus with Categorical Type Constructors, in CategoryTheory and Computer Science, Springer Lecture Notes in Computer Science 283, 1987, pp.140-157.[Har93] T. Hardin, How to get Conuence for Explicit Substitutions, in Term Graph Rewriting,M. Sleep, M. Plasmeijer, M. van Eekelen, eds., Wiley, 1993, pp. 31-45.[HM92] V. Harnik and M. Makkai, Lambek's categorical proof theory and L�auchli's abstract real-izability, J. Symbolic Logic 57, 1992, pp. 200-230.[MHas97] M. Hasegawa. Recursion from Cyclic Sharing : Traced Monoidal Categories and Modelsof Cyclic Lambda Calculi, TLCA '97, Springer Lecture Notes in Computer Science 1210,1997, pp. 196-213.[RHas94] R. Hasegawa, Categorical data types in parametric polymorphism, Math. Structures inCompter Science 4 , no.1, 1994, pp. 71-109.63

[RHas95] R. Hasegawa, A Logical Aspect of Parametric Polymorphism, in Computer Science Logic,CSL'95, H.K. B�uning Ed., Springer Lecture Notes in Computer Science 1092, 1995.[Haz] M. Hazewinkel, Introductory Recommendations for the Study of Hopf Algebras in Mathem-atics and Physics, CWI Quarterly, Centre for Mathematics and Computer Science, Amster-dam Vol. 4,No. 1, March 1991.[HJ95] C. Hermida and B. Jacobs, Fibrations with indeterminates: contextual and functional com-pleteness for polymorphic lambda calculi, Math. Structures in Compter Science 5 , no. 4,pp. 501{532.[HMP98] C. Hermida, M. Makkai, J. Power, Higher dimensional multigraphs, 13th Annual IEEESymp. on Logic in Computer Science (LICS) , IEEE, 1998, pp. 199-206.[Hi80] D. Higgs, Axiomatic In�nite Sums{An Algebraic Approach to Integration Theory, Contem-porary Mathematics, Volume 2, 1980.[HR89] D.A. Higgs and K.A. Rowe. Nuclearity in the category of complete semilattices, J. Pureand Applied Algebra 5, 1989 pp. 67{78.[HPW] T. Hildebrandt, P. Panangaden, G. Winskel, A Relational Model of Non-DeterministicDataow, to appear in: Concur 98, Springer Lecture Notes in Computer Science ?.[HM94] J. Hodas and D. Miller. Logic programming in a fragment of intuitionistic linear logic, Inf.and Computation 110(2), 1994, pp. 327-365.[H97a] M. Hofmann, Syntax and Semantics of Dependent Types, in [PD97], pp. 79-130.[H97b] M. Hofmann, An application of category-theoretic semantics to the characterisation ofcomplexity classes using higher-order function algebras, Bull. Symb. Logic 3 (4), 1997, pp.469-485.[HJ97] H. Hu, A. Joyal Coherence completions of categories and their enriched softness, in S.Brookes and M. Mislove (eds.), Proceedings, Mathematical Foundations of Programming Se-mantics, Thirteenth Annual Conference, Electronic Notes in Theoretical Computer Science6, 1997.[Hu90] G. Huet, editor. Logical Foundations of Functional Programming, Addison-Wesley, 1990.[Hy88] M. Hyland, A small complete category, Ann. Pure and Appl. Logic 40, 1988, pp. 135-165.[Hy97] M. Hyland, Game Semantics, in [PD97], pp. 131-184.[HRR] M. Hyland, E. Robinson, G. Rosolini. The discrete objects in the e�ective topos. Proc.Lond. Math. Soc. 3, 60, 1990, pp. 1-36.[HP93] M. Hyland, V. de Paiva, Full intuitionistic linear logic (Extended Abstract), Annals ofPure and Applied Logic, 64, 3, 1993, pp. 273{291.[JR] B. Jacobs and J. Rutten, A tutorial on (Co)Algebras and (Co)Induction, EATCS Bulletin62 , 1997, pp. 222-259.[J90] C.B. Jay, The structure of free closed categories, J. Pure and Applied Algebra 66, 1990, pp.271{285. 64

[JGh95] C. B. Jay and N. Ghani, The virtues of eta expansion, Journal of Functional Programing,5, no.2, 1995, pp. 135-154.[JNW] A. Joyal, M. Nielsen, and G. Winskel, Bisimulation from open maps, Inf. and Computation,127(2), 1996, pp. 164-185.[JS91b] A. Joyal and R. Street, An introduction to Tannaka duality and quantum groups, in A.Carboni, et. al., eds.,Category Theory, Proceedings, Como 1990, Springer Lecture Notes inMathematics 1488, 1991, pp. 411{492.[JS91] A. Joyal and R. Street, The geometry of tensor calculus I, Advances in Mathematics 88,1991, pp. 55{112.[JS93] A. Joyal and R. Street, Braided tensor categories , Advances in Mathematics 102, no. 11993, pp. 20-79.[JSV96] A. Joyal, R. Street, and D. Verity, Traced monoidal categories, Math. Proc. Camb. Phil.Soc. 119, 1996, pp. 447{468.[JT93] A. Jung and J. Tiuryn, A new characterization of lambda de�nability, in TLCA'93 , SpringerLecture Notes in Computer Science 664, pp. 230-244.[Ka95] M. Kanovich, The direct simulation of Minksky machines in linear logic, in [GLR], pp.123-146.[KOS97] M. Kanovich, M. Okada, and A. Scedrov Phase semantics for light linear logic,in S.Brookes and M. Mislove (eds.), Proceedings, Mathematical Foundations of Programming Se-mantics, Thirteenth Annual Conference, Electronic Notes in Theoretical Computer Science6, 1997.[KSW95] P. Katis, N. Sabadini, and R.F.C. Walters, Bicategories of Processes, Manuscript, 1995.Dept. of Mathematics, U. Sydney.[KSWa] P. Katis, N. Sabadini, and R.F.C. Walters, Span(Graph): A Categorical Algebra of Trans-ition Systems, in AMAST'97, Springer Lecture Notes in Computer Science 1349, 1997.[K77] G. M. Kelly, Many-variable functorial calculus.I, Coherence in Categories Springer LectureNotes in Mathematics 281, 1977, pp. 66-105.[K82] G. M. Kelly. Basic Concepts of Enriched Category Theory, London Math. Soc. Lecture Notes64, Camb. Univ.Press, 1982.[KM71] G. M. Kelly and S. Mac Lane. Coherence in closed categories, J. Pure and Applied Algebra1 (1971), pp. 97-140.[KOPTT] Y. Kinoshita, P. W. O'Hearn, A. J. Power, M. Takeyama, R. D. Tennent. An AxiomaticApproach to Binary Logical Relations with Applications to Data Re�nement, in SpringerLecture Notes in Computer Science 1281, TACS '97, 1997, pp. 191-212.[Ku63] A.G. Kurosh, Direct Decomposition in Algebraic Categories, Amer. Math. Soc. Transl. Ser.2, 27 (1963), pp. 231{255.[Lac95] S.G. Lack. The algebra of distributive and extensive categories. PhD thesis, University ofCambridge,1995. 65

[Laf88] Y. Lafont. Logiques, cat�egories et machines. Th�ese de doctorat, Universit�e Paris VII, U.F.R.de Math�ematiques, 1988.[Laf95] Y. Lafont, From proof nets to interaction nets, in [GLR], pp. 225{247.[L68] J. Lambek, Deductive Systems and Categories I, J. Math. Systems Theory 2, pp. 278-318.[L69] J. Lambek, Deductive systems and categories II,Springer Lecture Notes in Mathematics 87Springer-Verlag, Berlin, Heidelberg, New York, 1969.[L74] J. Lambek, Functional completeness of cartesian catgories. Ann. Math. Logic 6, pp. 259-292.[L88] J. Lambek, On the Unity of algebra and Logic, Springer Lecture Notes in Mathematics1348, Categorical Algebra and its applications, F. Borceux, ed. Springer-Verlag, 1988.[L89] J. Lambek, Multicategories Revisited. Contemp. Math.92, pp. 217-239.[L90] J. Lambek, Logic without structural rules. Manuscript, (Mcgill University), 1990.[L93] J. Lambek, From categorial grammar to bilinear logic, in K. Do�sen and P. Schroeder-Heister,eds., Substructural logics, Studies in Logic and Computation 2, Oxford Science Publications,1993.[L95] J. Lambek, Bilinear Logic in Algebra and Linguistics, in [GLR].[LS86] J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic, CambridgeStudies in Advanced Mathematics 7, Cambridge University Press, 1986.[Lau] H. L�auchli, An Abstract Notion of Realizability for which Intuitionistic Predicate Calculusis Complete, Intuitionism and Proof Theory,North{Holland, 1970, pp. 227-234.[Law66] F. W. Lawvere,The category of categories as a foundation for mathematics. In Proc. Conf.on Categorical Algebra, ed. by S. Eilenberg, et.al., 1965, Sprinter-Verlag.[Law69] F.W. Lawvere, Adjointness in Foundations, Dialectica, 23, pp. 281-296.[Lef63] S. Lefschetz, Algebraic Topology, American Mathematical Society Colloquium Publications27, (1963).[Li95] P. Lincoln, Deciding provability of linear logic formulas, in [GLR] pp. 109-122.[Luo94] Z. Luo. Computation and Reasoning: a Type Theory for Computer Science. Oxford U.Press, 1994.[LP92] Z. Luo and R. Pollack. LEGO Proof Development System: User's Manual. Technical ReportECS-LFCS-92-211, U. Edinburgh, 1992.[MaRey] Q. Ma, J. C. Reynolds. Types, Abstraction, and Parametric Polymorphism, Part 2.Springer Lecture Notes in Computer Science 598, 1991, pp. 1-40.[Mac71] S. Mac Lane. Categories for the Working Mathematician,Springer Graduate Texts inMathematics, Springer-Verlag, 1971.[Mac82] S. Mac Lane, Why commutative diagrams coincide with equivalent proofs, Contemp.Math.13, 1982, pp. 387-401. 66

[MM92] S. Mac Lane, I. Moerdijk. Sheaves in Geometry and Logic, Springer-Verlag Universitext,1992.[MaRe91] P. Malacaria and L. Regnier. Some Results on the Interpretation of �-calculus in Oper-ator Algebras, 6th Annual IEEE Symp. on Logic in Computer Science (LICS) , 1991, IEEEPress, pp. 63-72.[MA86] E. Manes and M. Arbib. Algebraic Approaches to Program Semantics, Springer-Verlag,1986.[M98] E. Manes, Implementing collection classes with monads, Math. Structures in Compter Sci-ence 8 , Number 3, pp. 231-276.[ML73] P. Martin-L�of, An Intuitionistic Theory of Types: Predicative Part, inLogic Colloquium`73, H. E. Rose and J. C. Shepherdson, eds.,North-Holland, 1975, pp. 73-118.[ML82] P. Martin-L�of, Constructive mathematics and computer programming, in Proc. Sixth Inter-national Congress for Logic, Methodology and Philosophy of Science, North-Holland, 1982.[Mc97] G. McCusker, Games and de�nability for FPC. Bull. Symb. Logic 3 3, 1997, pp. 347-362.[MPSS95] N. Mendler, P. Panangaden, P. Scott, R. Seely, The Logical Structure of ConcurrentConstraint Languages. Nordic Journal of Computing 2 , 1995, pp. 181-220.[M�et94] F. M�etayer, Homology of proof nets, Arch. Math Logic33, 1994. (see also [GLR]).[Mill] D. Miller, Linear Logic as Logic Programming: An Abstract, in Logical Aspects of Computa-tional Linguistics, LACL'96 (C. Retor�e Ed.), Lecture Notes in Arti�cial Intelligence 1328,1996.[MNPS] D. Miller, G. Nadathur, F. Pfenning, A. Scedrov. Uniform Proofs as a Foundation forLogic Programming, Ann. Pure and Applied Logic 51, 1991, pp. 125-157.[Mil89] R. Milner. Communication and Concurrency, Prentice-Hall, 1989.[Mil77] R. Milner, Fully abstract models of typed lambda calculi, Theoretical Comp. Science 4 ,1977, pp. 1-22.[Mil93a] R. Milner, The polyadic �- Calculus: a tutorial, in: Logic and Algebra of Speci�cation,eds. F.L Bauer, W. Brauer, and H. Schwichtenberg , Springer-Verlag, 1993.[Mil93b] R. Milner, Action calculi, or concrete action structures, Mathematical Foundations ofComputer Science, Springer Springer Lecture Notes in Computer Science 711, 1993, pp.105{121.[Mil94] R. Milner. Action Calculi V: Reexive Molecular Forms, Manuscript, University of Edin-burgh, June 1994.[Min81] G. E. Mints. Closed Categories and the theory of proofs. J. Soviet Math 15, 1981, pp. 45-62.[Mit96] J. C. Mitchell. Foundations for Programming Languages, MIT Press, 1996.67

[Mit90] J. C. Mitchell, Type Systems for Programming Languages, in: Handbook of TheoreticalComputer Science, Vol.B,(Formal Models and Semantics), J. Van Leeuwen, ed., North-Holland, 1990 pp. 365-458.[MitSce] J. C. Mitchell and A. Scedrov, Notes on Sconing and Relators, in Springer Lecture Notesin Computer Science 702, CSL'92, 1992, pp. 352-378.[MS89] J. C. Mitchell and P. J. Scott, Typed Lambda Models and Cartesian Closed Categories, in[GS89], pp. 301- 316.[MiVi] J.C. Mitchell, R. Visvanathan, E�ective Models of Polymorphism, Subtyping and Recursion(Extended abstract), in Automata, Languages and Programming, ICALP'96, F.M. auf derHeide and B. Monien Eds., Springer Lecture Notes in Computer Science 1099, 1996.[Mo91] E. Moggi, Notions of computation and Monads, Inf. & Computation 931, 1991, pp. 55-92.[Mo97] E. Moggi, Metalanguages and Applications, in [PD97], pp. 185-239.[MR97] E.Moggi, G. Rosolini, eds. 7th International Conference on Category Theory and ComputerScience, Springer Lecture Notes in Computer Science 1290, 1997.[Mul91] P. Mulry, Strong Monads, Algebras, and Fixed Points, in [FJP], pp. 202-216.[OHT92] P. O'Hearn and R. D. Tennent, Semantics of Local Variables, in: Applications of Cat-egories in Computer Science, London Math. Soc. Lecture Series 177, Camb. U. Press, 1992,pp. 217-236.[OHT93] P. O'Hearn and R. D. Tennent, Relational Parametricity and Local Variables, in 20thSymp. on Priniciples of Programming Languages, Assn. Comp. Machinery, 1993, pp. 171-184.[OHRi] P. O'Hearn and J. Riecke. Kripke Logical Relations and PCF, to appear in Informationand Computation.[Ol85] F. J. Oles, Type algebras, functor categories and block structure, in: Algebraic Methods inSemantics, M. Nivat and J. Reynolds, eds., Camb. U. Press, 1985.[PSSS] P. Panangaden, V. Saraswat, P. J. Scott, R. A. G. Seely, A Categorical View of Concur-rent Constraint Programming, Proceedings of REX Workshop, Springer Lecture Notes inComputer Science 666, 1993, pp. 457-476.[PR89] R. Par�e, and L. Rom�an, Monoidal categories with natural numbers object, Studia LogicaXLVIII (1989) 361{376.[P96] D. Pavlovi�c, Categorical logic of names and abstraction in action calculi, Math. Structuresin Compter Science 7 , No. 6, 1997, pp. 619-637.[PaAb] D. Pavlovi�c, S. Abramsky, Specifying Interaction Categories, in CTCS'97 (E. Moggi andG. Rosolini, eds.) , Springer Lecture Notes in Computer Science 1290, 1997.[Pen93] M. Pentus, Lambek Grammars Are Context Free, in 8th Annual IEEE Symp. on Logic inComputer Science (LICS) , Montreal, 1993, pp. 429{433.68

[PDM89] B. Pierce, S. Dietzen, S. Michaylov. Programming in Higher-Order Typed Lambda-Calculi, Reprint CMU-CS-89-111, Dept. of Computer Science, Carnegie-Mellon University,1989.[Pi87] A. Pitts. Polymorphism is set-theoretic,constructi ely, in: Category Theory and ComputerScience, Springer Lecture Notes in Computer Science 283 (D. H. Pitt, ed.), 1987, pp. 12-39.[Pi96a] A. Pitts, Relational Properties of Domains, Inf. and Computation, 127, No. 2, 1996, pp.66-90.[Pi96b] A. Pitts, Reasoning about Local Variables with Operationally-Based Logical Relations, in11th Annual IEEE Symp. on Logic in Computer Science (LICS) , IEEE Press, 1996, pp.152{163.[Pi97] A. Pitts, Operationally-Based Theories of Program Equivalence, in [PD97], pp. 241-298.[Pi9?] A. M. Pitts , Categorical Logic, Handbook of Logic in Computer Science, S. Abramsky, D.M. Gabbay and T. S. E. Maibaum, eds. Oxford University Press, 1996, Vol. 6 (to appear)[PD97] A. Pitts and P. Dybjer, eds. Semantics and Logics of Computation, Publications of theNewton Institute, Camb. Univ. Press, 1997.[Plo77] G. D. Plotkin, LCF Considered as as Programming Language, Theoretical Comp. Science5 , 1977, pp. 223-255.[Plo80] G. D. Plotkin, Lambda de�nability in the full type hierarchy, in To H. B. Curry: Essays onCombinatory Logic, Lambda Calculus, and Formalism, Academic Press, 1980, pp. 363-373.[PlAb93] G. Plotkin, M. Abadi, A Logic for Parametric Polymorphism, in TLCA'93, SpringerLecture Notes in Computer Science 664,1993, pp. 361{375.[Pow89] J. Power, A general coherence result , J. Pure and Applied Algebra 57, 1989, pp. 165-173.[PK96] J. Power and Y. Kinoshita, A new foundation for logic programming, in Extensions of LogicProgramming '96, Springer-Verlag, 1996.[PowRob97] Power, A.J. and E.P. Robinson, Premonoidal categories and notions of computa-tion,Math. Structures in Compter Science 7 , 5, 1997, pp. 453-468.[PowTh97] J. Power, H. Thielecke, Environments, Continuation Semantics and Indexed Categories,in TACS'97, Springer Lecture Notes in Computer Science 1281, 1997, pp. 191-212.[Pra95] V. Pratt, Chu Spaces and their Interpretation as Concurrent Objects, Springer LectureNotes in Computer Science 1000, Computer Science Today, J. van Leeuwen, ed., 1995, pp.392-405.[Pra97] V. Pratt, Towards Full Completeness for the Linear Logic of Chu spaces, Proc. MFPS(MFPS'97), Electronic Notes of Theoretical Computer Science, 1997.[Pr65] D. Prawitz. Natural Deduction , Almquist& Wilksell, Stockhom, 1965.[Rgn92] L. Regnier. Lambda-calcul et r�eseaux. Th�ese de doctorat, U. Paris VII, U.F.R.Math�ematiques,1992. 69

[ReSt97] B. Reus, Th. Streicher, General Synthetic Domain Theory{ A Logical Approach (Exten-ded abstract), in CTCS'97, Springer Lecture Notes in Computer Science 1290, 1997.[Rey74] J. Reynolds, Towards a theory of type structure, Programming Symposium, Springer Lec-ture Notes in Computer Science 19, 1974, pp. 408-425.[Rey81] J. C. Reynolds. The essence of Algol, in: Algorithmic Languages, J. W. de Bakker and J.C. van Vliet, eds., North-Holland, 1981, pp. 345{372.[Rey83] J.C. Reynolds. Types, Abstraction, and Parametric Polymorphism, in: Information Pro-cessing `83 , R.E.A. Mason, ed. North-Holland, 1983, pp. 513-523.[RP] J. Reynolds and G. Plotkin. On Functors Expressible in the Polymorphic Typed LambdaCalculus, Inf. and Computation , reprinted in [Hu90], pp. 127-152.[Rob89] E. Robinson, How complete is PER? 4th Annual IEEE Symp. on Logic in ComputerScience (LICS) , 1989, IEEE Publications, pp. 106-111.[RR90] E. Robinson and G. Rosolini, Polymorphism, Set Theory, and Call-by-Value, 5th AnnualIEEE Symp. on Logic in Computer Science (LICS) ,1990, IEEE Publications, pp. 12-18.[Rom89] L. Roman, Cartesian Categories with Natural Numbers Object, J. Pure and AppliedAlgebra 58, 1989, pp. 267{278.[Ros90] G. Rosolini, About Modest Sets, in Int. J. Found. Comp. Sci 1, 1990, pp. 341-353.[Sc93] A. Scedrov. A Brief Guide to Linear Logic. In: Current Trends in Theoretical ComputerScience, G. Rozenberg and A. Salomaa Eds., World Scienti�c Publishing Co., 1993, pp.377{394.[Sc95] A. Scedrov. Linear Logic and Computation: A Survey, In: Proof and Computation, H.Schwichtenberg Ed., NATO Advanced Science Institutes, Series F, Volume 139, Springer{Verlag, Berlin, 1995, pp. 379{395.[Sc72] D. Scott, Continuous lattices Springer Lecture Notes in Mathematics 274, pp.97-136.[See87] R. A. G. Seely. Categorical Semantics for Higher Order Polymorphic Lambda Calculus. J.Symb. Logic 52, 1987, pp. 969{989.[See89] R.A.G. Seely, Linear logic, �{autonomous categories and cofree coalgebras, in J. Gray andA. Scedrov (eds.), Categories in Computer Science and Logic, Contemporary Mathematics92 (Am. Math. Soc. 1989).[Sie92] K. Sieber, Reasoning about sequential functions via logical relations, in [FJP], pp. 258-269.[Si93] A.K. Simpson A characterization of least-�xed-point operator by dinaturality,TheoreticalComp. Science 118 , 1993, pp. 301{314.[SP82] M. B. Smyth and G. D. Plotkin. The category-theoretic solution of recursive domain equa-tions. SIAM J. Computing 11, 1982, pp. 761-783.[So87] S. Soloviev, On natural transformations of distinguished functors and their superpositionsin certain closed categories, J. Pure and Applied Algebra 47, 1987, pp. 181{204.70

[So95] S. Soloviev, Proof of a S. Mac Lane Conjecture (Extended Abstract), in CTCS'95 SpringerLecture Notes in Computer Science 953, pp. 59-80.[St96] R.F. St�ark, Call-by-Value, Call-by-Name and the Logic of Values, in computer Science Logic,CSL'96, D. van Dalen and M. Bezem Eds., Springer Lecture Notes in Computer Science1258, 1996.[St85] R. Statman, Logical Relations and the Typed Lambda Calculus, Inf. and Control 65, 1985,pp. 85-97.[St96] R. Statman, On Cartesian Monoids, in: CSL'96 , Springer Lecture Notes in ComputerScience 1258, 1996.[ST96] R. Street. Categorical Structures, in Handbook of Algebra, Vol. 1 (Edited by M. Hazewinkel),Elsevier Science B.V., 1996.[Tay98] P. Taylor. Practical Foundations, Camb. U. Press, 1998 (to appear).[Ten94] R. D. Tennent, Denotational Semantics, in [AGM], pp. 169{322.[TP96] D. Turi. G. Plotkin, Towards a Mathematical Operational Semantics, 12th Annual IEEESymp. on Logic in Computer Science (LICS) , 1996, pp. 280-291.[Tr92] A. Troelstra. Lectures on Linear Logic, CSLI Lecture Notes 29 (CSLI 1992).[TrvD88] A. S. Troelstra and D. van Dalen. Constructivism in Mathematics, Vols. I and II. North-Holland, 1988.[W92] P. Wadler, The essence of functional programming, Symp. on Principles of ProgrammingLanguages (POPL'92), ACM Press, pp. 1-14.[W94] P. Wadler, A Syntax for Linear Logic, Springer Lecture Notes in Computer Science 802Springer-Verlag, Berlin, Heidelberg, New York, 1994, pp. 513{528.[WW86] K.Wagner and G. Wechsung. Computational Complexity , D. Reidel, 1986.[W92] R.F.C. Walters. Categories and Computer Science, Camb. U. Press, 1992.[WN97] G. Winskel and M. Nielsen, Categories in Concurrency, in [PD97], pp. 299-354.[Wr89] G. Wraith. A Note on Categorical Datatypes, in Category Theory in Computer Sci-ence,Springer Lecture Notes in Computer Science 389, 1989, pp. 118-127.[Y90] D. Yetter, Quantales and (Noncommutative) Linear Logic, Journal of Symbolic Logic 55,1990, pp. 41-64.
71

