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Chapter 1

Introduction

1.1 Our Intended Audience

These are notes for an introductory course on linear logic, written by non-logicians, and
intended for non-logicians. Specifically, the notes are intended for linguists who would like
to read more about some of the applications that linear logic has found in their field, but
are put off by the logical background required. Most papers on linguistic applications of
linear logic presuppose fairly extensive logical competence. For the average theoretical or
computational linguist, existing texts on linear logic such as [Troelstra] provide a daunt-
ingly technical introduction to this material. Our hope is to provide a more gentle and
accessible introduction, focusing on those aspects of linear logic of most direct linguistic
relevance.

As a prerequisite we assume some (perhaps fading) recollection of a standard introductory
course on Montague semantics. That is, a reasonable familiarity with first-order predicate
calculus, a rudimentary knowledge of the lambda-calculus and type theory, and a basic
idea of what logical inference is about. If you have an intuitive understanding what the
following mean:

Vz. man(z) — mortal(z), man(john) F mortal(john)

Az.see(z, john) (fred) =g see(fred, john)

then you probably meet the prerequisite.

Linguistic applications of linear logic have principally been in the areas of:

e Categorial and type-logical grammar [Moortgat,vanBenthem]|, including work on
parsing categorial grammars [Morrill,Hepple], and the compositional semantics of
categorial grammars [Morrill,Carpenter]

e ‘Glue semantics’, which to a first approximation is a version of categorial semantics
but without an associated categorial grammar [Dalrymple]
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e Resource-based reformulations of other grammatical theories, such as Minimalism
[Retore,Stabler]|, Lexical Functional Grammar [Saraswat,Muskens] and Tree Adjoin-
ing Grammar [Abrusci]

e There have also been applications to such Al issues as the frame problem [White],
which have some linguistic relevance

We reiterate that this course aims at giving the necessary logical background for beginning
to understand the linguistic applications of linear logic. That is, our focus will be slanted
more to logic than to linguistics. Rather than attempt to exhaustively describe all the
linguistic applications listed above, we will single out only two for more sustained descrip-
tion: categorial grammar, and glue semantics. Others will receive much briefer mention.
This approach may alienate a possible secondary audience for these notes, namely linear
logicians who would like to learn something about linguistics. We hope that they will
nonetheless find some things to interest them. But for our primary audience, linguists
who would like to learn something about linear logic, we believe that the logical focus is
likely to target the region of maximum need.

1.2 The Linguistic Appeals of Linear Logic

Linear logic has often been branded as a resource-conscious logic, or a logic of resources.
This has undoubtedly been a major part of its linguistic attraction. Resource usage is
an appealing metaphor for thinking about various linguistic issues. For example, how
a string of words provides a sequence of resources that can be consumed to construct a
syntactic analysis of a sentence. Or how word meanings provide a collection of resources
that can be used to construct the meaning of a sentence. Or how linguistic context can
make certain resources available, such as possible pronoun antecedents, that can be used
to flesh out the interpretations of words like he, she or it. Indeed, it was this view of
linguistic context as a consumable and updatable resource that originally attracted the
present authors to the possible applications of linear logic.

But it would be a mistake to think that linear logic was originally devised for the purpose
of being a logic of resources, in the way that e.g. tense logics were devised to be logics of
time. Much of the initial motivation came from an altogether different direction: the role
of proofs in logic. As Girard puts it [Gir:ssll] “linear logic comes from a proof-theoretic
analysis of usual logic.” To the extent that linear logic is a logic of resources, the resources
in question are premises, assumptions and conclusions as they are used in logical proofs.

In brief, there is a programme to elevate the status of proofs to first class logical objects:
instead of asking ‘when is a formula A true’, we ask ‘what is a proof of A?’. Follow-
ing Frege’s distinction between sense and denotation, proofs are to constitute the senses
of logical formulas, whose denotations might be truth values. But there is a problem
with viewing proofs as logical objects. We do not have direct access to proofs, only to
syntactic representations of them, in the form of derivations in some proof system (e.g. ax-
iomatic, natural deduction or sequent calculus). As current proof theory stands, syntactic
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derivations are a flawed means of accessing the underlying proof objects. The syntax can
introduce spurious differences between derivations that do not correspond to differences
in the underlying proofs; it can also mask differences that really are there.

Some of the impetus behind the development of linear logic was to look more closely at
proofs, and to obtain a more satisfactory way of describing the underlying proof objects.
Indeed, one of the outcomes of linear logic is a new way of representing derivations, proof
nets, that supposedly more accurately reflect the structure of underlying proofs.

It is not immediately obvious, perhaps, that this focus on proofs gives linear logic further
linguistic appeal. But it does. We will point to just one example (which we expand on
below): parsing as deduction. Under this view, parsing a sentence amounts to performing
a logical proof in a system where the words of the sentence provide the premises, and the
grammar the rules of inference. The parse tree of the sentence corresponds to the proof
tree of the derivation. Moreover, this parse/proof tree is an object semantic significance:
it can be used to construct the meaning of this sentence. From this perspective, it is
natural to take proofs as first class objects, and to want to distinguish underlying proofs
from the idiosyncracies of a particular way of representing derivations.

1.3 Resource Counting

In traditional logics formulas denote truths or facts. These facts may be used as little or
as often as one likes. Take some simple facts about integers

5>4, 4>3
1>0, 2>0
Vi, j, k. (1 >0 A j>k) = (ix7)>(xk)

From these facts we can readily conclude, amongst other things, that
(Ix5)>(1x4) AN (2x5)>(2x4)

Reaching this conclusion makes one use apiece of the facts that 1 > 0 and 2 > 0, and
two uses apiece of 5 > 4 and the universally quantified fact. It makes no use at all of
the fact that 4 > 3. The truth of 5 > 4 does not wear out with repeated use: it remains
just as true however many times we make use of it. Likewise, the truth of 4 > 3 does not
diminish into falsehood through lack of use: it remains just as true however few times we
make use of it.

In linear logic formulas denote resources. Resources, unlike truths, get used up. A stock
example of resource consumption is: (a) a packet of Gauloises costs 20FF, (b) a packet of
Gitanes costs 20FF, therefore (c) if I have (a resource of) 20FF T can either buy a packet
of Gauloises, or buy a packet of Gitanes, but not both.

Resource usage occurs in natural language at a very fundamental level. To a first approx-
imation, each word and phrase in sentence is a resource that must get used exactly once
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in building a sentence. If a word needs to be used twice in building a sentence, it will
occur in it twice!. And if a word is not to be used in building a sentence, it should not
occur in it.

As a more concrete example, consider an ambiguous sentence like
John saw a man with a telescope.

where the prepositional phrase (PP) “with a telescope” can either modify the noun phrase
(NP) “a man” (so that the man has the telescope), or the verb phrase (VP) “it saw a
man” (so that John is looking through the telescope). We can picture this state of affairs
as follows

S
/\ - Tz
N‘P VP<«----~7"""~ _ -~ PP
//// /\
John 'V NP<«--"~ P NP
| | P
saw a man with a telescope

Here we have the phrase “with a telescope”, which can attach either to an adjacent VP or
to an adjacent NP. The crucial point is that it has to be one or the other, but not both.
If the PP attaches to the NP, it gets used up and cannot be used a second time to attach
to the VP; and vice versa. The sentence cannot be interpreted as saying that John looked
through a telescope and saw a man holding a telescope.

As a slightly more formal illustration of the resource differences between traditional and
linear logic, we can compare some valid and invalid patterns of inference. We will use the
symbols — and A for traditional implication and conjunction, and — and ® for linear
implication and (multiplicative) conjunction.

First, premises get consumed in linear logic in a way that they don’t in traditional logic:

Traditional implication: A, A —- B + B

AA—- B+ AAB A is still true
Linear implication: A/A—oBFB
AA—oBIA®B A is used up

In combining the two premises A and A —o B to derive B, both the premises are used up.
This means that there is no longer an A (nor an A —o B) around to be conjoined with
the B. But in traditional logic, both premises are still available for re-use.

Unlike traditional logic, premises can’t be ignored in linear logic

!Coordination is an exception to this crudely stated generalization. The sentence “John ate and drank”
bears an equivalence to “John ate and John drank”, where the word “John” occurs and is used twice. It
is these occasional violations of a uniform ‘use-exactly-once’ regime that lends linear logic much of its
interest. Linear logic, as we will see, permits quite fine-grained control over regimes for resource usage.
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Traditional conjunction: AAB + A Can ignore B
Linear conjunction: ARQB I A Have to use up B

In linear logic, if you have an A and a B resource, you cannot just throw one of them
away; to get rid of it, you have to use it up. In traditional logic, you can always choose
to ignore some truths.

We will meet further linear logic connectives besides —o and ® shortly, though the
logical fragment defined by just these two is already of considerable linguistic importance.
But one other connective that is worth mentioning early is the exponential or modality
! (variously pronounced: ‘bang’, ‘pling’, ‘shriek’, or ‘of course’). The modality allows
repeated use or discarding of any formula/resource to which it applies

Of course: '4A F AR!'A Re-use
(A)®@ B + B Discard

Judicious use of this modality allows finer-grained control over resource sensitivity. At
one extreme, by banging every formula you get traditional, non-resource sensitive logic.

1.4 Proofs as Objects

1.4.1 Structural Rules and Premise Counting

Linear logic, and its inherent resource sensitivity, arises from from consideration of the
way that premises are used in proofs?. Traditionally, proofs are from (sub)sets of premises.
The identity of a set is not changed if elements in it are repeated: hence premises can
be re-used. If a conclusion follows from a certain set of premises, further premises can
be added without invalidating the conclusion. Likewise, premises not used in a proof can
safely be removed: premises can be spirited out of thin air, and discarded in the same
way. Finally, the order of the premises in the set is immaterial to the identity of the set.

These observations about sets of premises point two three structural rules of inference at
work in traditional logic. The first is contraction®:

T,A, AF B
I,AF B

contraction

This says that if B follows from I' plus two uses of A, it follows from I' plus a single
occurrence of A. We can always duplicate the A to get the second occurrence.

The second structural rule is weakening;:

*Because of this it has recently been argued [Pym] that linear logic is a fairly impoverished logic of
resources. It works well for premise counting, but not so well for more naturally occurring, divisible
resources like time or money. Whatever the merits of this argument, the kind of resource sensitivity
corresponding to premise counting is linguistically the most useful.

3For now, we are being fairly informal and sloppy in the way we present these rules, and the intuitive
explanations are more important. More rigour will ensue when we discuss proof systems properly.
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T+ B
T, A+ B

weakening

This says that if B follows from I', it does no harm to expand, stretch or weaken the set
of premises to include A.

The third structural rule is exchange:

T,A BFC

—— exchange
B, A C

This says that the order in which the premises are presented does not matter.

Linear logic results from dropping the rules of contraction and weakening, so that premise
counting becomes important. Rather than (sub)sets of premises, linear logic operates on
multisets of premises. Dropping the two structural rules leads directly to the need to
define new linear connectives, though we will defer discussion of this until a later chapter.

Linear logic preserves the rule of exchange however, so that premise order remains unim-
portant. For grammatical applications, premise order often corresponds to word order in
a sentence, and is very important. Non-commutative linear logics result from modifying
the exchange rule to account for order phenomena.

1.4.2 Proof Structures

The development of linear logic was also, in part, motivated by a deep interest in the
structure of proofs. A major branch of proof theory is concerned not with just establishing
whether a conclusion follows from its premises, but with the form any such proof takes.
Independent of it specific application to linear logic, this concern with proof structure is of
major significance to linguists; it should be particularly familiar to those operating within
the paradigm of ‘parsing as deduction’. We will therefore spend some time introducing
the basic ideas for traditional (i.e. non-linear) logic, before briefly bringing the discussion
back to linear logic.

Parsing as Deduction A version of (context free) parsing as deduction holds that
grammar rules like

S = NP VP
VP = V NP
PP = P NP
NP = NP PP
VP = VP PP
NP = Det N

should be regarded as logical implications in reverse; for example the existence of an
adjacent Noun Phrase and Verb Phrase implies the existence of a Sentence spanning
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them both. Marking parameterized string positions (i, j, k) on the rules, we can rewrite
them as logical implications

WNP; A VP, — iSk

iVj A ]’VPk — VP,
iPj A jNPp — PPy
1NPJ A ]PPk — ;NP
iVP; AN PP — VP
iDet; A jNg — NPy

The first rule says that an NP from position ¢ — 5 and a VP from position j — k implies
a sentence from position ¢ — k. A sentence like “John saw a man with a telescope” gives
rise to a set of lexical premises

oNP1, 1Va, 9Dets, ..., N7
John saw a ... telescope

Letting I' be the lexical premises plus the grammar rules, parsing becomes a search for a
proof that I' - (S7. What is interesting is not that ¢S7 follows from I' so much as there
are two quite different ways of proving it. These two proofs correspond to the readings
where (i) the PP “with a telescope” attaches to the NP “a man”, and (ii) the PP attaches
to the VP “saw a man”?. The bald statement that (S; follows from I' does not reveal
the existence of the two parses. Studying the structures of the proofs, on the other hand,
does reveal the number of parses. Moreover, these differences in proof structure give rise
to differences in meaning when we come to apply some form of compositional semantic
interpretation.

More generally, for parsing as deduction proof structures are syntactic structures. A

phrase structure tree can be viewed as a proof tree (though by convention, logicians write
their proof trees upside down). For example

S

A

NP VP Det N
— DetAN— NP

| T~ v NP

John V /NP\ = NP T VANP—SVP
saw Det N f NPAVP—S
a‘, m‘an

4The alert reader will have realized that without any restriction on resource usage there is a third proof:
where the PP attaches to both the NP and the VP. Implementations of parsing as deduction, such as Direct
Clause Grammars [?77?], usually include implicit resource control in the inference engine to prevent this.
Using linear logic makes resource issues explicit in the (logicized) grammar, rather than implicit in its
interpreter.



CHAPTER 1. INTRODUCTION 11

Furthermore, these structures carry semantically relevant information. In fact, proof
structures have a non-trivial semantics, expressible by means of the lambda-calculus. This
is not without significance for linguists working on the semantics of natural language.

The Semantics of Proofs — the Curry-Howard Isomorphism: Within proof
theory, the ‘semantics’ of proof structures is a topic of major interest. It turns out that
superficially distinct proofs can sometimes be semantically equivalent. These distinct but
equivalent proofs can often be grouped together into an equivalence class, identifiable by
a canonical form of the proof. Purely syntactic operations on any non-canonical proof,
such as cut-elimination or proof normalization, can convert it to the canonical form. At a
semantic level, these conversions amount to performing various types of lambda-reduction
on the semantics of the proofs.

Although we will discuss the intimate connection between proofs, type-theory and the
lambda calculus in more detail in chapter 2, a preliminary illustration is in order. Consider
the standard natural deduction elimination and introduction rules for implication:

AT

5 B
A— B

—>I,’i

The elimination rule —¢ is just modus ponens, from A and A — B, conclude B. The
introduction rule —7 is read as follows. Assume that A, and label this assumption ¢ for
book-keeping purposes. Suppose that from the assumption A plus some other premises,
you can prove B. Then you can discharge the assumption of A to instead conclude that
if you were given A as a real premise you could derive B; i.e. conclude A — B. The
box around the assumption marks it as discharged, and the index on the introduction
rule shows which assumption is being discharged. The conclusion A — B is no longer
depedendent on the assumption A’ in the way that the intermediate conclusion B is.

Both of these standard inference rules can be paired with semantic operations on (proof)
terms:
[z : A]i
f:A—B a:A
@) B f) B
Ax.f(z): A— B

I,

We should think about the rule for modus ponens | —¢ as follows: An implication A — B
can be regarded as a function that takes things of type A and returns things of type B.
Let us call the function f, and note that it will have a type A — B. Suppose that we
have an object a of type A. Applying the function f to it will give us an object f(a),
which has type B. Or put another way, the semantics of modus ponens correspdonds to
the functional application of the implication to its (antecedent) argument.
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The rule for implication introduction, —s7, corresponds to lambda-abstraction. Assuming
some arbitrary = of type A, let us suppose we can construct some object f(z) of type B.
Then we can abstract over the arbitrary x to create a function Az.f(z) that can take any
object of type A as an argument, and return an object of type B. That is, the function
Az.f(z) has type A — B.

The pairing of proof rules with (A-calculus) operations on proof terms is known as the
Curry-Howard Isomorphism® The term labelling each formula can be seen as a description
of how the formula is derived /proved. (Premises are usually labelled with arbitrary atomic
terms). Conversely, the formula, can be seen as giving the logical type of the proof.

Lambda-equivalences between proof terms can be used to show when two superficially
distinct proofs are essentially the same. As an example here are two proofs that from
A and A — B you can conclude B. The first proof (1a) is sensible, the second (1b) is
pointlessly complicated:

A— B A
[A]" A— B
B e
b' _>Iai
A A— B
B e

By considering proof terms we can show that the second, more complex derivation is an
uninteresting variant of the first:

@ a f:A—B a:A_)
' fla): B ¢
[z : A] f:A—>B
£
b f@:B
. —I5
a:A Me.f(z): A— B
—¢

(.f(2))(a) : B

Given the standard lambda-calculus rules of - and 7-conversion® note how the proof

®The isomorphism does not hold for all logics, and it does not hold for styles of proof system. The
original version of the isomorphism was discovered for intuitionistic (as opposed to classical) logic, and for
a natural deduction (as opposed to axiomatic) proof system.

®These rules are:

e [-conversion (lambda-reduction): (Az.¢)(a) = ¢[a/z]
where ¢[a/z] indicates substitution of z by a in ¢

e p-conversion (extensionality): Az.¢(z) = ¢
provided that x does not occur in ¢
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terms for (2a) and (2b) are equivalent,

fla) = (Az.f(z))(a)

indicating a semantic equivalence between the two derivations. Chapter 2 describes oper-
ations of proof normalization, corresponding to 8- and n-conversion of proof terms, that
reduce derivations to their simplest canonical form. These show, for example, that (1a)
is the normal-form version of derivation (1b).

To sum up, proofs structures are interesting in part because they have non-trivial identity
criteria. In well-behaved logical systems, superificially distinct proofs can be mapped
onto a common, canonical form. Moreover, terms can be assigned to formulas in a proof,
embuing the proof with some form of semantics. Proof normalization operations are
meaning-preserving with regard to proofs. The relevance of this for linguists is two-
fold. If proof trees can correspond to parse trees, the existence of canonical form proofs
suggests ways of limiting one’s search for parse trees. Second, the semantics of proofs
gives a handle on the semantics of parse trees. That is, the Curry-Howard Isomorphism
can be a major tool for natural language semantics. This is indeed precisely the trick
employed by categorial grammar as well as by glue semantics.

Linear Logic & Semantically Equivalent Proofs: Our discussion of the Curry-
Howard Isomorphism, with its semantic identities between prooofs, has not touched on
linear logic. However, as mentioned in section ??, the structure and identity criteria for
proofs is a major theme lying behind much work on linear logic. Not only can versions of
the Curry-Howard Isomorphism be extended to linear logic, but new ways of representing
certain types of proof are available — proof nets.

1.5 A Rough Guide to the Linear Connectives

In this section we give an informal introduction to the connectives and constants of linear
logic, in the hope of providing the reader with an intuitive feel for their meanings. This
task is not as easy as we would have liked. Some of the connectives and constants of linear
logic are peculiarly resistant to informal explanation. Where this is the case, we will refer
the reader to chapter 3 for explanation, and not attempt it here. It should be borne in
mind that the explanations given here are meant to be highly informal, and solely for the
purpose of providing the reader with some initial familiarisation.

One of the most immediately striking things about linear logic is that it has two forms
of conjunction (® and &) and two forms of disjunction ( ® and @). To go with these,
it also has two forms of true (T and 1), and two forms of false (L and 0). Fortunately,
there is just one form of implication, so we will start with this:

e Linear implication: —o
A —o B means that can consume an A resource to produce a B resource.
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e Negation: .-

A+ roughly speaking stands for something that will consume an A resource. Re-
sources come paired, a little like matter and anti-matter. A production A meets
with a consumption A+ to leave nothing at all. Negation of a consumer gives rise
to a producer, and vice versa, so that A1 = A.

e Tensor (multiplicative conjunction): ®
A ® B means that your resources make both A and B available. If you have a
resource A @ B, you can recover both A and B simultaneously.

e Par (multiplicative disjunction): 2
This is one of the connectives that is hardest to explain. One way of looking at it
is merely to note that A —o B can be defined as A+ ® B. That is either you have
something that is looking to consume an A resource, or you produce a B resource.
One can try to paraphrase A 8 B as ‘if you don’t have an A then you have a B,
and vice versa.’

e With (additive conjunction): &

A& B means that your resources can make A available, and they can make B avail-
able, but not both simultaneously. In terms of proofs, your premises allow a proof
establishing A, and they also allow a (separate) proof establishing B. But because
proofs consume premises, you cannot put both of these proofs together using just
the one set of premises.

This is also sometimes known as internal choice: we can decide whether to obtain
A or to obtain B.

e Plus (additive disjunction): &
A @ B means your resources make either A or B available, but you don’t know
which.
This is also sometimes known as external choice

e Of course: !
1A means that you can produce as many copies of the A resource as you like, in-
cluding zero copies.

e Why not: 7
7A means that you can consume as many copies of the A resource as you like,
including zero copies.

e Unit: 1
This is the identity for tensor, so that (A® 1) = A. Unit is the trivial resource that
can be produced from nothing. Another way of putting this is that if a collection of
resources produces 1 (and nothing else), then we can consume / throw away that
collection of resources

e Top: T
This is the identity for with, so that (A&T) = A. Top consumes all resources
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e Imposibility: 0
This is the identity for plus, so that (A @ 0) = A. It corresonds to the impossible
resource, so that an external choice between A and 0 must always result in A. Note
also that 0 = T+, Since T consumes all resources, 0 produces all resources. In this
respect, it is like logical falsehood, from which all possible conclusions follow.

e Bottom: L
This is the identity for par, so that (A 8 1) = A. It is also the dual of 1, so that
1t=1

This is a large collection of connectives. The reader will be cheered to know that for
linguistic purposes implication and tensor are by far and away the most significant.

It seems to have become a tradition to illustrate the meanings of some of the connectives
in relation to the interpretation of a fixed price menu at a restaurant. Not wishing to
break the tradition:

Menu: £5 (PR P®P®PQ®P)
—o
Fish [Fish
029
Chips Chips
029
Soup or Salad (Soup&Salad)
029
Fruit or cheese (F'ruit & Cheese)
(depending on availability)
02y
Coffee Cof fee
(free refills) ICof fee]

Here we begin with five one pound resources (P). Note how & is used to mark the
choice over which we have control (soup or salad), whereas @ is used to mark the choice
over which the restaurant has control (fruit or cheese). The implication could also be
represented as

(PR PRP®P®P) 8 [Fish®...®!Cof fee]

This says that either we are left with something that wants to consume five pounds, or
we are left with the meal.



Chapter 2

Basic Proof Theory

This chapter reviews some basic aspects of proof theory, but does not touch on linear logic.
It is here to set the scene for the next chapter, which gives a more formal introduction to
linear logic, along with some of its proof theoretic motivations.

There are three main ways of formulating proof systems for logics: axiomatic, natural
deduction, and sequent calculus. We will have little to say about axiomatic systems. We
will focus mostly on proof systems for propositional logic, and will distinguish between
classical and intuitionistic logics. We will also talk about the ways in which proofs can be
normalized to canonical forms, and the Curry-Howard isomorphism.

2.1 Natural Deduction

Natural deduction proof systems are characterised by giving paired inference rules for
logical connectives: an introduction rule showing how to introduce an instance of the
connective into a derivation, and an elimination rule showing how to remove an instance
of the connective from a derivation. Natural deduction was originally devised to try and
reflect typical practice in carrying out logical proofs. Moreover, the introduction and
elimination rules lend themselves to an intuitive understanding of the meaning and use of
the connectives they define.

2.1.1 ND for Classical Propositional Logic

Conjunction As a first illustration of natural deduction proof rules, let us consider the
case of conjunction. Intuitively, the introduction rule should behave as follows. Suppose,
in the course of a proof, you have derived A and you have also derived B. Then you
should be able to put these two sub-derivations together to derive A A B.

We can represent this pattern as

16
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A B
AAB

The dots above A and B represent derivations resulting in A and B. We will generally
omit these dots in what follows, giving the rule of “And-Introduction”, Az

A B
ANB

Nz

To eliminate a conjunction A A B, we can choose to drop either one of the conjuncts. This
gives rise to two mirror image elimination rules

ANB ANB
Ne
A B

Ne

Implication The elimination rule for implication is familiar as modus ponens

A A— B
B

—E

The rule for introducing an implication A — B is slightly more involved. Intuitively, it
works as follows. Assume, for the sake of argument, that A holds. Suppose that from this
assumption, plus whatever other premises you have, that you can conclude B. Then you
can discharge the assumption A to conclude that “if A were to hold, then B would hold.”
The formal rule is:

(A
B
A— B

—Z,i

There are a few things to note about this rule. First, we use
A
B

to represent a derivation of B starting from A plus any other premises available. Second,
we use an (arbitrary) index 7 to identify the assumption of A. This is shown as a super-
script on the assumption, and also alongside the —7 rule that discharges the assumption.
Finally, the assumption is enclosed in square brackets to show that it has been discharged
by the —7,; rule (an alternative is to draw a slash through the discharged assumption).

Here is an example derivation to illustrate how these rules work
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Al [BP?
(ANB) = C ANB
C
B—C
A= (B—C)

—E

—I.2

—7,1
This derivation shows that A — (B — C) can be derived from (AA B) — C.

Notes on Discharging Assumptions:

1. A premise, like (A A B) — C in the derivation above, is simply an assumption that
is not discharged. To avoid clutter, we do not index such undischarged assumptions.

2. Multiple assumptions (of the same formula) are allowed to have the same index.
The elimination rule for the index discharges all of these assumptions. Here is an
example of a derivation with multiple occurrences of an assumption

[AA B!
— A
A= (B—0) A ° [AAB)
- — N\¢
B—C B
c e
7%
(ANB) 5 C

3. It is also possible to discharge non-eristent assumptions. For example

[A)!
B— A
A— (B— A

—I.2

—7T,1

Note that this is also a derivation with no premises / undischarged assumptions.
The conclusion, A — (B — A) is therefore a theorem of the logic

Disjunction There are two mirror image rules for introducing a disjunction (just as
there are for eliminating a conjunction)

A A
Vg
AV B BV A

Vg

This allows us to introduce an arbitrary disjunct, B, so long as we know that A holds.

The elimination rule is cumbersome (Girard sometimes describes it as the “shame of
natural deduction”). To eliminate A V B, we know that one or other of A and B hold
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(and possibly both), but we don’t know which. We can replace AV B by C if C follows
from A and C also follows from B. That is, whichever one of A or B turns out to be
the one that holds, we can be sure that C is derivable. This is sometimes known as
‘proof-by-cases’. The rule is:

4] (BY
AV B C c
o Veij

Another unpleasant feature of this rule that the conclusion, C, is a formula that has
nothing to do with the formula being eliminated A V B. The conclusion is sometimes
referred to as a parasitic formula.

Negation There are a number of different ways of handling negation. In fact, the
difference between classical and intuitionistic logic can be captured through the treatment
of negation.

The most compact treatment of negation is to introduce a constant L (pronounced fal-
sum), which represents falsity. We can then define negation as implication into falsity:

~ALas
We then have just one inference rule, known as reductio ad absurdum
[A— 1]

1
~ RAA;
A

A notational alternative to introduce negation as a primitive connective, whose introduc-
tion and elimination rules are simply instances of —¢ and —7 for A — L

: A -A
1 L e

The rule of reductio ad absurdum could then be reformulated as
[-A]’

1
~ RAA,
A
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Introduction Elimination
[A)
. A A— B
B B e
_>I,z
A— B
A B AANB ANB
N N N
ANB a4 c B
[l By
A A :
Avs '’ Bva'” AV B ¢ ¢
Vei,j
C
[A]'
: A -A
1 n ¢
— 7,
[-A)
L
— RAA;
A

Figure 2.1: Natural Deduction for Classical Propositional Logic

A Note on | The constant L is a unit for disjunction. That is
Avli=A

There is also another unit, T (or verum) for conjunction, such that
ANT=A

These units can be likened to zero and one in arithmetic, where N+0 = N and N x1 = N.

Summary The natural deduction system for classical propositional logic is summarised
in figure 2.1.
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Introduction Elimination
[A)
. A A— B
B B e
_>I,z
A— B
A B ANB ANB
N N N
ANB a4 c B
[l By
A A :
Avs '’ Bva'” AV B ¢ ¢
Vei,j
C
[A]'
: A -A
1 n ¢
— 7,
1
i

Figure 2.2: Natural Deduction for Intuitionistic Propositional Logic

2.1.2 ND for Intuitionistic Propositional Logic

The natural deduction system for intuitionistic propositional logic may be obtained by a
slight variation on the system for classical logic. Remove the rule of reductio ad absurdum,
and replace it by:

1

— 1

A
(an instance of RAA where a null assumption is discharged). The full system is shown in
figure 2.2. Behind this apparently small change lies a wealth of difference.

Double Negation and the Excluded Middle First, note that the rule l¢ is in
fact a special case of the reductio ad absurdum rule for classical logic, where only a null
assumption may be discharged. This means that intuitionistic logic proves fewer theorems
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than classical logic. In particular, the following two classical proofs rely on RAA and are
not intuitionistically valid:

Proof of -——4 — A

=AY [RA]P
1 -
- RAA,
A4
Proof of AV —A
[A]?
\Y
[(AV-4) = 10 Av-4
1 e
— T2
Vg
AV -A [(AV-A) — 1]
—E
RAA,
Av-A

The non-equivalence of A and ——A' and the non-validity of A V —=A are two of the
hallmarks of intuitionistic logic, and illustrate its constructive nature.

Constructivism demands that whenever we show that something holds, we give an exam-
ple. Thus, to show that there are prime numbers below 10, we should provide an example
(e.g. 3) alongside a proof that the example is prime.

The entailment ——A — A does not lend itself to constructive examples. The fact that we
have a proof that we cannot prove —=A does not immediately tell us what a positive proof
of A would look like. This is even more apparent with the ‘law of the excluded middle’
AV —A. Since this can apply to any A whatsoever, it can tell us nothing about what a
proof of a particular A (or —A) would look like.

As an example [Dalen] consider whether the decimal expansion of 7 contains nine 9s in a
sequence. Classically, either it does or it doesn’t. But this classically true statement gives
us no clue as to how to begin establishing the matter one way or the other.

The Brouwer-Heyting-Kolmogorov (BHK) Interpretation Intuitionistic propo-
sitional logic cannot be given a truth table semantics in the way that classical logic can.
However, it can be given a (constructive) semantics in terms of proofs that is not readily
open to classical logic. This is the Brouwer-Heyting-Kolmogorov (BHK) Interpretation.

!Note that A — ~—A is intuitionistically valid, even though ~—A — A is not.
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Suppose that each atomic formula ¢ is paired with the proof @ that it holds (this might
just be the bare fact that ¢). The proof @) gives the meaning of q. We now construct the
proofs / meanings of complex formulas as follows

e P is a proof of ¢ A1) iff P = (P, P,) where P; is a proof of ¢ and P, is a proof of 9

e Pisa proof of ¢ V1 iff P = (LR, P;) such that either LR =0 and P; is a proof of
¢ or LR=1 and P, is a proof of 1.

(That is P is a proof either of ¢ or 1), plus an indication of which one it is a proof
of.)

e P is a proof of ¢ — 1 iff P is a construction / function that converts each proof P;
of ¢ into a proof P(P;) of 1.

Nothing is a proof of L.

It is natural to ask why a similar interpretation cannot be given for classical logic. To see
why not, we should consider the differences between the classical rule of RAA, and the
intuitionistic rule of 1¢

(A
. .

1L
1 _
— RAA; A
A

The rule of L elimination is in some sense an inferential dead-end?. As soon as one
derives L, one should give up that part of the derivation. If you're feeling perverse, you
can extend the non-proof of | into the same non-proof of A. But if you use this derivation
of A any further, it will turn anything else it touches into a non-proof.

The situation is very different with reductio ad absurdum. The whole point there is to
transform the non-proof of L from —A into a proof of A that can safely be used elsewhere.
A difficulty that must be overcome in providing a BHK-style interpretation for classical
logic is what the proof of A should look like. At the very least, it needs to take a non-proof
and transform it into a proof. But we are in trouble if we take the (fairly reasonable)
stance of identifying all non-proofs, in the same way that all empty sets, or all instances
of the truth value false are identified. For then, we cannot distinguish between a RAA
proof of A and B.

As we will see when discussing the Curry-Howard Isomorphism, the BHK interpretation is
closely related to the fact that one can naturally associate lambda-terms with intuitionistic
formulas, but not with classical formulas.?

Indeed, minimal logic does without the inference rule altogether; it is just the classical/intuitionsitic
rules for A,V,— and —, but without either RAA or |¢.

3There has been recent work on attempting to give a Curry-Howard Isomorphism for classical logic
[[Parigot]]. The point is that it is much harder to do this for classical logic than intuitionistic logic.
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Symmetry in Natural Deduction Intuitionistic logic also leads to a more symmetric
natural deduction system. Recall that we said that natural deduction is characterised by
paired introduction and elimination rules for connectives. The observent reader will have
notice that the rule for RAA is not paired with anything other rule. And depending on
the notational convention used, it either eliminates a negation (—) or implication (—).
That is, classical logic breaks the symmetry of natural deduction.

The symmetry is not broken by the rule L¢. Rather than define a connective, this rule
defines a constant. For constants, one expects to see either an elimination rule, or an
introduction rule, but not both. (In fact, the constant | has a dual T with the introduction
rule

_TI
T

Adding this rule does nothing to extend the power of intuitionistic (or classical) logic). As
a consequence, the introduction and elimination rules for the connectives in intuitionistic
logic are exactly and symmetrically paired.

Constructivism and Linear Logic We have mentioned the differences between classi-
cal and intuitionistic logic here because the issue is of relevance to linear logic. One of the
aims of linear logic is to give a classical logic, where =——A = A, but which is nonetheless
constructive. Discussion of this will be deferred to the next chapter, however.

2.1.3 ND for Quantifiers

For the sake of completeness, we will give the natural deduction rules for quantifiers.
These are the same rules for both classical and intuitionistic logic, though their different
settings lend the quantifiers subtly different meanings.

A Vz.A
— Vs Ve
Vz.Alz/a] Ala/z]

Provided a does not occur in

any assumptions A depends on

[Alz/a])

Jdz.Alz/al ’ Jdz. A B

B

Provided a does not occur in Jz.4

Jei
B or any assumption on which B depends
(except for A[z/al)

The notation A[z/a] denotes a uniform substitution of the term z for a throught A.

The intuitionistic quantifiers can be thought of as follows, under the BHK interpretation
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e P is a proof of Jz.¢ iff P is a pair (a, P;) such that P; is a proof of ¢[a/z].
e P is a proof of Vz.¢ iff P is a construction that will take any object a and convert
it into a proof P(a) of ¢la/x].
2.1.4 Sequent Representations of Natural Deduction

Natural deduction derivations are trees of the form

Ay . . A,
B
We can abbreviate this as a sequent
Ay,..., A, FB
More generally, we can write
B

where I' stands for a set of assumptions / premises.

Given this abbreviation, we can rewrite the natural deduction rules as shown in figure 2.3

2.2 Sequent Calculus

A somewhat different proof system using sequent notation is the sequent calculus. We
generalise the notion of sequent slightly, so that sequents are of the form

kA

where both I' and A are multisets of formulas. (Note that the sequent version of natural
deduction used sequents where A was a single formula). A sequent

fyl,...,'yil—él,...,éj

means that “if the conjunction of 1, ..., ~; holds, then the disjunction of d1,...,0; holds.”
That is, the commas have different meanings dedending on which side of the turnstile (I-)
they occur on. On the left hand side they correspond to conjunctions, and on the right
side to disjunctions. Or put another way, a sequent I' - A means that if all of T holds,
then at least one of A holds.

As with natural deduction, sequent rules for the connectives come in pairs. But here
the pairs are to introduce the connectives on either the left or the right of the turnstile.
There is a rough correlation between left-rules and elimination-rules, and right-rules and
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LA B r'-A '-A—B
- —T.i e
A— B ’ I'tB
IHA I't+B '-AAB 'AAB
T'FAAB rra renp °
I'+A I+ A '-AvB T,A'+C TI,B'+C
—— Vg —— Vg Vei
I'AVB '-BVA T-C
DA F L 'cA TF-A
Troa TF L e
-1 L,-A"F L
— 1¢ RAA;
I'+A I-A

T,AF A

azxiom

Figure 2.3: Sequent style ND Rules (Classical & Intuitionistic)
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introduction-rules. However, this connection should not be pushed too far. There are also
structural rules to ensure that the I's and As really do behave as multi-sets.

For people who are familiar only with natural deduction proof systems, sequent calculus
can be confusing at first. There is a tendency to try and read sequent proofs like natural
deductions proofs. In some cases this can work, but more often it leads one astray. We
will therefore spend a little while explaining how one should do proofs in sequent calculus
— a piece of folklore not often explicitly described in textbooks. But first, we will present
an actual proof system.

2.2.1 SC for Classical Propositional Logic

The sequent calculus proof system for classical propositional logic is shown in figure 2.4.
Let us consider the rules in more detail.

Structural Rules The weakening rules allow one to add more formulas either to the
left or to the right

TFA 'FA
— Weakeningy ————— Weakeningr
I''AFA r-AA

Weakening on the left means that if ' proves A, then I' and A still proves A. On the
right, if I' proves A, then I' also proves A or A.

Contraction allows one to remove duplicated formulas on either the left or the right.

IMAJAE A 'FAAA
— Contractionp —— Contractiong

T,AFA THAA

On the left, if ' plus two As proves A, then so does I" plus one A. On the right, if T’
proves A or A or A, then it also proves A or A.

Gentzen’s original formulation of the sequent calculus treated the I's and As are sequences
(ordered lists). He therefore included additional structural rules to allow all permutations
of of the sequences

I',A, B,ToF A 'k Ay, A, B, Ay
Exchanger Exchanger
I',B,A,ToF A 'FA,B A Ay

These rules are unnecessary if I' and A are already taken to be multisets.

Conjunction The left rule for conjunction is reminiscent of an elimination rule:

T,AFA
— Ar
T,AABFA
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Structural Rules

'EA . 'EA A
—— Weakenin —— Weakenin
T.AFA 9 TFA A Ir

I''AJAF A 'FAAA

—— Contractiong — Contractiong,

IAFA I'FAA
Left-Right Rules
IAFA I''BEFA I'FAA I'HA,B

— Ny ——mm ¢ Ar
I'NAABFA I'"AANBFA 'AAANB

A A I''BFA r-AA '-A,B

Ve —_—Vr —V
I'"AVBFA, '-AAvVB 'AAV B
r-AA I''BFA I'"A+A,B
—r R
I''A— BFA '-AA— B
'FAA IrNAr A
T -AFA © TEA-A
Aziom and Cut
azxiom
AR A
'FAA ' AF A’
cut
LT FA A

R

Figure 2.4: Sequent Calculus for Classical Propositional Logic

28
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If I and A proves A, then so will I' and A A B — just ignore/eliminate the B conjunct.
The right rule is even more reminiscent of an introduction:

'A,A TFAB
THA,AAB

AR

If I proves A or A, and it also proves A or B, then we can combine the A and B to
conclude that I" proves A or A A B.

Note that while setting A = () in Ag gives us exactly the sequent version of Az, the
connection between Az and Ag is considerably more indirect. It probably hinders as much
as it helps to read sequent rules as natural deduction rules.

Disjunction The left rule for disjunction carries much the same import as the convo-
luted rule for V¢:

TLAFA  T,AFA
T,AVBF A,

If ' and A proves A, and I and B also proves A, then I' and A V B will prove A —
whichever disjunct, A or B, we pick, we can still derive A. The right rule v is identical
to V7 when A = 0.

Implication The rules for implication are a little hard to decipher in the classical case
(though they look a lot more familiar for intuitionistic logic). The left rule captures the
effect of modus ponens, albeit in a very roundabout way

'A, A TI,BFA
I'NA—BFA

—L

Consider I' - A, A, which says that I" either proves A or it proves A. If T proves A, then
by weakening it will be the case that I' and A — B proves A. This is the uninteresting
case. Now consider the case where I' does not prove A, but only A. The second sequent,
I', B - A says that even if I" does not prove A, I' plus B will. And we also know that I
proves A. Therefore, if we add A — B to I', we will in then be able to prove B, which
will then allow us to prove A.

The right rule for implicationis very similar to —z, except without the use of assumptions
and associated book-keeping

I A+ A,B
THAA— B

If we set A to (J, the rules says that if I' and (assumption) A prove B, then T' on its own
will prove A — B.
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Negation The two negation rules allow a formula to move across the turnstile, negating
it as it goes.

THA A T Ak A
T-AFA ° TFA-A ©

It is worth noting that it is only the —x and Weakeningr rules that can increase the
number of formulas on the right hand side of sequents. This is significant when considering
intuitionistic logic.

The negation rules also lie behind the use of one-sided sequents. Any two sided sequent

fyl,...,'yz-l—él,...,éj

is equivalent to a one-sided sequent
+ _"717---7_"}%617---753‘

One sided sequents are sometimes used as an alternative notation for the sequent calculus.

Cut The cut rule is one that is eliminable in all well-behaved sequent calculi (i.e. systems
satisfying ‘cut-elimination’)

THFAA T, AFA
T, T F A A

cut

It gives us as way of sticking or cutting together spearate sub-derivations. As with im-
plication, the rule is easier to understand in the intuitionistic case. Here, we can un-
derstand it as follows: Case (i) suppose I' F A. Then by weakening on both left and
right T, TV - A, A’. Case (ii) is the interesting one. Suppose I' = A. Then given that
I, A+ A’, we can cut the I' in in place of A to give I'",T' - A’. This can be weakened to
give I, TV - A, A,

In systems satisfying cut-elimination, proofs employing cut can be replaced by shorter
proofs not using the cut rule. This is discussed in section 2.3.

Symmetry The sequent calculus formulation of classical logic is more symmetric than
the natural deduction formulation.

2.2.2 SC for Intuitionistic Propositional Logic

The sequent calculus for intuitionistic logic may be obtained by restricting right hand
sides of sequents to multisets of zero or one formulas. Sequents with an empty right hand
side

e
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can be thought of as
L

The restriction on right hand sides necessitates reformulations of some of the rules, as
shown in figure 2.5.

The restriction to single conclusion sequents substantially modifies the rule for negation
on the right (and weakening on the right). This blocks the classical derivations of the
following two central non-theorems of intuitionistic logic:*

Classical proof of =—A — A:
AF A

—%
—A—= A

RC
L

R

Classical proof of AV —A:

Ak A
F-AA

—_— Vg

Ak VA, A

VR
FAV-A AV -A
Contractiong
FAV-A

RC

Single and Multiple Conclusion Sequents Why does the restriction to single conclu-
sion sequents furnish intuitionistic logic?> We will defer proper discussion of this question
until later.

2.2.3 How to do Proofs in Sequent Calculus

A problem that many newcomers face is how to do proofs in the sequent calculus.® Se-
quent calculus is well suited for systematic, bottom up searches for derivations. This is
often expressed as saying that sequent rules should be read “upwards”. The stanard pat-
tern of application is to begin with the sequent you want to prove, and use the rules to
work upwards to axioms. This is the reverse of the more top-down approach in natural
deduction.

4A third non-intuitionistic classical theorem, Pierce’s Law ((A — B) — A) — A, relies on the multiple
conclusion version of Weakeningr. So it is not just -z that makes the substantial difference between
classical and intuitionistic logic.

5An immediate caveat is to note that there can be multiple conclusion formulations of intuitionistic
logic [[Dummett,Paiva]], though these require modifications elsewehere.

51t is not necessary to know how to do sequent proofs to understand the rest of these notes. This
subsection is included because it is nonetheless a useful skill that is rarely described explicitly in text
books.
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Structural Rules

I'-B 't
Weakening —— Weakeningr

I'NAFB 'R
rNAJA+B

T A+ B

Contraction

Left-Right Rules
rNArFC I''BrEC I'HA I'-B

NA¢ Ag AR
T,AABFC T,AABFC THAAB
rNAr-cC I''BrC T'HFA I'+B
Ve — Vg — Vg
I,AVBFC THAVB T'-AVB
'-A4 T.,BFC T A+ B
=z — 2
A BFC THA— B
THA T,AF
r-AF © Tr-a ~

Cut and Aziom

T-A AAFB
T,AFB

cut

axiom

AFA

Figure 2.5: Sequent Calculus for Intuitionistic Propositional Logic
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As an example, let us consider how to go about proving the sequent
A= (B—-C)F(AANB)—=C

At each step, we need to pick a formula on either the left or the right of the turnstile, and
‘split’ on its topmost connective. Splitting on the connective means using the appropriate
left or right rule (depending on whether the chosen formula was to the left or the right of
the turnstile), to produce one or more new sequents.

In this case, let’s choose the single formula on the right, whose main connective is impli-
cation. The implication-right rule is, recall

Lok
T
¢ =y

Setting ' = A — (B — C), ¢ = AN B and 9 = C, we can begin our search for the proof
as follows:

AANB,A— (B—C)FC
%
A—-(B—-C)F(AANB)—=C

R

Since the newly introduced sequent is not in the form of axiom, we must find a formula
in it to split, in an attempt to reduce all the leaves of the derivation tree to axioms. Let
us split on the left hand formula, A — (B — (). Recall that the implication-left rule is

Tk¢ T,F0
T,p— 10

SettingI' = AAB, ¢ = A, =B — C, and 6 = C, we introduce two new sequents
ANBEF A ANB,B—-CFC

ANB,A—= (B—=C)FC
A—>(B—>C)|—(A/\B)—>C_)

—L

R

This now gives us two leaves on the derivation tree, neither of which are yet axioms.
Taking the first of these, there is only one formula with a connective, and conjunction-left
applies to give

AF A
ANBEA'S  AAB.BoCHC
ANB,A—> (B CO)FC

A (BoO)F(AAB) >C

—L

R

Since A F A is an axiom, we do not need to split any further on this branch of the tree.
We can now split on A A B in the second leaf to give
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AF A B,B—CFC
ANBEA " ANBB—CrC
AANB,A— (B—C)FC s

A (BoCO)F(AAB) >C

L

R

Now we split on B — C' using —, to give

BFB B,CFC
AF A B.B—CFC
— A\ N
AANBF A AAB,B—CFC

%

AAB,A— (B—=C)FC -

%
A—-(B—-C)F(AANB)—=C

—L

L

R

Finally, we have to use weakening on the left to get

CrC
BFB  B,CFC
AF A B.B—CFC
=T A Ac
ANBF A AANB,B—CFC
%
AANB.,A— (B—C)FC ‘
%
A—-(B—-C)F(AANB)—=C

Weakening,

—L

R

We have now reached a point where all the leaves on the derivation tree are axioms: we
have completed the proof.

Problems with Cut

The bottom up procedure just outlined is non-deterministic in that at most stages one
has a choice about which formula to split on. This non-determinism is greatly increased
by the presence of the cut rule. The difficulyt with the cut rule is that it can be applied
to any formula, and split the sequents up in any way. This is unlike the other rules, that
single out formulas with a particular main connective, or at least clearly indicate just one
way in which the sequents should be split.

The advantage of cut is that if you are clever, you can find proofs by cutting in known
lemmas. The disadvantage is that if you are applying the rules systematically and blindly
to search for a proof (e.g. like a computer program), the search may not terminate. It is
therefore important to know that, in the case of intuitionistic and classical propositional
logic, the cut rule can be eliminated without affecting the range of theorems provable.
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2.2.4 Quantifier in Sequent Calculus

For the sake of completeness, we list the left and right rules for the universal and existential
quantifiers. The rules for classical logic are:

I, Alz/t] l_AVL I‘I—A[ac/y],Av
IVz. Ak A TFVz.A A

I Alz/y|F A '+ Alz/t], A

T 32.AFA © EETTWNRG

(where y must not occur free in I or A). The rules for intuitionistic logic are just the
single conclusion versions of the above.
2.2.5 Sequent Calculus and Natural Deduction

We now describe how to convert a sequent calculus proof into a natural deduction proof for
the implication-conjunction fragment of intuitionistic logic. This technique is taken from
[GirardLafontTaylor]. Some notes of caution, however. First, the mapping is many-one:
several quite distinct sequent proofs can sometimes map onto the same natural deduction
proof. Second, the mapping does not hold for all logical systems. In general there is a
kind of subsumption ordering amongst proof styles:

e Axiomatic systems cover the widest range of logical systems
e Sequent calculi can be given for only a somewhat narrower range of logics

e Natural deduction systems can only be given for a relatively few logics

Classical and intuitionistic logic are fortunate in having all three kinds of proof system
available. Propositional modal logics cover the full range: some like S5 have a natural
deduction system; some like K have sequent calculi but no natural deduction; and others
only have axiomatic systems.

1. Axioms translate as simple one step ND derivations
AFA = A

We descend down the sequent derivation from its axiom leaves, translating the other
steps as follows:

2. Right rules translate into introductions
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r I
r-A T'+B : :
N : ;
T,T'F AAB A BAI
AAB
I, [A)
A+ B :
'A—> B B
—T,i
A— B

Here, the vertical dots indicate ND derivations that have already been constructed
using the mapping rules.

3. Left rules translate into eliminations (but written backwards!)

ANB
Ae
AL C T A
— A\ —
IMAANBFEC :
C
T
rrA T.BrC A4 4A=B
—r — 1‘\/ B €
7' A— BFrC
C
4. The structural rules translate into management of hypotheses.
NAJA+B r'-nB
—  Contraction ——— Weakening,
NArB I'A+ B

Contraction corresponds to giving two assumptions of A the same index. Weakening
corresponds to a null assumption of A

5. Finally, the cut rule corresponds to putting two derivations together.

T'FA AAFB
cut -
I'AFB .
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To illustrate the fact that multiple sequent derivations can map onto a single natural
deduction derivation, here is a simple example. Both of the sequent derivations

AFA B+ B AFA B+ B
A
ABFAAB © A, BFAAB
Y Y
ANA BFANAB A BANB'-AANB
A A
ANA ,BANB'-AAB £ ANA' BAB'-AANB ‘

correspond to the same natural deduction derivation

ANA BAB
Ne
A B

ANB

Ne

Nz

The two sequent proofs linearize the two parallel Ag natural deduction steps as different
orders of applying A,.

In general, the rules of the sequent calculus can be seen as more or less complex combina-
tions of natural deduction rules, and sequent proofs as linearizations of natural deduction
proofs.

2.3 Proof Normalization

When are two proofs the same? This section discusses techniques for converting alternate
forms of proofs to (minimal) canonical versions of the proof. In natural deduction, this
technique is known as proof normalization. In sequent calculus it corresponds to cut elim-
ination. As mentioned in Chapter 2, proof normalization in natural reduction is closely
related to lambda-reduction on proof terms produced by the Curry-Howard isomorphism.
This is the topic of the section after this.

2.3.1 Normalization in Natural Deduction
/- and 7-Reduction

Consider the derivation

D, D,
A B
—_ A
ANB
A
A E

Clearly the introduction of the conjunction followed by its immediate elimination is an
unnecessary detour in the proof. We could get the same result more simply as
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Dy
A

More generally, any step in a derivation that introduces a connective only to immediately

eliminate it again at the next step gives rise to a detour. These can be eliminated by the
following rules of S-reduction.

Conjunction
Dy D,
A o
B .
A =8 ;
ANB A
N
1 £
Implication
AT Dy
: D,
—Ii : :
A—B A :
%
B £ B
Disjunction
B Dy
3 [A]" [BY :
V7 : . =8 A
AV B C C :
C Veij C

There are also some lesser known rules of n-reduction that apply when an elimination is
immediately by an introduction. For example
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Implication
Dy
) : Dy
[A]" A— B — :
. n :
B A— B
—7I.,
A— B
Conjunction
Dy
AAB b o
A . .
A1 . = .
A B ANB
Nz
ANB

A derivation to which none of these reductions can be applied is said to be in fn-normal
form.
Commuting Conversions

Recall the rule for disjunction elimination, with its parasitic formula C that bears no
relation to the disjunction A V B being eliminated

'-AvB T,A'+C TI,B'+C

Vei,j
r=cC
This parasitic formula can cause problems. Consider the derivation
141D [B],[D]

: E E
. -z -7z D
AV B D— FE D— FE :
V .
Do E ‘ D

-

E
This derivation is in S-normal form, but nonetheless it contains a detour. We could get
the same result by replacing the assumption of D on the two branches of the disjunction
by the actual derivation D of D, and remove some unnecessary —7 and —¢ steps:

D D
[4], D [B], D

AV B E E
Ve

E
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Whenever an elimination follows a parasitic rule, we would like to push (or commute)
the elimination upwards one level, so that it stands some chance of being adjacent to
an introduction rule that actually mentions the parasitic formula. This gives rise for the
following commuting conversions for the two rules introducing parasitic formulas.

A B A B
. L] R] [J D [J D
Vg . ¢ . Re Re
C ) AV B D D
R¢ Ve
D D
Dy
: Dy
. D :
L 2
— 1¢ . ¢ L
A ) — 1
— B
B

where R¢ stands for any of the elimination rules.

Properties of Normalization

Two important properties of proof normalization in natural deduction are

e Church-Rosser property:
This says that any proof has a unique normal form.

Put another way, the order in which the various normalizing conversions are applied

to a derivation does not affect the final result.

e Strong Normalization:
This says that the application of normalizing conversions will eventually terminate
to give a normal form proof

2.3.2 Cut-Elimination in Sequent Calculus

Corresponding to normalization in natural deduction is cut elimination in the sequent
calculus. The cut rule

A AAFB
T,AFB

cut

allows us to combine two derivations. In practice the rule is very useful, since it allows
us the possibility of proving various lemmas (or useful patterns of inference), and then
cutting them into proofs whenever we need them. Cut-elimination says that whenever
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we cut lemmas in in this way, there is always an equivalent proof that does not use the
lemmas, but derives everything from scratch.

Eliminating cuts is a process of moving them up the derivation tree until we cut against
an axiom, where it is clear that the cut can be eliminated as follows:

D
: D
I'FA AF A - )
cut 'FA

AF A

We will not go into all the details of how to float cuts up through a derivation. The
following examples will give some idea of what is involved.

e Conjunction:

Replace
I'HA I'=B AAEC
AR — ¢
'HAAB AJAANBFC
cut
IAFC
by the derivation
r-A AAFEC
rArcC
e Implication:
I''"A+FB AFA A,BFC
——— —c
'rA— B AA— BFEC
cut
LAFC
is replaced by
AFA INArB A BFC
cut ——  Weakeningr
ATHB A, T,BFC
cut
AFC
e Disjunction
r-A AAFC A,BFC
—— Vg Ve
'HAVEB AAVBFEC
cut

I,AFC
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is replaced by

TFA  AAFC
T,AFC

cut

Note how pushing the cut upwards has the effect of reducing the number of connectives
in the proof. The same is true for the other rules we have not shown for pushing cut
upwards. Because of this reduction in complexity, the elimination procedure terminates.

Consequences of Cut Elimination

Gentzen’s proof of cut elimination for classical and intuitionistic logic in 1934 was a major
step, allowing a number of important logical results to be proved. Amongst them were
the consistency and decidability of the sequent calculus. Two other properties of cut-free
proofs worth noting are

e Subformula property:
In a cut free proof of I' - ¢, all the formula occuring in the proof are subformulas
of either I' or ¢.

By insepection, one can see that all the sequent calculus rules except cut are sub-
formula preserving. The absence of the sub-formula property for cut means that it
is a highly non-deterministic rule for use in proof search — the formulas in a sequent
give us no clues about whether or not to apply it at any stage.

e Disjunction property:
If- AV B, either - Aor - B

One reminder: although cut elimination can convert sequent proofs to canonical cut-free
proofs, the equivalence classes of proofs defined by cut elimination are broader than the
equivalence classes defined by normalization in natural deduction. Essentially, alternate
linearizations of a normal form ND proof will still count as alternate sequent proofs.

2.4 Curry-Howard Isomorphism

The Curry-Howard Isomorphism (CHI) connects (constructive) logics with type theory
and the lambda-calculus. As we saw briefly in Chapter 1, natural deduction rules can be
paired with operations in the lambda-calculus. These operations combine terms represent-
ing proofs of propositions to build more complex terms representing proofs of propositions.

For example, suppose P represents a proof of the proposition A — B, and z represents
some arbitrary proof of A. That is, P and x are proof terms for the two propositions. We
pair a proposition with its proof term by means of a colon, e.g.

P:A— B
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with the term (P) conventionally written on the left. Here is a simple natural deduction
proof showing how more complex proof terms can be constructed:
[z : A]! P:A— B
P(z): B
_>
Az.P(z): A— B

—E

7,1

Here, the rule of —¢ gives rise to application of proof terms, and —7 to lambda abstraction.
In this section we will extend this pairing of ND rules with term operators to cover
conjunction, disjunction and negation.

Recalling the discussion of 7-normalization from the last section, note that the proof is
not on f-normal form. The rule for n-reduction says that we can eliminate a detour to
give a simpler proof:

P:A— B

The proof normalization step of 5-reduction is so-called because it really does correspond
to doing a 7-reduction on the corresponding proof terms

Xe.P(xz) =, P

Likewise, the normalization step of S-reduction really does correspond to doing a (-
reduction on the corresponding proof terms.

We can think about the CHI under various slogans following slogans

e Terms as Proofs
The expression
Az.P(z): A— B

can be read one way as saying that Az.P(z) is a proof of A — B. Given that
the term is an abstraction, we can tell that the last step of the proof introduced
an implication into the proof P(z). Moreover, this step must have discharged an
assumption x : A. We can also tell that P(z) must be a proof of B, and that its
last step was an implication elimination, applying something whose proof was P to
something whose proof was z. Since we know that it was A’s proof that was z, we
can therefore tell that P was a proof of A — B. Since the term P has no internal
structure, we can tell that A — B was a premise.

In other words, one can look at the proof term decorating a formula in a natural
deduction proof, and reconstruct the proof from the term.

e Propositions as Types
We have just seen how the expression

Az.P(z): A— B
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can be read one way as saying that Az.P(z) is a proof of the proposition A — B.
We can also read it as saying that the type of the proof Az.P(z) is A — B. In fact,
we can view implication, —, as type forming operator familiar from type theory.

It is important to note that there can usually be several proofs of the same type
(i.e. several ways of proving the same proposition). For example, consider

[z:A' P:A— B
—e Q:C—-(A—-B) R:C
P(x): B P:A— B e
—7I,1 Q(R)A—)B
Az.P(z): A— B

That is, the proofs Az.P(z), P and Q(R) all have the type A — B. And although
Az.P(z) and P are equivalent by 7-conversion, and so in some sense represent the
same proof, the proof Q(R) is not equivalent to either of these.

We can look on a type / proposition, therefore, as being a set of proofs.

e Proofs as Programs
Here is another example of different proofs of the same type: we let the proposition
N also stand for the type Number. We can look at the integers, 1, 2, 3,..., as
being different atomic proofs of the fact that there are numbers. We can also look
on multiplication and addition as being things which when given two numbers will
prove that you can form a third number. Two possible proofs N (that there is at
least one number) are

+:N—(N—=N) 3:N
x:N—=(N=N) 2:N Y(3):N > N 4:N
x(2): N —= N +(3)(4) : N

Note how very different these proofs are. One constructs the number 2 x (3+4) = 14
as a proof of N, and the other constructs 3 + (2 x 4) = 11.

We can look on these proofs as being two different programs for computing numbers.
The correspondence between programs and proofs lies at the heart of functional
programming in computer science. It turns out that normalization corresponds
to performing computations in a functional language. To give another example,
suppose that we do not take all numbers as primitive, but instead start with just
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0 and the successor function s that adds one to zero. Thus we could represent the
number 3 as the term s(s(s(0))). We can also represent a function for adding 2 to
x as a term Az.s(s(z)) of type N — N. Now consider a proof

Az.s(s(z)) : N —- N s(s(s(0))) : N
Az.s(s(2))[s(s(s(0)))] : N

Lambda reduction of the final proofterm, Az.s(s(z))[s(s(s(0)))] yields
s(s(s(s(s(0))))), which is our internal representation for 5, the result of adding 2 to
3.

Note: this discussion of programs as proofs is not required for anything that follows.
However, some of the applications of linear logic to computer science have revolved
around the design of linear functional programming languages.

2.4.1 CHI for Intuitionistic ND

Let us introduce some operations on proof terms besides application and abstraction.
These further operations will be paired with the introduction and elimination rules for
other connectives.

Conjunction We have pairing and projection to deal with conjunction. Given two
terms, P and @, we represent the conjunction of them as the ordered pair (P, Q). We
then have two projection functions fst and snd to get at the first and second elements of
an ordered pair. Note that fst((P,Q)) = P and snd((P,Q)) = Q

We have the following introduction and elimination rules for conjunction
P:A Q:B M:ANB M:AANB

A — A — A
(P.Q): ANB fst(M): A ' snd(M):B

Notice how we have to be careful about distinguishing two versions of the elimination
rules, since one projects onto the first term in the pair, and the other projects onto the
second.

Disjunction For disjunction, we want to represent a disjunctive proof of P or ) as a
kind of ‘atrophied pair’, along with an indication of which of P or () is the one that makes
the disjunction true. We can represent this atrophied pair of terms as a single term, plus
an indication of whether it is the term for the left or right disjunct. Using inl and inr to
signal left and right, we have the introduction rules for disjunction:

P:A P:B

—V —_—V
inl(P): AVB inr(P): AVB -



CHAPTER 2. BASIC PROOF THEORY 46

Note once again how we have to be careful to distinguish two versions of the introduction
rule, depending on whether it is the left or right disjunct that makes the disjunction true.

The term operation corresponding to disjunction elimination is rather more complex. It
resembles a “case” statement in programming. The term

[case M (inl(z) P) (inr(y) Q)]

is to be read as saying that if term M is of the form inl(z), then the resulting term is P,
and if it is of the form inr(y) the resulting term is ). The elimination rule is thus

w: Al [y:BY

M:AVB P C Q C
[case M (inl(z) P) (inr(y) Q)] : C

Vei,j

Note how the x and y in the case construction unify with the terms labelling the assump-
tions of A and B. This is to ensure that the appropriate proof term for either A or B
gets plugged in to either P or () respectively.

Falsum Rather than treat negation as primitive, we will define it as implication into
falsum, i.e.
-A=A— 1

We then associate an “abort” term with the L¢ rule

M: 1L
— 1
aborty : A

Note how this rule just throws away the proof term M. The ‘abort’ means that if we
prove A by means of proving falsum, we would be well-advised to abort that particular
proof.

Term Assignment System

Putting these rules together, we obtain the natural deduction plus term assignment system
for propositional intuitionistic logic shown in figure 2.6 We should note that (1) premises
are just assigned arbitrary (unique) constants as the proof terms, and (2) proof terms for
assumptions should be unique, with the exception of multiple occurrences of the same
assumption (i.e. assumptions that are co-indexed).

Proof and Term Reduction

The proof reduction rules described in section 2.3 all lead to corresponding reductions of
proof terms. The consequences of S-reduction are shown in figure 2.7 (we use the notation
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Introduction Elimination
[z : A"
: Q:A P:A—B
: e
P:B P(Q): B
S ——
A.P:A— B
P:A @Q:B P:AANB P:AANB
—— Az N1 ———— e
(P,Q): ANB fst(P): A snd(P): B

[z :.A]i [y :‘B]j

P:A P:B
_—V _—V : :
in(P): AVB ' ine(P): AVB M:AvB P:¢  Q:C
[case M (inl(z) P) (inr(y) Q)]:C
P: 1L
SE—
aborty : A

Figure 2.6: Term Assignment for Intuitionistic Propositional Logic

P[M/z] to mean term P with all occurrences of = replaced by M). If we look just at the
terms, these reductions amount to the following

. fst((P Q) =
nd({P, Q) =

e (A\z.P)(Q) = PlQ/x]

e [case inl(M) (inl(z) P) (inr(y) Q)] = P[M/x]
[case inr(M) (inl(z) P) (inr(y) Q)] = Q[M/y]

The commuting conversions also give rise to term reducitons, including the following

e [case M (inl(z) P) (inr(y) Q))(R)
— [case M (inl(z) P(R)) (int(y) Q(R))]

o fst([case M (inl(z) P) (inr(y) Q)])
= [case M (inl(z) fst(R)) (inr(y) fst(R))]

e snd([case M (inl(z) P) (inr(y) Q)])
= [case M (inl(z) snd(R)) (inr(y) snd(R))]
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Conjunction
Dy Dy
P:A Q:B . 1?1
Nt B .
<P7 Q) :ANB A P:A
ft(PQ): A
D1 D
: : Dy
P:A Q:B N —4
<P7 Q) t A A B A Q : B
snd((P,Q)): B *
Implication
[z :‘A]i D_l
. D :
P:B :1 —3 Q |
B —— A : :
.P:A— B 7 Q:A .
(\z.P)(Q) : B e Plz/Q) : B
Disjunction
Dy D,
: [z : A]° [y : BY :
M: A4 : : — M:A
— Vg : : 8 E
in(M): AV B P:C Q:CVH :
[case inl(M) (inl(z) P) (inr(y) Q):C 7 P[M/z]: C
Dy D,
: [z : A] [y : BY :
M:5B : : == M:A
— VI . . 15} .
inrf(M): AV B P:C Q:C :
[case inl(M) (inl(z) P) (inr(y) Q)] : C veid QM/y]: C

Figure 2.7: Beta Reduction
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e (aborty(M))(N) = abortg(M)
fst(abort<A’B>(M)) = abort4 (M)
snd(abort 4 py(rr)) = abortp (M)

2.4.2 CHI and Constructivity

The proof terms assigned by the Curry-Howard isomorphism bear a close and non-
accidental resemblance to the constructive, proof-based semantics lying behind the
Brouwer-Heyting-Kolmogorov (BHK) interpretation for intuitionistic logic (see p. 77).

We noted that a BHK style interpretation was not readily available for classical logic. For
similar reasons, a Curry-Howard isomorphism is not readily available either.” The culprit
can once again be seen as the classical rule of reductio ad absurdum

[z : A‘—> 1]

77 A

RAA

Bearing in mind the rule 1, to derive A we throw away the proof of 1 from A — 1.
If we do not throw this proof away, its abort type will cause the rest of the proof to be
aborted. This then leaves the question of what would be a sensible proof term to put in
place of “?7”. There is no obvious answer.

It is thus important to realize that the Curry-Howard Isomorphism does not apply to all
logics. As we will see in a moment, it only applies to logics that have a natural deduction
formulation. And as we have just seen, it does not even apply to all logics that do have
a natural deduction formulation. Nonetheless, there is something of a cottage industry in
constructing term assignment systems for various logics, since these can (amongst other
things) be useful for designing new forms of functional programming langauge.

2.4.3 Term Assignments for Sequents and Axioms

The section on converting sequent proofs to natural deduction proofs showed that there
is not a 1-1 mapping. Distinct sequent proofs can map onto the same natural deduction
proof. Because of this, there is no real Curry-Howard Isomorphism for the sequent calcu-
lus. One can nevertheless design term assignment systems for the sequent calculus. But
there will not be the same close parallels between term reduction and proof normalization
as there are for natural deduction.

One term assignment scheme in effect just gives each sequent calculus rule a unique label.
This certainly allows one to uncover the structure of a proof from a proof term. But it

"The Ap-calculus represents a recent attempt at providing a CHI for classical logic [Parigot]. However,
this relies on finding ways of looking at classical logic in a more constructive light.
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does nothing to ensure that alternate versions of the same (natural deduction) proof will
have terms that can be reduced to a common expression.

Another scheme for term assignment makes use of the mapping from sequent proofs to
natural deduction proofs. As a result, it assigns terms that do reduce to common expres-
sions for equivalent sequent proofs. However, this behaviour is inherited from the natural
deduction system, and is not inherent to the sequent calculus. The term assignment
system obtained in shown in figure 2.8.

It is also possible to give term assignments for axiomatic systems. In the case of proposi-
tional logic, this gives rise to combinatory logic.

2.5 Summary

One arrives at linear logic by looking at the proof theory of traditional logics. This is why
we have spent so long reviewing the basics of proof theory (such material is not usually
covered in introductory logic texts for linguists). So how might we sum matters up to set
the scene for the development of linear logic?

First recall that our general aim is to gain access to the actual proof objects underlying
the (syntactic) representations of proofs as derivations in systems like natural deduction
or sequent calculus. Given that we can only access proofs via their surface forms as
derivations, natural deduction looks very promising.

For intuitionistic logic, the Curry-Howard Isomorphism provides us with access to terms
representing proofs. Moreover, these terms have non-trivial identity criteria, which al-
low us (in conjunction with proof normalization) to say when two syntactically distinct
derivations correspond to the same proof.

However, natural deduction retains some embarrassing features.

e A Curry-Howard Isomporphism cannot be given for classical logic. Dyed-in-the-wool
constructivists might well retort ‘so much the worse for classical logic.” But for the
less ideologically motivated, the failure to find interesting proof objects for classical
logic casts doubt on the general aim of elevating the status of proofs in logic.

e The natural deduction formulation of classical logic is not completely symmetrical.
Although most of the connectives have their meanings defined by introduction and
elimination rules, negation requires three rules: introduction, elimination, and re-
ductio ad absurdum. This smears the meaning of negation across a number of rules,
that makes a simple characterisation of its proof-theoretic meaning impossible.

e For both classical and intuitionistic logic, the parastitic rules of or-elimination and
1 -elimination, are ugly. The commuting conversions these gives rise to considerably
complicates the identity criteria of proofs, as defined by proof normalization.

With respect to classical logic, the sequent calculus fares much better. First, the complete
symmetry lost in the ND formulation is regained in the sequent formulation of classical
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Figure 2.8: Term Assignment for Sequent Calculus for IPL
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logic. In fact it is intuitionistic logic that comes out asymmetric, in that it allows only
single conclusion sequents. This is tantamount to dropping the rules of right contraction
and weakening, leaving only the left versions. Unfortunately, for both intuitionistic and
classical logic the sequent calculus individuates too finely between proofs; derivations that
should be identified remain distinct.



Chapter 3

Basic Linear Logic

3.1 Sequent Calculus

The sequent calculus systems for traditional (classical and intuitionistic) logic takes I" and
A to be sets of formulas in sequents likes I' = A. What would happen if instead we took
them to be multisets' of formulas?

3.1.1 Contraction and Weakening

The first consequence of shifting to multisets would be that the structural rules of con-
traction and weakening no longer hold. We would need to drop the following rules

' A, A+ B r+-=n
—  Contraction ———— Weakening

A B I, Ar B
The rule of exchange

T, A BFC

Exchange
' B, A C

applies equally to sets and to multisets, however.

What is the intuitive significance of contraction and weakening? Weakening opens the
door for fake or irrelevant dependencies. Given a derivation of I' - A, we can weaken it
to I', B F A. This muddies the waters as to whether A really depends on B or not — it is
only by looking at the preceding derivation that we can tell. The sequent alone does not
say. In the same vein, we saw how in Chapter 7?7 weakening corresponded to discharging a
null assumption in natural deduction. Relevance logic [??7?] abandoned weakening (while

!Multisets are unordered lists of elements, where a count is kept of the number of times each element
occurs.

53
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? conclusions

preserving contraction) in order to try and block derivations of “irrelevan
like

AFB— A

which gives the impression that there is some dependency of A on B, when in fact there
is no dependency at all.

Contraction allows us to use formulas without counting how many times we use them.
Remembering that sequent rules should be read ‘upwards’, contraction says that if we
want to prove I'; A + B, we can do so by copying A and proving I'; A, A -+ B. Girard
describes contraction as the “fingernail of infinity”. He illustrates this with the use of an
axiom like Vz.integerz — Jy.integer(y) Ay > x, which says for any integer x there is larger
integer y. It is repeated use of this axiom, via contraction, that means it furnishes us with
an infinite supply of integers. As another aside, without contraction first order-predicate
calculus would be decidable.

3.1.2 Multiplicatives and Additives
Additive and Multiplicative Conjunction

The loss of certain structural rules is not the only consequence of moving to multisets,
however. Consider the traditional Az rule, for example

'kA '=nB
'AAB

Note how the upper I' contexts are identical. Suppose instead we were to allow distinct
upper contexts I' and A

'FA AFB
I,AFAAB

where the original rule is just the special case A = T'. How would replacing the Az rule
by Ax' change the system for traditional logic (where I' and A are sets of formulas)?

The answer is that it changes nothing. The rules with identical and disjoint upper contexts
are inter-derivable so long as we can use contraction and weakening:

e A from Az’

'+4 T+B
I,T-HAAB
THAAB

Contraction

o AR’ from Ag
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I'HA I'-B
——  Weakening ——— Weakening
I'N'AFA I''AFB

T,AF AABA

However, if we dispense with contraction and weakening, the two rules are no longer inter-
derivable. In fact, the two rules correspond to two different forms of conjunction, ® and

&:
T-A AFB A4 TF+B
&
ILAFA®B © '+ A&B

We can play a similar trick with the left rule for conjunction. The following two rules are
equivalent given contraction and weakening

T AFC I A BFC
— A I —— Ac
T,AABFC TAABFC

We can see these are equivalent as follows

o Ar from Ap'
ARC
T,A,BFC
—_  Ar
LAANB.FC

Weakening

o Ay from Af
r A B-C
Ac
I'NAANB,BFC
N
TLAAB,ANBFC ©
Contraction
I'"AANB,FC

The question arises as to which rule rule should become the left rule for which of the
two newly introduced connectives. It turns out that if we make the wrong pairing, we
can re-derive contraction and weakening, which would make the distinction between the
connectives collapse. For example, consider combining the rule &% with the incorrect left
rule:

AF A AI—A& AJA+ B p
AF A&A T A gA+B™ "
cut
A+ B
That is, from I', A, A+ B we can obtain the contracted version I', A F B.

If we make the correct pairings of left and right rules, we get the following two left rules
for the new forms of conjunction




CHAPTER 3. BASIC LINEAR LOGIC 56

T,AFC T A BFC
— & —
T, A%BF C I, A® BFC

Tensor ® is a multiplicative conjunction: its (right) rule combines multiple contexts I" and
With & is an additive conjunction: it deals with a single context I'. Troelstra sometimes

calls the multiplicative connectives “context free” — they apply independent of differences
in context — and the additive connectives “context sharing” — they only apply if contexts
are shared.

Given the left and right rules for the two conjunctions, we can give them an informal
explanation as follows

e Multiplicative conjunction ®
This allows you to combine premises / resources in a proof into one bundle. The
left rule says that if you have two premises A and B you can bundle them together
to form a single premise, A ® B. The right rule says if you have two proofs, one of
A from T and one of B from A, you can combine the proofs and bundle together
the results, A ® B

e Additive conjunction &

This allows alternatives from a given set of premises to be combined. The right rule
says that if there is a proof of A from I', and also a proof of B from I', these two
alternatives can be conjoined to say that there is a proof of A& B from I'. This is
to be read as saying you have a choice of proving A and of proving B, but not both
(since proving A consumes premises that need to be used in proving B and vice
versa. The left rule says that if you can prove C from I' and A, you can also prove
it from I' and A& B. The A& B again says that you have the choice of using A and
of using B to make the derivation work, though in fact you have to choose A.

Despite being a conjunction & behaves in many ways more like a (meta-level) dis-
junction. A& B indicates a free (or internal) choice: we can decide which of A or B
to use. Sometimes only one of the alternatives will give us what we need, but we are
at least free to choose what works. This is similar to classical disjunction: given A
we can weaken this to AV B; but if we then want to single out one of the disjuncts,
the only reliable one to choose is A. This internal or free choice differs from the
external or forced choice offered by @ (the multiplicative disjunction). A @ B says
that A and B are alternatives, but we have no power over which one is selected; the
choice is made externally.

Additive and Multiplicative Disjunction

Moving to multisets also allows us to distinguish between multiplicative and additive
versions of disjunction. Additive implication, plus & has the following left and right rules

I A-C T,BFC THA
®c — @
TLA®BFC I'AeB

R
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We can read this as follows

e Additive disjunction &

The left rule says that if both I' and A, and " and B prove C, then I' and some
random choice of either A or B will prove C. This random, or external choice of A
or B is safe, as we know that they both lead to the same conclusion; so it doesn’t
matter which one is picked for us. The right rule says that if I' proves A, then T’
proves A or B. Like the traditional rule for disjunction, this step means that we lose
track of whether the disjunction is proved by virtue of either A or B being proved.
It hides this information. Any further inferences from A ® B had thus better be
truly insensitive to which of A or B is the ‘real’ disjunct.

The multiplicative disjunction %2 is not a connective of intuitionistic linear logic, since
its right rule only makes sense with multiple conclusion sequents.? Recall from chapter ??
that intuitionistic logic requires single conclusion sequents. Multiplicative disjunction has
the following left and right rules

T, Ak Aq Ty, BE Ay 'HAB,A
B — 3»

I',T9,A% BF Ay, Aq 'FA=® BA

As with conjunction, in the presence of contration and weakening the distinction between
the two connectives collapses. Weakening makes the %, rule derivable from plusL, and
contraction allows the reverse derivation. Weakening (on the right) makes @& deriv-
able frin B %, and contraction on the right allows the reverse derivation. We can try to
understand multiplicative disjunction as follows

e Multiplicative Disjunction %
The right rule says that if T" proves either A or B, it proves A 8 B. That is,
commas on the right hand sequents are implicit multiplicative disjunctions, in just
the way that commas on the left of sequents are implicit multiplicative conjunctions.
If A ® B holds, then if it is not the case that A holds we can be sure that B holds,
and vice versa.

3.1.3 Negation

Negation is not stricly speaking a connective in linear logic. All atomic formulas come in a
positive form, A, and a negative form, A. When negation is applied a complex formula,
a series of equivalences enable one to push the negation inwards until it only applies to
atomic formulas. These equivalences include

(A BYt = Al=npt (A Byt = AlgBt
(A&B)* = AteoB* (A Bt = At&B*
(14)+ = 744 (7A)+ = 14t

ALL = A

2Though there are multiple conclusion formulations of intuitionistic linear logic that do admit 28 as
a connective [Paiva].
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(see below for explanation of the exponentials ! and ?). A formula like (A ® B1)* (where
A and B are atomic) is just an alternative notation for A+ % B.

The rules for negation allow one to move formulas to move across the turnstile, flipping
their polarities as they go:

THAA T,AFA

1 1
rAtra* r-ata™ "~

Note that when applied to the identity axiom A - A, 1% yields the sequent
HAL A

This can be read as saying that out of nothing one can create a paired consumer and
producer of A, which like matter and anti-matter annihilate one another when they meet.

Perhaps a more useful metaphor is to think in terms of action and reaction. Conservation
of ‘momentum’ ensures that to every action A there is an equal and opposite reaction,
A+, We can also think of an action of type A as being an answer / output / consumer,
and a reaction of type A+ as being a question / input / producer. In a sequent T' F A,
formulas on the left (in I') are inputs, and formulas on the right (in A) outputs. This is
borne out if we use the negation rules to move all of I" to the right: each formula A in T’
gets negated to AL,

In fact, Girard often uses one-sided sequents in presenting linear logic. The one-sided
sequent (where if ' = Ay,..., Ay, then T+ = A, ... A})

FIH A
is equivalent to the two sided sequent

A

3.1.4 The Exponentials

Linear logic drops the structual rules of weakening and contraction. However a logic with-
out these rules is very weak. Linear logic allows for a controlled way of re-introducing
contraction and weakening on specific formulas by means of the exponentials (or modali-
ties) ! and 7. The “of course” exponential, !, allows contraction and weakening on the left
hand side of sequents. The “why not” exponential, 7, allows contraction and weakening
on the right of sequents.

We can read !A as meaning roughly that the resource A can be duplicated (reproduced)
as often or as little as we like. Its dual, 7A, means roughly that A can be consumed as
often or as little as we like.

Another way of thinking about the exponentials is as follows. Atomic propositions in
linear logic are a little like signals on a wire: they are created (as input) and immediately
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consumed (as output). If we take a transient signal like A, then !A corresponds to storing
the signal in some form of memory. 7A corresponds to reading from memory.

The sequent rules for the exponentials are (where if T' = Ay,..., A,, T =1A4y,... 14,
and likewise for 7T")
T'FA '-A
———  Weakening ——— Weakening
TJAF A £ T F74, A "
IVAJJAFE A I'F?A,7A, A
——— Contractiong —— Contractiony,
VA A I'F?7A, A
I'NAFA I'FAA
—— Dereliction, ——— Derelictiong.
IVAFA I'F?7A A
TARTA TEATA
—— Promotion, —— Promotiong
ID,7ARTA T'"HIATA

Promotion corresponds to storing things in memory. Read Promotionr as saying that if
duplicable inputs !I" give rise to a transient output A (or the repeatedly consumable 7A),
we can duplicate I' some more to as many copies of A as we want. So it is safe to store
A in memory. We can rearrange Promotion, (using the negation rules) to

T+ AL ?A
IT, HI(A1),7A

Promotion,

which says that if duplicable IT' gives a transient input A+, we can duplicate this input
as much as we want; i.e. it can be stored.

Weakening corresponds to erasing from memory. If A follows from I', it continues to
follows from I' plus whatever else we choose to ignore / erase from memory. Contraction
corresponds to copying from memory. Dereliction corresponds to reading from memory.

The exponentials are sometimes known as modals. This is because the rules defining them
are similar in form to the modal O and < operators of S4 modal logic. Also not that there

inter-derivability under negation
1A = (745t

1s similar to
04 = ~O(-4)
3.1.5 Implication

(Multiplicative) implication can be defined classically as

A—oB=4 A3 B
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(c.f. the traditional classical definition A — B =4 —A V B). However, par is only a
classical connective: it requires multiple conclusion sequents. Therefore, this definition
will not do for intuitionistic versions of linear logic. Fortunately, we can take implication
as primitive, and employ the rules

'A ABHC A+ B
—Or —_————— —OpR

I,A,A—oBFC THA—oB

It is also possible to define an additive form of implication, but we will not go into this
— see [Troelstra:Inll], ch4. It turns out not to be very interesting.

3.1.6 The Identities

In traditional classical logic, the constants verum and falsum (T and L) are identities, in
much the same way that 1 and 0 are in arithmetic. The identities map conjunction and
disjunction onto themselves

e ANT=A(cfNx1=N)
e AVL=A(fN+0=N)

But now we have two forms of conjunction and disjunction, so we need two forms of
identity.

e Multiplicative identities: 1 and L:

(A1) =A
(A 1)=A4
1t =1 1+t=1

o Additive identities: T and O:

(A&T)=A
(Ap0)=A
T+=0 0t=T

The rules for the identities are as follows

— 0 — 7
roFA - reET,a °
| Tk A
1, rra
L+ N
r-A 1

L —1R

—1
T,1FA
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Intuitively, we can think of the identities as follows

e Unit: 1
The trivial resource that can be produced from nothing. Another way of putting
this is that if a collection of resources produces 1 (and nothing else), then we can
consume / throw away that collection of resources

e Top: T
Top consumes all resources

e Imposibility: 0
The impossible resource, or something that will produce any resource (in the same
way that T consumes all resources).

e Bottom: L
This is the resource that can be consumed by nothing. It represents resources
(premises) left over and unused in a derivation.

3.1.7 Intuitionistic and Classical Linear Logic

As with traditional logic, intuitionistic linear logic is obtained by restricting ourselves to
single conclusion sequents. This is tantamount to ruling out any possibility of contraction
and weakening on the left. Classical linear logic employs multiple conclusion sequents.
Figures 3.1 and 3.2 show the sequent systems for intuitionistic and classical linear logic.

Note that not all the connectives and constants used in classical linear logic are available
for intuitionistic linear logic.

Note also that the cut rule can be eliminated for both classical and intuitionistic linear
logic.

3.2 Constructivity in Linear Logic

Both classical and intuitionistic linear logic are constructive. This is unlike traditional
logic, where the move to multiple conclusion sequents destroys constructivity. So why is
it that a multiple conclusion sequent calculus for linear logic can still be constructive?

The brief answer is that it is uncontrolled contraction and weakening on the right that
loses constructivity. In the traditional case, single conclusion sequents rule out at a stroke
the possibility of contraction and weakening on the right. This leaves us with intuitionistic
logic, which allows uncontrolled contraction and weakening on the left. But linear logic
does not allow uncontrolled contraction and weakening on either the left or the right. It is
therefore unnecessary to control the application of these rules on the right by the sweeping
means of single conclusion sequents. We have the necessary degree of control to ensure
constructivity, even with classical multiple conclusion sequents.
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axiom

AFA

T'-A A,Bre
T,A,A—oBFC

—©r

T,A,BFC

—  ®r
I, A® BFC

T,AFC T,BFC
&r1 &
T,A&B+C  T,A&BFC

I AFC T,BFC
[LA®BFC

I'eB

———  Weakening
TAF B £

T,Al B
T,JAF B

Dereliction,

r-A

—1
riFA -

—0
r.o-A -

L2

Tr4 AArB
T,AF B

cut

I'AFB
S,
I'FA —oB

T4 AFB
T'A+-A®B

QR

r-A I'tB
'+ A&B

r-A I'-B

(&5} (&5}
T-FdAeB 'TrAeB ©
T IA1AF B

TAF B

Contractiong

THA
' HA

Promotion,

— 1z
F1

—TR
=T

Figure 3.1: Sequent Calculus: Intuitionistic Linear Logic
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. I'MFA A A, ToF As
axiom cut
AR A ', T Aq, Ay
'FA A 'y, BF Ay I'"AF B,A
—or — —op
Fl,FQ,A_OBl_Al,AQ FI—A—OB,A
I'NA,BFA I EA A I'sF B, A
— ®
ILA@BFA © [, Dok A® B,ALAy
I',Ar Ay TI'y9,BF Ay I'HA B A
B, — Bz
I',T'5, A% B+ Ay, Ay 'A% B,A
I'NAFA I''BEFA 'FAA I'EB,A
&1 &ro R
I A& B+ A I A& B+ A ' A&B, A
I'NAFA I''BFA 'FAA I'B,A
S Dr1 Dr2
rAeBFA '-Ae B,A '-A® B, A
'-A '-A
——  Weakening, — Weakeningr
TVAFA T'F7A,A
VIAJJAFE A I'NE?A,7A, A
— Contractiong —— Contractiong
TVAF A 'F74,A
IAFA I'FAA
—— Dereliction, —— Derelictiong.
VA A I'E7A A
TARTA ' ATA
— Promotion, —— Promotiong
7AETA I'HATA
T'FA 1
1 — 1z
riFA © H1
—0 — T
oA - TFT,A °
'-A
— 1, Y
L+ IFL1,A

Figure 3.2: Sequent Calculus: Classical Linear Logic

63



CHAPTER 3. BASIC LINEAR LOGIC 64

Of course, this answer raises a further question. Why does contraction and weakening on
the right lead to non-constructivity? The remainder of this section attempts to answer
this question, following the discussion in [GirLafTay:pat].

Keeping Track of Proofs

The discussion of the non-constructive nature of traditional classical logic pointed the
finger of blame at the natural deduction rule of reductio ad absurdum:

—A
1
— RAA
A

The criticism was that any proof resulting in | needs to be ‘thrown away’ in case it infects
anything that depends with it. The rule of RAA not only throws away the proof of L, it
also introduces a new, and unnconnected proof of A. There is no way of keeping track of
where exactly this new proof came from.

In the sequent calculus formulation of classical logic, the notion of (not) ‘keeping track’ of
where proofs came from takes a somewhat different form. There is nothing like the rule of
RAA to blame. Instead, in a sequent system contraction and weakening are the culprits.

As mentioned at the beginning of this chapter, weakening (on the left) allows one to
introduce fake dependencies: given that I' - A one can weaken this to I', B - A, where it
is not immediately obvious that B contributes nothing to the derivation of A. Weakening
on the right allows you to go from I' - A to I' = A, B where it no longer obvious which of
A or B follows from I'.

Suppose we have two proofs of B

D Do

FB FB
By means of contraction and weakening on the right, plus cut, we can combine these two
proofs as follows

Dy D,
FB FB
Weakeningr ——— Weakening,
FC,B CHB
cut
FB,B
Contractiong
FB

To eliminate the cut by pushing it upwards, we have a choice of whether to view the cut
as being on the B or the C formula in - B, C. Unfortunately, the choice leads to two very
different cut-free proofs, namely:
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Dy D,
- B - B
What this means is that there is a single proof that can reduce, via cut-elimination to
either Dy or Dy. Which is to say, however different these proofs are, classical logic regards
them as being the same proof. Or put another way, classical logic says that all proofs of
a particular type (e.g. B, A — B, etc) are identical. This is sometimes expressed has

saying that classical logic has no interesting denotational semantics (beyond the normal
truth-conditional semantics that identifies all proofs of the same proposition).

To sum up more informally. Contraction and weakening on the left make it hard to
tell which premises were used to derive a particular conclusion. But contraction and
weakening on the right are worse: they make it hard to tell which conclusion came from
the premises.

Classical linear logic is constructive, i.e. it allows us to keep track of where proofs come
from, because it limits the application of contraction and weakening. Traditional intu-
itionistic logic is constructive because it completely prohibits contraction and weakening
on the right.

3.3 Natural Deduction

Up until now, we have considered linear logic as a development of sequent calculus. Se-
quent calculus can be seen as a kind of meta-level description of how natural deduction
proofs are carried out, which includes (extraneous) information about the order in which
certain inference steps were carried out. One might therefore expect a smooth transition
to natural deduction formulations of linear logic. Such formulations can be given, but for
Girard at any rate they are less satisfactory than the sequent formulations.

3.3.1 Tensor Fragment

If we confine our attention to the fragment of linear logic comprising only implication and
tensor, plus !, we can formulate the natural deduction system shown in figure 3.3.

Discharging Assumptions The restrictions on discharging assumptions are stricter
for the linear system than the non-linear systems we have seen previously: exactly one oc-
currence of an assumption must be discharged. Discharging zero occurrences corresponds
to weakening, and more than one to contraction.

Parasitic Rules The elimination rule for tensor is parasitic in the same way that the
disjnuction elimination rule was for traditional natural deduction. This leads to additional
commuting conversions when it comes to the normalization of linear natural deduction
proofs.



CHAPTER 3. BASIC LINEAR LOGIC

Weakening
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— Dereliction
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A—oB
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B
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1

ntraction; ;

47]

Promotion,;_j

Figure 3.3: Natural Deduction for Tensor-Implication Fragment
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Exponentials The promotion rule (or !~introduction) is not the version given in [Troel-
stra:Inll], but the corrected one of [BBPH].

3.3.2 Gentzen Style ND

The additive connectives need to share the same contexts (i.e. premises and assumptions.)
There is no natural way of representing this in the Prawitz style natural deduction scheme
used for the implication tensor fragment. Instead, a sequent style natural deduction
system make the sharing or otherwise of contexts explicit. The resulting system for
intuitionistic linear logic is shown in figure 3.4

To obtain natural deduction for classical linear logic, we take the rules for intuitionistic
linear logic, plus

e Define negations as
At =4 A—o 1L

(Note that L is the unit for % , so that AL ® L = AL, If we define A — B =4
A+ % B, we can then see that A —o L = A1)

e Add the rule

I'NA—ol1lFL1
THA
e Define
A® B=y4 (At ®B)*
TA =g (!Ai)L

3.3.3 Normalization and Term Assignment

Proof normalization and the Curry-Howard isomorphism carry across from the natural
deduction system for traditional intuitionistic logic to linear intuitionistic logic.? As be-
fore, normalization corresponds to cut-elimination in the sequent system. One could thus
inherit a term-assignment system for sequent formulations of linear logic from the natural
deduction system. However, proof nets (next chapter) provide a more interesting and
direct way assigning proof terms for sequent systems.

Normalization

We will not list all the reduction rules for linear natural deduction (in particular, reduc-
tions for the additive connectives are essentially the same as for non-linear conjunction
and disjunction). For example, we have

3Though dealing with the exponentials is not entirely straightforward.
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T.AF B TFA oB AFA
————— 07 —o¢
I'FA—oB T,A+ B

T'A AFB I'A®B AABFC
®
I AFA@B T.AFC ¢
'A TF+B T+ A&B Tk A&B
7 &gy &eo
T+ A&B THA T+B
THA T+B T-A@B AAFC ABFC
D11 D12 be
T-AeB TFA®B T,AFC
1  AFA
— 1 1c
F1 ILAFA
T —0
reET - roFA &

[ HAL. Do A, Ay A B

Ti,....,T,, F'B

AFA

THA  AJAIAFB
T,AF B

Contraction(lg )

I'HB
I'kB

Dereliction(¢ q)

THA AFB
T,AF B

Weakening(!s 1)

axiom

Figure 3.4: Sequent ND for Intuitionistic Linear Logic
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AF A .
FA:FB D :
I'-A-oB A+ A ;

-
T,AF B ¢ A+ B

1).1 1).2 Dl DQ

: : AFA BFB : :
hed Lieb : —s T,FA 4B
I',IFA®B AABFC

(9
I,[3,AFC ¢ T, Ty, Al C

1A, F1A,, ... 1A, FIA,

T HA,....TyFA,  14;,... 1A, F B . :
Prom B .
Ty,...,T, FB ry,....T, - B

Dereliction

Ty,....T, - B

(There are also reductions for a promotion followed by a contraction, and a promotion
followed by a weakening.) Commuting conversions are also required for the parasitic rules
like ®¢, e.g.

Al|lB AllB
A][B s
A®B C D —, C
Re . . r
C ) A®B D
T Re
D D

Term Assignment

Figure 3.5 shows the term assignment for the intuitionistic linear logic. The assignment
introduces some new term constructors. The additive connectives make use of the con-
structors familiar from intuitionistic logic.

let and ® Introduction of A ® B gives rise to a tensor pairing of proof terms, a X b,
where a and b are the proof terms of A and B. However, this is not an ordinary pairing:
we are not allowed to project down onto the individual elements a and b. This is unlike
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z:A+-f:B 'rf:A—oB AFa:A
—0 —o
TFXef:A—oB T AF f(a): B ¢
lka:A AFb: B 'Fa:A®B Az :Ay:BFf:C
® ®
I AFaxb:A@B I Abletabez xyinf:C ‘
I'Fa:A I'Eb:B 'kFp: A&B I'kp: A&B
&z &e &eo
't (a,b) : A&B I'kfst(p): A 't snd(p) : B
I'kFa:A T'b6:B

71 72

S S
I'Finl(a) : A® B I'Finr(b) : A® B
'Fm:A®B Ax:AFp:C Ay:BlFq:C

I'AF [case m (inl(z) p) (inr(y) ¢)] : C

D¢

I'kFi:1 AFf: A

1
Fael IAFletibe xinf: A ‘
— 17 0¢
THt:T I'z:0Fabort, : A
I'yFay 1A, ..., T Fay A, 1 : Ay, . zn A F f: B
- Promotion
ry,...,I'y - promote ay ...an forxy ...z in f:!B
'Fa:lA AFf:B 'ka:lA
- - Weakening - Dereliction
I'yAFdiscard ain f : B [ + derelict(a) : A

I'Fa:lA AxdAylA-f: B
I'NAFcopyaasz,ye f:B

Contraction(lg )

axiom

z: Az A

Figure 3.5: Term Assignment for Intuitionistic Linear Logic
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the additive pairing (a, b), where fst({a,b)) = a and snd({a,b)) = b. Instead, elimination
makes use of a let constructor that can do pairwise substitution of elements in tensor
pairs

letaxbbeuxwvinf =3 fla/u,b/v]

Linear Abstraction In the absence of weakening and contraction, all lambda terms
are linear. That is, in the expression A\z.f, the lambda will bind exactly one occurrence
of z. The following is a linear lambda term: Az.p(z). The following two are not Az.y,
Ar.p(z,x).

Identities Two constants, * and t are introduced as proof terms for the identities 1 and
T.

Exponentials The term constructors for the exponential ! are intended to have
mnemonic names. Contraction gives rise to copying variables, weakening to discarding
them. A derelicition of a variable corresponds to taking it out of storage, and promotion
moves stored variables from one place to another.

Terms for Classical Linear Logic

Since classical linear logic is constructive, one can construct term assignments for it, as
well as for intuitionistic linear logic (see [Bierman,Abramsky]). However, the existence of
proof nets has in part deflected effort from this enterprise.

3.4 Quantifiers in Linear Logic

The universal and existential quantifiers in linear logic are given the same proof rules as
in traditional logic.* For the sequent calculus:

I', A[z/t] l_AVL 'k Alz/yl, A .
V. AF A 'EVz.A A
I Alz/y|F A '+ Alz/t], A
I3AFA © RN

(where y must not occur free in I" or A).

For natural deduction:

4There has been some work on more intrinsically linear quantifiers, but we will not go into this here.
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'+ Alz/y] I'-Vz.A

T Ve

[+ Vz.A I+ Alz/t]

I'F Alz/t] I'-3z.A A Az )yl F C
Traea LAFC :

(where t free for z, y free for z and not free in A).

However, even though the rules of inference are the familiar ones, the meaning of the
quantifiers is subtly changed in the absence of contraction. A formula like Vz.¢(z) is not
to be read as saying that all zs are ¢. In order for this to hold, we would need to use
contraction to repeatedly copy the universal statement and apply it to every z. Instead
the formula is to be read as saying that any one z will be ¢, but only the one.

The difference between “any” and “all” is brought out by thinking of what it means when
you tell a child they can “pick any cake they like.” This normally means that they are at
liberty to choose any one cake, not that that they can pick all the cakes.

3.5 Axiomatic System

For the sake of reference, the axiomatic (or Hilbert style) presentation of linear logic is
shown in figure 3.6.

3.6 Encoding Traditional Logic

Since the exponentials allow controlled reintroduction of contraction and weakening, it is
possible to represent traditional intuitionistic and classical logic inside linear logic.

3.6.1 Intuitionistic Logic

Given a formula A of intuitionistic propositional, its encoding in linear logic, A’ is defined

as follows
A" = A (atomic A)
(ANB)! = A&B'
(AVB)! = A'@ B’
(A— B) = 14" 0B
(mA) = 14" -0
1 =0

Al,..., AyFB = 14i,... 1A |- B
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Azioms

1. A—oA

2. (A — B) = ((B — () — (A — ()
3. (A — (B —~C)) o (B (A—C)
4. A — (B - A®B)

5. (A—o(B—-oC)) o((A®B) —oC)

6. 1

7. 1—o(A—oA

8.  (A&B) —o 4, (A&B) —o B

9. ((A — B)&(B — C)) — (A — (B&())
10. A — (A® B), B - (A® B)

11. (A—oC)®d(B—oC)) o ((A®B) - ()
12. A—oT

13. 0o0A

14. B — (A — B)

15. (A —o (1A — B)) - (1A — |B)
16. (A — B) — (1A - !B)

17. 1A o A

18. 14 —oll4

CLL. (A—ol)—o1l)—oA

—o AA—oB=B
® A B=A®B
! A=A

Comments
Axiom CLL for classical linear logic only
At =g A—o L
Other connectives defined via negation

Figure 3.6: Hilbert System for Linear Logic
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3.6.2 Classical Logic
3.7 Semantics / Applications

For people who are familiar with standard set-based model theory (e.g. Tarskian truth-
value semantics for classical propositional and predicate logic, Kripke semantics for modal
and intuitionistic logics, etc), there is little in the way of intuitively comprehensible formal
semantics for linear logic. This is not to say that there is no semantics for linear logic;
on the contrary, there are numerous proposals on the market. But they require some
mathematical sophistication to be appreciated.

In this section, we briefly sketch some of the approaches to the semantics of linear logic.
The aim is not technical, but to try and harden intuitions about what linear logic means.
Semantics can be valuable in finding applications for a logic, and so in some cases we
will merely give an informal semantics, indicating how linear logic may be applied in a
particular area.

3.7.1 Internal-External Semantics

Perhaps the most intuitive semantics proposed for linear logic is due to [Mitchell]. It
is founded on the metaphor that proofs are consumers. Proofs make use of a global
resource, shared between an internal and an external environment. The internal envi-
ronment represents the global resource that has not so far been used / allocated. The
external environment represents the global resource that has bee used. A conservation
principle demands that the global resource remains the same size, regardless of how it is
spread across the internal and external environments.

We use a pair (m,n) to represent the global resource, m + n, spread across the internal
environment m and the external environment n. An initial distribution is one where none
of the global resource has been allocated to the external environment, i.e. (m + n,0).

An initial forcing relation |=( is a relation between internal-external pairs and atomic
propositions. Essentially (m,n) =9 A means that satifying the atomic proposition A
requires amount n of resource to be consumed. We recursively define a satisfiability
relation = as follows

o Atomic formulas

(m,n) = A iff (m,n) Fo A

e Tensor ®
(m,n) E ¢ @1 if I ni,ng s.t. n=mny + no:
(m+n9,nq) = ¢ and (m + ny,n9) E 1
That is, the resource n allocated in satisfying ¢ ® 1) can be split into two parts. One

part, nq is needed to satisfy ¢, and the other ns to satisfy ¢. Combining these two
parts, ni + no = n is enough to satisfy ¢ ® 1.
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e Par ®
(m,n) = ¢ B Y if Vmy, mg s.t. m =mq + ma:
(my,n+mg) E ¢ or (me,n+mq) =1
No matter how much of the internal environment is allocated to the external en-
vironment (i.e. consumed) it will be enought to satisfy at least one of either ¢ or
1. The resource already allocated, n, represents a lower bound on the amount of
resource needed to satisfy either ¢ or 9.

e Negation
(m,n) | ¢ if (n,m) = ¢

Your remaining unallocated resource is insufficient to satisfy ¢

e Implication — (m,n) = ¢ —o ¢ if ¥V my, mg s.t. m = mq + ma:
(n+mg,mq) = ¢ or (me,n+mq) =1
Implication is equivalent to ¢~ B . If (m,n) = ¢ —o 4, for any allocation of
the remaining internal resource, either (1) it it (m;y) is insufficient (on its own) to
satisfy ¢, or (2) when it (mg) is combined with the currently allocated resource n it
is sufficient to satisfy ).

e With &
(m,n) = &b if
(m,n) = ¢ and (m,n) |= 4
The allocated resource is enough to satisfy ¢ and also enough to satisfy 1, but not
both at once

e Plus &
(m,n) E @ if
(m,n) = ¢ or (m,n) =9

The allocated resource satisfies one of ¢ or 1, but we do not specify which.

e Unit 1
(mn)E=1ifn=0

Unit is satisfied without the consumption of any resources

e Bottom L
(m,n) = Lifm#0
Bottom is satisfied whenever you still have some unallocated resource. This repre-
sents a kind of failure, in that derivations are expected to consume/allocate all of
the global resource. However, it is not a devasting form of failure like impossibility
(0), from which anything follows.

e Top T
(m,n) = T always
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Top is always satisfied: it can soak up any unallocated resources. This additive
identity is most similar to verum/true in traditional logic

e Impossibility 0
(m,n) =0

Impossibility is never satisfied: c.f. falsum in traditional logic

e Of course !
(m,n) El¢ if n=0and (m,n) = ¢

This is equivalent to defining !¢ =4 (1&¢). That is, ¢ can be satisfied without
consuming any resources.

e Why not 7
This is equivalent to defining 7¢ =4 (L @ ¢). Either ¢ is satisfied, or there is some
remaining unallocated resource.

To illustrate this semantics, Mitchell discusses the (infamous) example of buying
cigarettes. The formula $§1 —o C says that if T spend a dollar ($1), I can obtain a packet
of cigarettes (C). Let (m,n) |=¢ $k if n = k (i.e. if T have spent & dollars, and thus moved
from the internal to the external environment. And for goods G, let (m,n) |=¢ G if the
cost of G is $n. It is then possible to show that

(m0)ES$l oCif(m—1,1) EC

That is, transfering one dollar to the external environment in exchange for the cigarettes
C. It can also be shown that

(m,0) E(B1®9%1) - (CCif(m—-2,2) ECRC

Mitchell goes on to point out that the semantics sketched above is incomplete for linear
logic: the model makes A& (B & C) equivalent to (A® B)&(A® C'), which is not a theorem
of linear logic. This arises because the additives are defined as classical A and V. In order
to correct this, Mitchell offers a refinement of the model using quantales. We will not go
into this here. Hopefully the incomplete semantics is enought to shed some intuitive light
on the linear logic connectives.

3.7.2 Semantics of State
3.7.3 Coherence Spaces
3.8 Fragments of Linear Logic

Table from [Lincoln]
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Fragment Complextity
® B & @ ! 7 | Undecidable
® B & PSPACE complete
® B !7 Unknown (check!)
® B NP complete

Note that classical propositional logic is NP-complete

7



Chapter 4

Proof Nets

Proof nets are a new way of representing sequent calculus proofs. Recall that sequent
proofs can be seen as linearizations, or sequentializations, of natural deduction proofs.
This linearization means that irrelevant differences in the order in which certain proof
rules are applied can lead to spurious distinctions being drawn between sequent proofs.
For example, on p. 7?7 we saw how two distinct, cut-free sequent proofs mapped onto the
same natural deduction proof. The two sequent proofs only differed in the relative order
in which two proof steps were applied. These sequential differences were ‘parallelized’ out
in the natural deduction proof.

For those familiar with formal language theory, the following analogy might help. One can
define various forms of derivation for context free grammars: leftmost derivations (where
the leftmost non-terminal is always expanded); rightmost derivations (where the rightmost
non-terminal is always expanded); top-down derivations; bottom-up derivations; etc. All
these different (sequential) derivation regimes give rise to different orders of grammar
rule application. Parse trees abstract away from these inessential ordering differences
to get to the underlying structure that all these different derivation schemes assign to a
string of words. They essentially parallelize those rule applications whose relative orders
are immaterial. Thus one might draw a rough parallel between (a) sequent proofs and
(rightmost / leftmost / top-down / bottom-up) derivations, and (b) natural deduction
proofs and parse trees.

Proof nets provide an alternative means of parallelizing inessential differences in sequent
proofs. Given that natural deduction proofs in some ways already do this, one might
wonder why an alternative method is required. The answer lies in certain flaws in natural
deduction that were pointed out at the end of Chapter 3:

e For (traditional) classical logic, the symmetric pairing of introduction and elimi-
nation rules for connectives is lost, thanks to the reductio ad absurdum rule. By
contrast, the sequent formulation of classical logic is beautifully symmetric.

e Rules like disjunction elimination (and tensor-elimination in linear logic) introduce
parasitic formulas in natural deduction formulations. These necessitate the introduc-
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tion of quite complex commuting conversions in order to make proof normalization
work. Sequent formulations do not introduce parasitic formulas.

e The rules discharging assumptions in natural deduction have a global nature. They
need to refer to the whole structure of the foregoing proof to locate the assumption
being discharged. In sequent calculus, this information is held locally within the
sequent.

This suggests that sequent calculus would be a much better way of representing proofs
than natural deduction, were it not for the fact that it introduces inessential distinctions
between proofs.!

Proof nets have been developed primarily for linear logic, and even then, only for fragments
of the logic — the additive connectives pose various problems. There is a hope that proof
net methods can be applied more generally to other logics (e.g. traditional intuitionistic
logic). But in this chapter, we will focus only on the most basic cases for linear logic.

4.1 Towards Proof Nets

4.1.1 Two Examples

There is a sense in which a linear logic derivation is just an attempt to match up consumers
and producers of atomic (propositional) resources. Suppose for example that we wished

to prove
A, A—oBFB

Note that the negation rule allows us to move each of the premises on the left of the
turnstile to the right, negating them as we go. Thus we get

FAL, (A—B)*, B
Pushing negations inwards, this is the same as
A, A9 B, B

We can connect the positive and negative atomic literals up as follows

(3)
A, A ® B'Y, B

!The view that sequent calculus is ‘better’ is not universally shared. It certainly motivates the devel-
opment of proof nets. But there are plenty of researchers in linear logic who are not actively engaged
with proof nets, and who prefer natural deduction formulation. Against the sequent calculus, one can
for example note that it is asymmetric for intuitionistic logic in a way that natural deduction is not. If
symmetry is an important property, the argument cuts both ways.
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The A and the A’ connect, and the B and the B connect, cancelling one another out.
This indicates that we have successfully matched producers, or inputs, (A+, BL), with
consumers or outputs (A, B).

We should straight away point out that not all ways of connecting positive and negative
atoms result in the successful matching of consumers and producers. Consider for example
the invalid sequent A, B / A® B. Turning this into a one-sided sequent, pushing negation
in, and connecting literals gives rise to

(4) —
A+, A » B, Bt

This is not a valid way of connecting up positive and negative atoms.

Both (3) and (4) are proof structures. However, only (3) is a proof net; i.e. a proof
structure corresponding to a valid derivation.

The main difference between the two proof structures is in the connective, ® or 2. One
would, after all, expect conjunction and disjunction to connect up in different ways.
Crudely put, conjunction (®) brings together the results of two different derivations.
Disjunction (%) characterises the result of a single derivation. The conjunctive struc-
ture is OK, as the the A and B+ atoms connect up to different (one step, axiomatic)
derivations. The disjunctive structure fails, for exactly the same reasons.

The differences between ®and 2 become clearer if we consider the one-sided sequent
formulation of linear logic.

4.1.2 One-Sided Sequent Calculus

The definition of A —o B as A % B in classical linear logic, and the ability of negation to
move all formulas to the right of sequents permits a very compact formulation of classical
linear logic, using one-sided sequents. This is shown in figure 4.1. Consider the rule for
par:

-T,A, B
FT,A® B

Note how (i) the disjunction comes from just one context, I', and (ii) I" appear above and
below the line. We might thus rewrite the rule as

r
A B
AB B

which both makes the surplus context I' implicit, but also marks the fact that the context
is common to both disjuncts.

Now consider the rule for tensor
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axiom

AL A

FT,A +A,B
FT,A,A® B

-T,A +T,B
F T, A&B

T
FT,L

T
FT,74

Weakening

FT,A
FT,74

Dereliction

FT,A AL A
r,A

cut

-T,A,B
]
FT,A® B

T, A -T,B

D1 S2D)
FI,A® B FI,A® B

T

FT,74,74
FT,74

Contraction

T, A
7T, 14

Promotion

Figure 4.1: One-Sided Sequents for Classical Linear Logic
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FT,A FAB
FT,A,A® B

Here the surplus contexts I" and A appear both above and below the line, but note that
they are disjoint. Surpressing the surplus contexts, we might rewrite the rule as

L A
A B
A®B

Here the I' and A express disjointness conditions on how the literals in A and B.

We can also rewrite the axiom rule as

At A

Perhaps a better way of expressing jointness/disjointness conditions on contexts, while
surpressing reference to them altogether, is to draw trees with ‘hard’ and ‘soft’ links:

A B A B
=~ - i _ - \/
AR B A®B
The soft links, represented by dashed lines, indicate shared contexts. The hard links,
represented by solid lines, indicate disjoint contexts The axiom rule stays as it is (i.e.
with a hard link). The notion of hard and soft links makes it easier to understand the
notion of a switch graph.

4.1.3 Switch Graphs

Soft (or par, ®) links point to shared derivations. Therefore, if we break one of the soft
links from a par, the other link should still be able to get us to the derivation. On the
other hand, hard links point to disjoint derivations. If we follow one link from a tensor,
there should not be a cycle (other than through an unbroken soft link) that gets us back
to the other link of the tensor.

This idea is formalized using switch graphs.

e Given a proof structure I, a switch graph associated with II is any sub-graph
obtained from II by taking each par node and deleting one of its soft links while
leaving the other one intact.

e A proof structure II is a proof net iff every switch graph of II is a tree.

Deleting one of every pair of soft par links should break all the cycles in the proof struc-
ture that arise from pars stemming from the same derivation. The remaining tensor
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links should point to separate derivations, and so should not introduce any cycles Let us
illustrate this with some examples.

Consider the valid sequent A ® B - A ® B. As a one sided sequent, this becomes
(A®B)"*, A® B. Pushing negations inwards, this becomes - A+ 2 B', A® B. Connecting
atoms we get the proof structure

| ‘ | ‘
A B At Bt
\/ - —

A®B Al % Bt

This structure has just one par node. We can break either one of its soft links, and get a
tree:

Alﬁz‘;BL Al“-?zBl
At Bt At Bt
A 5 A 5
ier e

Now consider an invalid sequent A ® B+ A 8 B. This gives rise to the proof structure
]

‘ ‘ T 1

A B Al Bt

\/ \/
AQB Al @ Bt

This structure does not contains any soft links to be broken. It is also not a tree, as it
has a cycle — A; At; AL ® B'; B+; B; A® B; A. Tt is therefore not a proof net.
4.1.4 Constructing Proof Structures

Let us informally describe how to prove a sequent using proof nets. We will take as an
example the slightly more complex sequent

A®B,CH(A®B)®C
We proceed as follows

e Move all the formulas on the left of the sequent to the right, negating them as the
cross the turnstile. This gives a one-sided sequent.

For our example, this gives

F(A® B, CH(A®B)®C

e Move negation inwards according to the following identities (note that implications
get converted to pars):
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(A® B)t = A+ 3 B+
(A% B)- = Al 3 B
Attt =4
A—-oB=A'3B
(A — B)t =A% B+t
This gives a one-sided sequent in neagtion normal form.

For our example, this gives

(At 3 BY),Ct,(A®@B)®C
e Recursively convert the individual formula into trees according to the following rules

1. 7(A) = A, 7(A+)= A+
for atomic A

2. 7(A®B) = (\/

(4)
3. 7(A®B)= ~~—--_ __-—7

This gives a proof frame.

In our example, this gives rise to the proof frame:

A B

N~ s

At Bt A®B C
At » Bt (A®B)®C ct

e Connect up positive and negative instances of the same atomic literal. This gives a
proof structure.

These atoms will always occur at the leaves of formula trees.

If there are unbalanced numbers of positive and negative atoms, the sequent is
invalid. (But a balanced number does not imply validity).

If there is more than one positive and negative pair for a given atom, there will be
more than one way of connecting atoms. Not all connections, if any, will lead to
valid proof nets.

In our example, we have only one way of linking atoms, and so only one proof
structure:

Wk

V4
At Bt A®B C
~ v

AL 3 Bl (A® B)®C o
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e Determine if at least one of the proof structures obtained is a proof net. Efficient
ways of doing this will be discussed in the next section.

In our example, note that both switch graphs obtainable from the proof structure
are trees (acyclic). Thus we have a proof net.

At 3 Bt
A B C*

A®B C
\/
(A®B)®C

4.1.5 From Sequent Proofs to Proof Nets

We now indicate how to turn a (one-sided) sequent proof into a proof net. For this, we
need to define premise (entry) and conclusion (exit) nodes for proof structures. Exploiting
the vertical direction in which we have been drawing proof structures on the page, we can
do this informally as follows.

e Any node that has no arc entering it from above is a premise (entry) node

e Any node that has no arc leaving it from below is an conclusin (exit) node

For example, in the (partial) proof structure

’—\
A B Bt
A4
A®B

the A node is an entry node (it has no arcs coming in to the top of it), and A ® B and
Bt are exit nodes (they have no arcs leaving from beneath them).

The rules for converting a one-sided sequent proof II to a proof net N (IT) are as follows,
and operate recursively

1. If IT is an axiom, - A, A+, then N(II) is the net comprising the single axiom link
’—\

A At
2. If II is of the form

I

T, A, B
T
FT,A%3 B
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(where II; is the derivation leading to this last step in IT), then A/(II) is

N (1)
A, B,

/

A4 B

AB B
where A, and B, are the A and B exit nodes of the proof net for the sub-derivation
Iy

(This means that the entry nodes of N'(IT) are the entry nodes of NV (I1y); its exist
nodes are those of N'(II;) minus A, and B,, plus A® B.)

3. If I is of the form

I, I,
T, A - A, B
FT,A,A® B

then N (II) is

where A, and B, are the A and B exit nodes of N (II;) and N (Il) respectively.

We can illustrate this conversion with a one-sided proof of C,A® B+ (A® B)® C. One
such proof is
HA At + B, Bt
+HA®B, A", Bt
FA®BA¥@BL@ FC,Ct
(A® B)® C, A+ 5 B+, C*

®

Conversion to a proof net proceeds as follows, working downwards from the axioms:

TO COMPLETE
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This yields exactly the proof net from the previous subsection.

A crucial point to note is that there is a second one sided proof, differing only in the order
of rule application:
A, At + B,B*
®
+HA®B, A", B+ +C,Ct
(A® B)® C, A+, B+, C+,
L T2
(A By C,A~ 3 B—,C

®

This alternate proof maps onto exactly the same proof net.

The way that the above two sequent proofs can map onto the same proof net illustrates
the parallelizing nature of proof nets. Proof search for the sequent calculus is sequentially
driven by the recursive nesting of the connectives in the formulas of the sequent. Proof
nets unfold this recursive structure. The atomic leaves of the formulas are laid out for
potential parallel access. Proof search with proof nets amounts to finding alternative ways
of connecting up atoms, and this is only minimally constrained by the recursive structure
of the formulas.

4.2 Classical Proof Nets

We now gives a more formal definition of proof nets for classical multiplicative linear logic,
CMLL (without identities or exponentials).

Links The links that can be used in a proof structure / proof net for CMLL are:

e Axiom link

A At
Premise (entry) nodes: none
Conclusion (exit) nodes: A, A+
e Tensor link
A B
M

Premise (entry) nodes: A, B
Conclusion (exit) nodes: A ® B



CHAPTER 4. PROOF NETS 88

e Par link
1 B
A% B
Premise (entry) nodes: A, B
Conclusion (exit) nodes: A 3 B
e Cut link
A At
L7

Premise (entry) nodes: A, A+
Conclusion (exit) nodes: none

We will say more about cut links later.

Proof Structures A proof structure is a graph made up of links such that

1. Each premises of each link is connected to exactly one conclusion of some link
2. Any conclusion of any link is connected to at most one premise of some link
Proof Nets A switch graph (or switching) of a proof structure is a graph obtained by

omitting one of two soft edges of of every par-link. A proof structure is a proof net if
every switching is a tree.

4.2.1 Checking Correctness

The coorectness criterion for proof nets in terms of switching is also known as the Danos-
Regnier criterion. Girdard originally used a more complex (but equivalent) criterion
known as the long trip condition. Essentially, this says that any trip (cycle) from a node
back to itself must pass through at least one par node. A wide variety of further alternative
correctness criteria have been proposed

e Long trip
e Switching (Danos-Regnier)
e Acyclic-connected

e Hereditary secessiveness
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e Graph parsing
e Deadlock freeness

We will briefly review a quadratic way of checking the Danos-Regnier connection, due to
Gallier. The naive algorithm exponentially constructs every switching and checks it for
cycles. The Gallier algorithm (for cut free structures) is

1. Base case:
If the graph comprises a single axiom link, it is a proof net

2. Recursive 1:
Delete all the bottom level par nodes (i.e. those whose conclusion nodes are not
connected to anything), leaving their premise nodes in place. This has the effect of
deleting all the bottom level soft edges. We then run the algorithm on the resulting
(possibly unconnected) sub-graphs

3. Recursive 2:
If there are no bottom level par nodes, we find a bottom level tensor node to delete.
Deleting the node (i.e. removing the tensor link, but leaving its premises in place),
must split the graph into two unconnected graphs G1 and G2. We then run the
algorithm on G1 and G2.

If removing the link results instead in a single connected (i.e. cyclic) graph, we
must instead choose another tensor link to remove. That is, removing a tensor is a
non-deterministic step. If no tensor is such that its removal splits the graph, fail.

4.3 Cut Elimination and Proof Nets

Mirroring the cut-elimination property of linear logic, cut links in proof nets can be
eliminated. What is more, they can be eliminated directly and locally using the following
reductions

\

A A+t A becomes A
L |
A B B+ AL
\/ Tt~ -7
A®B At i Bt

becomes

A B Bt At
| — ]

[NOTE: rewrite to cover other symmetric cases]
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4.4 Non-Commutative Proof Nets

Non-commutative linear logic (useful for categorial grammar) is obtained by dropping the
rule of exchange. For proof nets, non-commuativity corresponds to a planarity condition

e In a planar proof net, axiom links must not cross one another

In order to ensure planarity, we must be careful about the left-right order of formulas
when pushing negation inwards. Pushing negation in over either tensor or par flips the
order of the conjuncts / disjuncts. Thus

(A Byt = Bt=zm At
(A Byt = BteoAt

Similarly, the individual formula trees in the proof frame must be set out in the order in
which they occur.

Non-commutative proof nets have been applied to parsing categorial grammars. Morrill
describes a scheme for tabularizing non-commutative nets (see chapter ?7).

4.5 Intuitionistic Proof Nets

Most linguistic applications of linear logic are in fact applications of intuitionistic linear
logic. Intuitionistic in the technical sense that we are only interested in establishing a
single conclusion (e.g. that a sentence is well-formed, or has a meaning).

4.5.1 Implication-Only ILL Nets
4.5.2 Essential Nets

Extension to intuitionistic implication-tensor fragment

4.6 Term Assignments for Intuitionistic Proof Nets

4.6.1 Implication-Only ILL Nets
4.6.2 ILL Nets

[Check what happens when we introduce tensor.]

4.7 Exponentials and Other Links



Chapter 5

Glue Semantics

This chapter gives an overview of ‘glue semantics’. This is an approach to the semantic
interpretation of natural language that uses a fragment of linear logic as a deductive glue
for combining together the meanings of words and phrases in a syntactically analysed
sentence. For a recent collection of papers, see [Dalrymple99].

In its more recent developments, glue semantics bears an affinity to categorial semantics.
That is, it is akin to the kind of compositional semantics obtained for categorial grammars
by means of the Curry-Howard Isomorphism [Carpenter,Morrill]. A crude characterisation
would be that glue semantics is like categorial grammar and it semantics, but without the
categorial grammar. It provides a means for grafting a categorial style of semantics onto
other syntactic formalisms; specifically Lexical Functional Grammar.

As we will see in the next chapter, linear logic has been extensively applied to categorial
grammar. However, this has necessitated logical extensions to produce non-commutative
and multi-modal versions of linear logics. These extensions are required to account for
word order phenomena, which are one of the central concerns of any syntactic theory.
By the contrast, the fragment of linear logic employed in glue semantics requires no new
logical developments. Word order phenomena are assumed already to be accounted for
by the background syntactic theory. The semantics just uses a conservative fragment of
the kind of commutative linear logic reviewed in Chapter 3.

This is why we are starting our survey of linguistic application of linear logic with glue
semantics: it requires no extra developments to linear logic. However, it does raise some
algorithmic / proof search issues that do not arise so prominently in standard logical inves-
tigations. In particular, there is a problem of efficiently performing multiple derivations
of a given conclusion from a set of premises. This corresponds to efficiently calculating
all possible interpretations of a sentence because of the wholesale ambiguity that charac-
terizes natural language.

91
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5.1 Basic Glue Semantics

Let us introduce glue semantics by considering a very simple example, the sentence “John
saw Fred.” Simplifying a number of syntactic details, we might present the syntactic
analysis of the sentence as follows

Phrase Structure Functional Structure

T e T T T T - PRED ‘saw’

e » J£ [SUBL »g: [PRED “John'|
‘ Yo -7 |OBJ>h: [PRED ‘Fred]
=

The structures shown are what you would see in a Lexical Functional Grammar (LFG)
style of analysis. The phrase structure (known as constituent- or c-structure in LFG)
represents the kind of parse tree familiar from e.g. context free grammar. The functional
structure (f-structure) is a projection off the c-structure that exhibits the traditional
grammatical relations of ‘subject’, ‘object’, etc. The arrows show how nodes in the c-
structure correspond to nodes in the f-structure. Note that that the Verb (V), Verb
Phrase (VP) and Sentence (S) nodes in c-structure all correspond to the same f-structure
node, here given the arbitrary label f.

We will assume that f-structure is is the primary syntactic structure determining com-
positional semantic interpretation. This assumption is a matter of convenience rather
than necessity. Within versions of glue semantics developed for LFG, it is possible for
structures besides f-structure to contribute to semantic interpreation (e.g. c-structure).
And moving outside an LFG framework it should be possible to drive semantics directly
from phrase structure.!

F-structure drives the semantics in conjunction with semantic entries in a lexicon. Let
us use the meta-variable 1 to refer to the f-structure node that a particular lexical leaf
in c-structure projects onto. (If we were running direct off phrase structure, we would
want 1 to refer to the node that is maximal project of the lexical item. In the case of
the V node, this would be the S node, and the two NP nodes are their own maximal
projections.) Entries in the semantic part of the lexicon look like the following:

Word  Meaning Glue
John john T
Fred fred T

saw  Ay.A\z. see(z,y) 1.0BJ —o (1.SUBJ — 1)

!No work has been done on providing glue semantics from grammatical formalisms besides LFG. But
in the absence of evidence to the contrary, there seems no reason why versions could not also be developed
for other formalisms, like Head Driven Phrase Structure Grammar (HPSG).
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This says that (a) whatever f-node the word John projects onto, 1, its meaning is the
constant john, (b) the meaning of the node that fred projects onto is the constant fred,
and (c) the meaning of saw is a two place predicate, Ay.\z. see(x,y), which requires its
object 1 .OBJ and subject 1 .SU BJ meanings as arguments to return the meaning of the
f-node that the verb projects onto, 1.

In the lexicon, the 1 meta-variables are uninstantiated. Thus a word like John can occur
as either subject or object, and it is only a particular parse that can tell us which. Given
the parse of the sentence “John saw Fred’, we can instantiate the lexical meta-variables
to specific values, namely

Word  Meaning Glue
John john T:i=y
Fred fred T:=h

saw Ay \z.see(z,y) 1.0BJ —o (1.SUBJ — 1)
.— f.OBJ —o (f.SUB.J —o f)

= h —o (g — f)

(To determine the value of f.OBJ, we have to follow the OBJ path from the f node to
see which node is its value — in this case h.)

As a result of this instantiation of general lexical entries, we get three lexical premises

john : g
fred : h
Ay Az. see(z,y) : h—o(g—of)

The expressions on the left of the colon are meaning terms, written in some chosen mean-
ing representation language. The expressions on the right of the colons are linear logic
formulas. The atomic propositions, f, g and h, corresponding to syntactic constituents,
represent semantics resource that produce and consume meanings.

Given our discussion of the Curry-Howard isomorphism in previous chapters, we can draw
an immediate connection between meaning terms and proof terms. Meaning terms are
simply proof terms embued with some additional internal structure. In the conventional
CHI, proof terms for premises / assumptions are just arbitrary constants or variables.
But here, the lexicon assigns non-arbitrary terms, sometimes with additional structure,
to the lexical premises. Nonetheless, the combination of the meaning terms to form larger
terms follows exactly the same rules as for the ordinary CHI.

If we ignore the meaning terms for ther moment, we have three lexical premises: g, h
and h —o (g —o f). What we want to do is find a derivation that consumes these lexical
premises to construct a semantic output for the entire sentence, f. In this case, the
derivation is very simple:
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h—o(g—of) h
g—of g
f

To construct the meaning term for f, we include the meaning terms for the premises,
and combine them by means of the functional application that corresponds to the rules
of implication elimination:

Ay Azx. see(z,y) : h — (g —o f) fred : h

—O¢

—o0

Az. see(z,fred): g — f john : g
see(john, fred) : f

—O¢

To ease readability we have performed internal S-reductions on the meaning terms. The
unreduced meaning term constructed for f is

[Ay.Az. see(zx,y)](fred)(john)

The additional reductions are due solely to the extra structure of the initial meaning terms
assigned by the lexicon.

To summarise from this initial example: syntactic analysis and lexical lookup provides a
collection of lexical premises. Each premise comprises a meaning term paired with a linear
logic formula (or glue formulas). Atomic propositions in the glue formulas correspond to
syntactic constituents discovered in parsing. A glue derivation attempts to establish

I'EM:o

where T' represents the lexical premises, ¢ is the atomic proposition corresponding to the
sentence as a whole, and M is the meaning term for the sentence constructed via the
Curry-Howard isomorphism.

More generally, glue semantics assumes that two levels of logical representation are at
work in the semantic interpretation of natural language:

1. Meaning logic:
The logic used to represent the meanings of words, phrases and sentences.

Ideally, one would like to allow for some modularity in the choice of meaning lan-
guage: e.g. first order logic, higher order internsional logic, discourse representation
theory, situation semantics, or whatever one’s favourite meaning representation lan-
guage is. Glue analyses have to date been developed for a Montagovian style of
higher order intensional logic, and for compositional DRT.

2. Glue logic:
The logic used to deductively specify how meanings for words and phrases are to
be assembled. There are various possible choices for a glue logic. But some form
of linear logic seems appropriate for accounting for the basic resource sensitivity of
semantic interpretation: in general the meaning of each word and phrase should be
used once and exactly once.
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5.2 The Core Glue Logic

We now set out the core glue logic underlying glue semantics. We do this by pointing
out that there are two different versions of glue semantics. An early version (1993-97)
that uses a more expressive formalism, and a recent version (from 1997) that uses the
more restricted formalism exemplified in the last section. The advantages of the recent,
restricted version are (1) increased computational tractability, and (2) that pretty much all
the linguistic analyses originally developed in the exressive formalism can be reframed in
the restricted version. The restricted formalism also brings out more clearly the similarities
and differences between glue semantics and the kind of categorial semantics outlined in
[Morrill, Carpenter].

5.2.1 An (Over) Expressive Glue Formalism
Example Revisited

The restricted formalism for glue semantics enforces a sharp separation between the mean-
ing logic (in which meaning terms are expressed), and the glue logic. The earlier, more
expressive formalism mixes them together more. Let us illustrate by going over our ex-
ample of “John saw Fred’ in the earlier formalism.

First, we give the lexical premises the old and new styles

New Old

john:g g ~ john

fred : h h ~> fred

Ay Azx. see(z,y):h —o (g —o f) | Vy,z. h~y —o (g~ x —o f ~» see(x,y)

The older notation uses the binary predicate symbol, ~», that pairs glue atoms with
meaning language expressions. Thus g ~ john can be read as saying that node/resource
g is assigned the meaning john. The formula Vy,z. h ~ y —o (g ~ = —o f ~> see(z,y)
says that for any meanings y and z, if h means y, then if g means z, f means see(z,y).

The derivation to get a meaning for f proceeds as follows. First, universal instantiation
gives

saw - Vy,z. h~ y —o (g ~ x —o f ~» see(x,y)

saw - h~ Y —oVz. (g~ z —o f ~> see(z,Y)

The antecedent of this, h ~ Y matches the premise for ‘Fred’, h ~ fred, subject to
unifying the variable Y with the constant fred. This gives us

saw, Fred F Vz. (g ~ x —o f ~» see(x, Fred)

Universal instantiation of the variable z to X, and the unification of g ~» X with g ~» john

then gives us
John, saw, Fred - f ~» see(john, fred)
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Thus we get to the same meaning as in the previous section.

Note that in this style of representation, glue inference depends on being able to unify
meaning expressions. This has two undesirable consequences.

1. Unification increases the complexity of searching for derivations. In the example
given here, first order unification suffices. But for only slightly more complex exam-
ples higher-order unification (at the minimum, second-order matching) is required.
In the worst cases, higher-order unification is undecidable.

2. Unification of meaning expressions constrains the range of possible derivations. That
is valid pairings of consumers and producers — according to the linear logic glue —
may be ruled out because of unification failure. That is, the meaning expressions
act as labels on deductions, controlling the range of derivations.

The new style of glue representation guarantees that meanings do not constrain valid
derivations. There is no need for higher order unification, either to construct meanings
or to limit derivations. On the other hand, the older style is more expressive.

Defining the Mixed Glue Fragment

To be more precise, let us specify the older, mixed glue formalism. Mixed glue formulas,
G, can be defined as

G = S~ M|S~; M (basic literals)
| G®G
| G—oG
|  IIAM.G (Quantification over M terms)
|  IIXS. G (Quantification over S terms)

There are two typed form of basic literal. The e (for ‘entity’) type, S ~. M assigns a
type e meaning expression (M term) to a structure term (S term). Structure terms are
constants referring to f-structure nodes,? or variables over such constants. The M term
is an expression in the whatever the chosen meaning language is. The type ¢ (for ‘truth
value’) literal is exactly the same, except the meaning expression is presumed to be of
type t rather than type e.

Higher order universal quantification over meaning expressions is permitted. We use II to
represent the universal quantifier to bring out the higher-order commitment more clearly.
Typically we abbreviate IIAX. G as VX. P. Universal quantification over S-terms is also
permitted.

The language thus defined is a fragment of higher order multiplicative linear logic, as used
by Saraswat and Lincoln for concurrent linear constraint programming. Its sequent proof
rules are shown in figure 5.1 The rules allowing lambda reductions to be employed are

*More accurately, S terms refer to nodes in a semantic structure projected off f-structure — see [Dal-
rymple] for details.
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axiom

AFA

I'FA AAFB

cut

I''A+B
F,A,BI—CZ 'HA A+ B
INNAgBFC I'FA®B
T'HA A,BI—C'Z I'A+B
I'N'A,A—-oBFC FI—A—OBT
F,Ptl—Al '+ Py
r'IIP- A I'+1IPr

F,All—B A’—)AA F,l—AI AI—>/\A
Al Ar
T,AF B THA

Where A’ —) A indicates that A’ lambda reduces to A,
and in the right rule for quantification y is not free in T’

Figure 5.1: Proof Rules for higher-order linear logic
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what brings in the need for higher-order unification.

Core Fragment of Mixed Glue

Despite the expressive richness of the mixed glue formalism, nearly all the analyses framed
within it turned out to fall within a more restricted fragment identified in [DalGupLam-
Sar]. Syntactically, the fragment is

Syntax of Core Fragment of Mixed Glue
(S-Term) := (e-term) | (t-term) (t-var)
meaning-const)

meaning-var)
meaning) ((meaning),. .. ,(meaning))

(meaning)

(

(

(

= (S-Term) ~ (meaning)

| V(t-var).(formula)

|  V(meaning-var).(formula); —o (formula)s
if generic((meaning-var),(formula);)

(formula)

This formulation has a number of properties. First, it pushes the e/t distinction on the
structure terms. Second, it only allows quantification over type ¢ structure constants.
Third, only implication is used. Fourth, although meaning variables can range freely over
meanings, the form that the quantification can take is limited.

The restrictions on quantification over meanings amounts to the following: (1) all quantifi-
cation over meaning is universal; (2) every quantification over a meaning X is associated
with an implication, P —o @Q; (3) the genericity of P with respect to X means that any
meanings in P can only be built from X and other meaning variables. These restric-
tions ensure that any quantification over a meaning can be associated with a lambda
abstraction, as we will shortly see.

The genericity condition is defined as follows

1. generic(M, g~ M)

2. generic(M,VS. P) (where S is a structure var) if

(

(
generic(M, P).

(

(

3. generic

M,¥N. P —o Q) where (M is a meaning var) if
generic(N,

P) and generic(M(N), Q)

The force of the genericity condition can be seen if we define projections onto the structures
and meanings of the core mixed formulas as follows

Structure (or type) projection, 7
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T(g~> M) =g
7(VS. P) =VS.7(P) (S is structure var)
T(VM. P — Q) = 7(P) —o 7Q (M is meaning var)

Meaning projection, pu

(g~ M) =M
u(VS. P) = pu(P)
p(VM.P —o Q) = AM.u(Q)
— provided P is generic for M

Consider the following formula, which is generic in M:
VN.s~ N —or~» M(N)
It has the meaning projection AN.M(N), which 7n-reduces to M. In general,

If generic(M, P) then u(P) =M
up to a-,B-,p-conversion

This ensures that quantification over meanings in the core mixed formalism corresponds
to lambda abstraction in its meaning projection.

An important point to note about the meaning and type projections just defined is that
they allow us to translate certain mixed glue formulas into the newer glue formalism. A
mixed formula ¢ translates to pu(¢) : 7(¢). That is, we just pair the meaning and type
projections of phi. For example

¢ n(¢) : 7(¢)

g~ john john:g

h ~> fred fred : h

Vy,x. h~y —o (g~ x —o [~ see(r,y) | \y.Ax.see(z,y): h —o (g — f)

However, not all mixed glue formulas successfully receive a meaning projection. As a
rather contrived example, the formula

VX.h~ X —o (g~ john —o f ~» likes(john, X))

does not get a meaninng projection, since the embedded implication is not generic in X.
But this is in any case a very perverse lexical premise: a verb that means “likes”, but
only if its subject means “John”.

5.2.2 Core Glue Fragment

We now describe the core fragment of the unmixed glue formalism. We’ll start by defining
the language, which is essentially the implicational fragment of linear logic plus universal
quantification over atomic propositions / type, along with proof/meaning terms.
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'tEM:T —oS

identity

''M:THN:S

F'FAM.N:T —o S

—o7

AFN:T

'eEM:T
I'EM:VRT

—O¢

I,A+M(N):S

Vz(R new in T')

I'EM:VRT
T+ M : T[S/R]

Ve

Figure 5.2: Proof Rules for Core Glue Fragment

(meaning)

(type)

(glue)

(meaning-const)

(meaning-var)

(meaning) ({meaning),. .. ,(meaning))
A{meaning-var).(meaning)

(e-term) | (t-term) (t-var)

{type) —o (type)
V(t-var);.(type)

(meaning):(type)

100

We call the linear logic propositions ‘types’ because of the underlying Curry-Howard
Isomorphism (CHI). The propositions specify the types of the meanings in that they
indicate what other (types of) meaning they should combine with.

Note that we are restricting quantification over types to quantification over atomic types
of sort t. Technically this makes the logic second-order, but it is a very mild form of
quantification. We could also regard the types as constituting a propositional logic with
limited propositional schema.

We will represent the proof rules in natural deduction format (since the whole point
is to combine meaning terms via the Curry-Howard isomorphism. These are shown in
figure 5.2. These rules are standard, except that normally the quantification rules would
give rise to an abstraction or application in the proof terms. This is not necessary here.

[Give explanation in terms of limited version of system F]
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Possible Extensions

The core fragment represents a trade-off between expressive power and computational
tractability. A large number of complex linguistic phenomena can be handled within the
implication plus limited quantification fragment. However,some phenomena appear to
motivate expanding the core to allow

e Tensor
e Exponentials
e Less restricted quantification

See final section.

5.3 Ambiguity and Multiple Derivations

A crucial feature of natural language is widespread ambiguity. This is a design ‘feature’
rather than a bug: without ambiguity communication would become impossibly verbose.
Human interpreters of language a very good at resolving ambiguity by exploiting a variety
of knowledge sources.

Not all ambiguity occurs at the syntactic or lexical level. If we assume that the princi-
ple concern of a grammar is to account for well-formedness judgements, then there are
syntactically and lexically unambiguous sentences that nontheless allow multiple interpre-
tations. Quantifier scope ambiguities are a well-known example of this. A sentence like
“A professor interviewed every candidate” has two readings: one where the same professor
does all the interviewing, and another where different candidates may have been inter-
viewed by different professors. But there are no good grounds for positing a syntactic or
lexical ambiguity in the sentence that could give rise to these two interpretations. Let us
therefore call this ‘semantic ambiguity’

Recall that a glue derivation aims to establish
F'EM:s

where I' is a collection of lexical premises derived from a syntactically analysed sentence, s
is the semantic resource corresponding to the sentence, and M is a meaning term derived
for s. Semantic ambiguity arises when, from a given set of premises, multiple derivations
are possible.

A Modifier Scope Ambiguity

As a slightly artificial example of multiple derivations, consider the nominal phrase “alleged
criminal from London.” Assume the phrase has a syntactic structure like the following:3

3The (f-)structure presented here flattens out what would be a syntactic attachment ambiguity in a
phrase structure tree:
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{PRED ‘criminal’ ]
I [MODS {[‘alleged’] , [‘from London’] }J
Assuming the following meaning constructors®

Az. criminal(z) : f
AP. alleged(P) : f—of
APAz. from(lon,z) A P(x) f—of
there are two distinct (normal form) derivations

alleged : f —o f  criminal : f

—o F
APXz. from(lon,z) N P(z) : f —o f alleged(criminal) : f 5
_o
Az. from(lon, ) A alleged(criminal)(z) : f
APXz. from(lon,z) AN P(z) : f —o f  criminal : f
—o F

alleged : f —o f Az. from(l, z) A criminal(z) : f

— F
alleged(A\z. from(lon, z) A criminal(z)) : f

In the first derivation, z is from London and alleged to be criminal. In the second deriva-
tion, z is not only alleged to be criminal, but also alleged to be from London. The two
derivations arise as the result of different ways of permuting the f —o f types to derive
an f from an f.

5.3.1 Quantified NPs in Glue Semantics

Quantifier scope ambiguities are just an instance of the kind of modifier scope ambiguity
illustrated above. However, quantified noun phrases have a slightly more complex type
than the nominal modifier alleged and from London.

Let us consider the sentence “FEveryone saw someone.” Assume the following f-structure
and lexical premises:

N N

/\ /\
Adj N N PP
\ T
alleged ITT PP Adj ITT from London
T \
criminal from London alleged criminal

“In fact, we would want to derive the constructor for “from London” from two lexical premises as
follows:

london : g MAPXz. P(z) Afrom(y,z):g o f — f

APXz. from(london, z) A P(z): f —o f
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PRED ‘saw’
fi: |SUBJ  ge: [PRED ‘everyone’]
OBJ he: [PRED ‘someone’]

e everyone : VS;. (ge —0 Sy) — Sy
e someone : VT;. (he — T;) —o T}

e \y,x.see(x,y) : he — (ge —o© f1)

Note that we have shown the semantic resources sorted according to whether they are sort
e or sort t. The variables S; and T; range over constants or sort £. In this example there
is only one such constant, f;. We can therefore use the V¢ rule to eliminate the quantifiers
(leaving the meaning terms unchanged), to derive a simplified set of premises (with sorts
no longer explicitly marked):

everyone : (g —o f) — f
someone : (h —o f) —o f
Ay, z.see(x,y) : h —o (g — f)

There are two derivations of f from these premises, shown first without the meaning
terms.

[h]" h—o (g — f)
g—of (g—of)—of

[h]' h—o (g —f)
[9])? g—of

h—f (h— f) = f

g—of (g—of)—of
f

—O¢

Including the meaning terms, we get the following for the first derivation (internal lambda
reductions performed to increase readability).
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[y : h]l Ay, z.see(z,y) : h —o (g —o f)

—o¢
Az.see(z,Y): g —o f everyone : (g —o f) —o f
—O¢
everyone(Az.see(z,Y)) : f
—©7,.1
AY.everyone(Az.see(z,Y)) : h —o f someone : (h —o f) —o f
—O¢
someone(AY.everyone(Az.see(z,Y))) : f

The reader can verify that the second derivation yields
everyone(AX.someone(\Y.see(X,Y)))

as a meaning term (after af8-conversion).

Having seen some derivations, let us try to give the intuitions behind this treatment of
quantified NPs. The sorts on the type (g, —o S;) —o S; reflect the familiar Montagovian
type ((e,t),t) for quantifiers, which takes a one place predicate into a truth value.

In syntactic terms, the type (go — S;) —o S; says that the quantifier is looking for
a constituent S of sort ¢ which depends on the noun phrase g. The dependency may
be because S directly subcategorizes for g (i.e. ¢ is a required argument of S). Or
the dependency may arise indirectly because S is constructed using some constituent
that in turn subcategorizes for g. Having found a constituent S with an undischarged
dependency on g (i.e. ge —o S;), the noun phrase discharges the constituent to discharge
the dependency; it consumes g, —o S; to give a modified version of the constituent S;.

More semantically, the dependency on ¢ introduces a variable (corresponding to an as-
sumption in the derivation) at the point where g is subcategorized for. The variable is
bound by the quantifier (discharged in the derivation) at S.

The fact that S is a variable means that a quantified noun phrase may potentially take
scope over any constituent of sort ¢. However the dependency on g limits the number
of constituents that can in fact form the scope of the quantifier. The limitations rule
out precisely those scoping possibilities that would lead to either unbound variables or
vacuous quantification in the semantic representations. That is, the range of possible
glue derivations is sound and complete with respect to producing all possible quantifier
scopings that do not involve unbound variables or vacuous quantification, as shown in
[DalLamPerSar].

As an example of how unwanted scopings are prevented, we can consider a stock example
from the literature on quantifier scope: “Fvery representative of a company saw a sample.”
As pointed out in [HobbsShieber], rather than at least 6 scopings as the free permutation
of the three quantifiers would suggest, this sentence only has five scopings. Permutations
ruled out because of unbound variables (shown underlined) are

e Vr.rep-of(r,c) : Ic.company(c) : Is.sample(s) : see(r, s)
e Vr.rep-of(r,c) : Is.sample(s) : Ic.company(c) : see(r, s)

Permissible scopings are
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Vr.[Jc.company(c) : rep-of(r, )] : Is.sample(s) : see(r, s)

ds.sample(s) : Vr.[3c.company(c) : rep-of(r, c)] : see(r, s)

e Je.company(c) : Vr.rep-of(r, c) : Is.sample(s) : see(r, s)

)
(
)
(

ds.sample(s) : Je.company(c) : Vr.rep-of(r, c) : see(r, s)

dc.company(c) : Is.sample(s) : Vr.rep-of(r, ¢) : see(r, s)

To show how unwanted scopings are ruled out, consider the four partial glue derivations
from lexical premises:

[7'6]1 [Se]2 Te —0 Se —© fi

fi

1. see(r,s):

2. a-sample(s): (se — X3) - X;

[06]3 Ce —O PPV
3. a-rep(r)-of(c): ppi ppny —o (re o Y;) oY,
(re ©Y:) <Y

4. a-company(c): (ce —0 Zy) — Zy

Note that there are two sort ¢ constituents: the whole sentence f;, and the preposition-
ally modified noun, “reprentative(r)-of(c)”, here identified as ppn;. This means that the
variables X;, Y; and Z; could all potentially be instantiated to either f; or ppn,.

But for X; and Y; the only workable instantiation is f;. This is because ppn; cannot be
made to have a dependency on r, or c.. Only f; has this dependency, as shown by the
assumptions of [re]! and [s.]? in partial derivation 1.

For Z;, one workable instantiation is ppn; since this constituent directly depends on c..
That is, the NP “a company”’ can take the nominal predication “representative of _” as
its scope. But it is also possible to instantiate Z; to f;, so that “a company” takes the
whole sentence as its scope. To see why, note that we can combine the partial derivations
1 and 3 as follows

[Te]l [86]2 Te =0 Se —© ft [06]3 Ce —O PpP1IL

fi PPt ppny —o (re <0 Yy) oY,

—71.1
(re oY) <Y,

3

Te =0 fi

V=
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That is, by scoping “every representative of ” over the sentence f;, a new dependency on

ce is acquired by f;. This means that “a company” can then take scope over f;.

The important point is that “a company” must take wide scope over “every representative
of 7, if both scope over the entire sentence f. For otherwise the necessary dependency of
f on ¢ won’t be introduced. The two scopings that are bad because of unbound variables
are exactly the ones that reverse this required scoping.

Summary

The treatment of quantified noun phrases in glue semantics is something that many people
find initially hard to grasp; we hope that the preceding discussion aids rather than prevents
understanding. One of the very significant advantages of the glue treatment of quantifier
scope ambiguity, and more generally of modifier scope ambiguity, is the following. It does
not require additional complex formal machinery, such as Cooper storage [?], to generate
alternative scopings. Alternative scopings emerge directly from the basic mechanisms for
semantic interpretation, without further stipulation. Moreover, it is not only quantifier
scope ambiguities that are handled in this way. Other modifier scope ambiguities, like
the “alleged criminal from London” example, or the scoping of negation and modals, are
covered.

To be sure, the lack of additional scoping machinery is also an advantage shared by cat-
egorial grammar and its semantics. However, the much tighter correspondence between
syntactic and semantic derivations in categorial grammar means that the sometimes in-
exact alignment between surface syntactic order and semantic scope can be problematic.
This leads to, for example, the addition of an extra ‘scope’ connective to the Lambek
calculus [Moortgat], or the further exploitation of multi-model or labelled deductive re-
finements orinally added to deal with certain word order phenomena (see next chapter).
[More discussion on this: here or later?]

5.4 Structure Sharing Between Derivations

5.4.1 Ambiguity Managment

In this section we discuss a very significant computational issue raised by multiple deriva-
tions and ambiguity. We start with another favoured example of semanticists

Most politician can fool some of the people all of the time, a few politicians
can fool all of the people some of the time, but no politicians can fool all of the
people all of the time.

This sentence is not unduly difficult to understand, but if one calculates the number of
alternate quantifier and modifier scopings, the number of interpretations is astronomical.
The precise number depends on particular assumptions about the semantic representation
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— e.g. does it include quantification over events, etc. As an upper bound, assume 12
scope taking modifiers, all of which can permute freely only over the entire sentence. This
leads to 12! or around 500 million readings.

This degree of ambiguity needs careful management, and is a major issue in computational
linguistics. Three broad approaches to ambiguity management can be discerned:

Pruning Prune unlikely subderivations as early as possible to prevent the search space
exploding. This is fine so long as one can measure likelihood on a purely local basis, so
that one does not run into problems with local minima. Otherwise, there is a danger
that a locally unlikely sub-derivation could form part of the most likely overall derivation.
Pruning can lead to incompleteness: the correct / most likely derivation is never found.

Underspecification In semantics, underspecification often amounts to finding a span-
ning set of partial derivations, in much the way that was done for the “Every representa-
tive of a company example. Since combinatorial explosion results from different ways of
putting these partial derivations together, this final step in the derivation is not taken.
Typically a set of constraints is given limiting the number of ways the partial derivations
can be assembled. Resolution amounts to tightening the constraints until only one or a
small number of full derivations remain possible

Structure Sharing Structure Sharing is widely used in the management of syntactic
ambiguity. The key observation is that even when there is massive ambiguity, there is a
large common structure shared between the different derivations. Rather then recompute
this common structure every time, it should be computed just once and shared across the
derivations. In parsing, charts are often used to facilitate structure sharing. For context
free grammars, they allow an exponential number of analyses to be computed in cubic
time. In theorem proving, memoization or tabular deduction are the analogues of charts.

This section discusses how structure sharing can be used in connection with glue deriva-
tions. This is an area of active current research: a glue implementation operating in
conjunction with Xerox’s LFG grammar and parsing system (the XLE) is being run on
sentences like the politicians example above.?

5.4.2 Memoisation for Proof Nets

Morrill’s memoisation technique for planar proof nets. Applied to parsing categorial gram-
mars. Crucial use of labelling within inference system. Difficulty of finding locally correct

®Currently, the prolog implementation of the glue semantics generates all the readings for the politicians
sentence in well under half a second on a Sun Ultra 1. However, this result has yet to be properly confirmed:
it has not yet been fully established that the algorithm is complete and really does produce all possible
derivations.
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sub-derivations without planarity restrictions. Unaware of any proposals for tabularisa-
tion of non-planar proof nets.

5.4.3 Chart-Based Techniques

Hepple describes a chart-based technique for deduction with the Horn clause fragment
of implicational linear logic [Hepple]. This was originally developed for the purposes of
categorial parsing, but applies directly to the task of glue derivation.

A Horn clause is an implication of the form
Ay —o [Ay — ... (A, — B)]

Thus both A and A —o (B —o C') are Horn clauses, but (A —o B) — C is not a Horn
clause.

Sharing and Packing in Charts

When alternative derivations are possible from a given set of premises, the derivations will
typically have certain sub-derivations in common. The idea behind tabular methods is
to record these common sub-derivations, so that they can be re-used in alternative wider
derivations without having to be reconstructed from scratch each time.

There are two basic forms of tabularization. The first is sharing. Imagine that you are
searching for derivations of some conclusion ¢ from a collection of premises I'. Suppose that
you have found a sub-derivation, 71, of ¢ from a sub-collection of premises I'y. Suppose
there are also two or more sub-derivations of ¢ from ¢ plus the remainder of the premises,
I' —T';. Then the sub-derivation m; can be combined with all of these other subderivations
to get a full derivation. This is shown pictorially below:

Sharing

Sharing slots one sub-derivation into several larger derivations. The flip side of structure
sharing is packing. Packing slots several similar (but distinct) sub-derivations into one
larger derivation, producing alternate versions of the larger derivation. Effectively the
sub-derivations are packed together into an equivalence class — wherever one of the sub-
derivations can be slotted in, any of the others could also be slotted in.
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Suppose that you find two distinct proofs of ¢ from a given sub-collection of premises, I';.
Call these m1 and m9. Suppose that we also know that from I'—T'; and ¢ we can conclude
c. Then either 7 or w9 can be slotted in to produce a deriavtion of ¢ from I'.

Packing

M1:¢ M22¢)

Sharing and packing can bring about substantial efficiency gains. For example, in parsing
context free languages it allows one to uncover an exponential number of analyses in cubic
time. For derivations in Horn clause linear logic [Hepple:??7], it can find n! derivations in
2" time.5

Span Restrictions

In (!-free) linear logic, no premise can be used more than once. This means that if we have
recorded a sub-derivation of I'y F ¢, we cannot slot it into another derivation I's, ¢ F x if
T'y and T’y overlap.

This means that for sharing and packing, it is essential to record which ‘span’ (or sub-
collection) of premises is used in a sub-derivation. Whenever two sub-derivations are
combined, their spans must be disjoint, and the span of the resulting derivation is the
union of the two sub-spans. When packing two sub-derivations together, it is essential
they have identical spans.

(The same is true for charts in parsing. Here, however, a span is just a contiguous sequence
of words in the sentence to be parsed. Disjointness of spans in parsing forces the following:
two analyses of overlapping word sequences cannot be combined to form a single analysis
of the combined sequence.)

Span disjointness and disjoint union for premise spans can efficiently be calculated by
means of bit vectors. Recorded subderivation has an associated bit vector, with bits set
for each premises used in constructing the derivation.

Horn Clause Compilation

The chart technique above only works for Horn clauses. However, the core glue fragment,
though implicational, is not restricted to Horn clauses. For example, the instantiated type

5The difference between context free parsing and linear logic proof is that in parsing words / premises
have to kept together in contiguous spans. But in the more general proof case, premises can be combined
non-contiguously, so long as all premises are eventually used once and exactly once.
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of a quantifier, (n —o s) —o s, is non-Horn.

Hepple presents a technique for the compilation of non-Horn clauses into (dependent)
Horn clauses. Rather than present the details, we will illustrate the basic idea by means
of an example. The method compiles the non-Horn formula

(a —0b) o ¢
into two (Horn) formulas

: and b{a'} — ¢

a

where a' is a (uniquely indexed) hypothesis excised from the non-Horn implication as a
hypothesis; and b{a'} indicates a formula b whose derivation must make use of the excised
hypothesis a’. (Note that a is not a subformula of b{a’}, in the way that a is a subformula
of a —o b: it is merely an annotation on the formula b placing conditions on the way it is

derived).

To illustrate, consider the inference (¢ —0 b) —0 ¢, a —o b + ¢ with compiled Horn
clauses. Compilation of the premises yields o', b{a'} — ¢ and a —o b. This allows a
(Horn) derivation

a a—ob

b b{a'} —c

C
Note how the derivation of b makes use of the hypothesis a’, as required.

The basic idea behind the compilation method is that the rule of implication introduction
[a]'

b

—07,
a—ob

allows us to view and implication ¢ —o b and a derivation of b with an undischarged
hypothesis / assumption of a. The compilation method drives this rule in reverse, excising
a hypothesis of a from an implication ¢ —o b. The indexing on the hypothesis is essential:
we have to match the right hypothesis with the right implication.

After compilation, the rule of implication elimination needs to be revised
i k
a1

b blal,...,d"} ¢

C

This rule necessitates a certain amount of book-keeping. Any formula needs to be marked
with the set of undischarged excised hypotheses used to derive it — its index set. Showing
these in braces before the formulas we could rewrite the elimination rule as
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{($}B  {p}Bli,...,k} - C
{pWep—i,.... k}C

[term assignment for rule: follow Hepple or Lamping & Gupta: which is easier
to explain?]

5.4.4 Skeletons and Modifiers

Modifiers are prevalent in natural language, both in syntax and semantics. Syntactically,
an adjective like e.g. “alleged” modifies a noun to produce another noun. Semantically,
it consumes a noun meaning and produces a modified version of it. At an intuitive level,
adjectives thus have a logical type N — N, where N is the type of a noun. In glue
semantics, logical identities of this form signal the presence of a modifier.

To a logician, interested only in establishing whether a particular conclusion follows from a
set of premises, logical identities corresponding to modifiers are just noise; throwing them
away whenever they are encountered simplifies the search for a proof without affecting
the type of the conclusion. To a semanticist, modifier identities are not noise. Although
they do not affect the type of the conclusion, they do affect the meaning term assigned to
it. Moreover, all ambiguities that are purely semantic in origin arise from different ways
of inserting modifier identities into underlying skeletal (modifier-free) derivations.

[GuptaLamping98| describe a skeleton-modifier approach to glue derivation (i) initially
perform a simple, ‘noise free’ derivation of a skeleton structure by leaving modifiers to
one side whenever they are encountered, and then (ii) reintroduce the noise by inserting
modifiers into the skeleton. Under suitable cirmcumstances, the initial derivation can
be found deterministically and in linear time, with all the combinatoric blow-out being
deferred to the second derivation stage.

As an example of an initial derivation, consider again “alleged criminal from London”,
with premises 1-4:

1. f—of alleged — f—of (modifier)
2. f criminal = f (skeleton)
3. g—o(f—-f) from = g g—of-of

4. ¢ London f—of (modifier)

Premise 1 is immediately held out as a modifier. Premises 3 and 4 derive another modifier,
which gets held out, leaving premise 2 as the single remaining skeleton. Note that the
result of combining premises 3 and 4 gives rise to a derivation tree with internal skeletal
structure, whose conclusion is a modifier. A consequence of this skeletal structure inside
modifiers is that modifiers can internally modify other modifiers.

Before giving a more precise definition of skeleton and modifier, it is worth considering
whether Gupta and Lamping skeleton-modifier style of derivation is likely to be compu-
tationally advantageous.
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Problems with Charts

Where modifiers are present charts miss significant possibilities for structure sharing. This
can best be illustrated by an example from parsing. Consider “John said that Fred left
yesterday”, where either the saying or the leaving Verb Phrase can be modified by the
VP —o VP modifier “yesterday”. If we are able to pull out modifiers from skeletons, this
choice has a very simple representation:

S
NP/\VP1 «--_
Jo‘hn V/W)mp \\\\\\\\
sa‘id Comp/\s \\\\\\
that NP VPy<- -~ VP o VP
B‘ill le‘ft yeste‘rday
pl  p2 p3 P4 po p6

Having obtained the skeleton parse tree, there is a simple two way choice about whether
to insert the modifier high or low. Either way, the skeleton structure is completely shared
between the two analyses.

But a chart-based approach precludes the sharing of this skeleton structure. Suppose
that the chart first of all constructs the unmodified VP; “said that Bill left” spanning
string positions p2-p5. This will lead to the memoization of the following intermediate
constuents (string spans marked):

VP: pd NP: p4
S: p4d —pd Comp: p3
SComp: p3 —pb V: p2
VP: p2 —pd

VP; can then be combined with the modifier “yesterday”.

Not much of the work in building up VP; can be re-used in the analysis that attaches the
modifier low, to VPs. First VP5 is combined with “yesterday”’, and a new VP with span
pb — pb6 is recorded. Because the modified and unmodified versions of VP5 have different
string spans, we cannot re-use the S, and SComp constituents that we built before. Instead
we must re-do the work building up from VP35 to VP; via the S and SComp constituents.
In doing so, the chart records the additional structures

VP: p5 — p6, S: p4 — pb, SComp: p3 — pb, VP: p2 — p6

To summarize, the need to ensure span consistency can cause the chart to build shared
skeleton structure multiple times. Localized differences in structure, namely the inclusion
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or not of a modifier at a particular point, lead to unnecessary global (span) distinctions
being drawn. A skeleton-modifier approach to processing is appealing because it exploits
kinds of structure sharing that chart-based approaches miss. It becomes doubly appealing
if modifier insertion can employ further structure sharing.

Defining Skeleton and Modifier

At a first cut, a modifier is any formula equivalent to an identity ¢ — ¢. For example,
f—of,(g—of)—o(g—of),and g — (g — f) —o f are all modifiers.

GL’s more precise definition of modifier first identifies skeleton and modifier occurrences
of atomic propositions in a given formula. First convert the formula to negation normal
by pushing negation inwards until it only applies to atoms.

Definition If a formula in negation normal form contains one positive occurence of an
atom A and one negative occurrence A+, and the connective between the two subexpres-
stons in which they occur is B, then they are modifier occurrences. All other occurrences
are skeletal.

Modifier occurrences come in pairs: a negative occurrence consuming a meaning, fol-
lowed by a positive occurrence producing a modified meaning. The separation of the two
occurrences by % ensures that production follows consumption.

Separating Skeleton and Modifier: Horn Clause Compilation

A pure modifier is a formula that contains only modifier occurrences of atoms. Many lexi-
cal premises are impure, and contain a mixture of skeleton and modifier; e.g. g —o (f —o f)
and (g —o f) —o f. For the initial derivation stage to work, impure formulas need to be
converted to a form & —o M, where S is pure skeleton, and M pure modifier.

In some cases, a simple equivalence-preserving re-ordering of antecedents achieves this
effect. For example, f — (g —o f) = g —o (f —o f), and g —o (g —o ) —o (h —o f)) =
h — (g — ((g — f) —o f)). If an implication is in Horn form —
a; —o (ag — ...(a; —o ¢)...) — the existence of such a re-ordering is guaranteed since
only c is positive, and a matching negative ¢ can be swapped with a;.

For some non-Horn formulas, no amount of rearrangement will place them in the form
S —o M. The simplest example of a formula like this is (9 —o f) —o f. GL use a partial
application of Hepple’s method of Horn clause compilation to deal with such cases.

Applied to a formula like (¢ —o f) —o f, Horn clause compilation produces two formulas
(g—of)of = ¢ and flg}—of

where g’ is pure skeleton and f{g'} —o f is pure modifier. More generally, it is important

that the Horn clause compliation is only applied partially, since compilation of a pure

non-Horn modifier can excise a modifier atom and render the formula impure. Therefore

rearrangement of antecedents and (recursive) Horn compilation is halted as soon as one
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obtains a pure modifier or a skeletal Horn implication into a pure modifier, even if the
modifier is not Horn.

Having converted all the lexical premises into either pure skeletal Horn clauses, or pure
skeletal Horn implications into modifiers, the first stage of glue derivation takes place.
This matches positive and negative skeletal atoms, and holds any derived modifiers out
to one side.

Skeletal Uniqueness Gupta and Lamping discuss a condition of skeletal uniqueness,
whereby at most one positive and one negative skeletal occurrence of any atom is permitted
within the entire lexical premise set. Skeletal uniqueness ensures that the initial deduction
separating skeletons from modifiers is deterministic and linear time. Failure of uniqueness
only affects the efficiency of the initial deduction process, and not its completeness. While
skeletal uniqueness is mostly a linguistically natural restriction, it does fail for certain
control constructions. But in these cases, the efficiency of the initial deduction is still not
unduly harmed.

Non-Deterministic Modifier Insertion

GL discuss a non-deterministic approach to modifier insertion, since their aim is to stop
after the initial stage of skeleton-modifier deduction. The simplest case of modifier in-
sertion is when a derivation tree contains a sub-tree deriving ¢, and the modifier to be
inserted is (equivalent to) ¢ —o ¢. The modifier can be adjoined to the sub-derivation,
giving a new derivation also concluding in ¢, e.g.
Iy Ty

Iy Iy : :

- ¢ ¢
¢

é 6 —o ¢

The new derivation now has two occurrences of ¢. Any further ¢ —o ¢ modifiers can be
inserted at either; i.e. either within the scope of the first modifier, or outscoping it.

However, modifiers of the form ¢ —o ¢ can sometimes be inserted into derivation trees,
even if the tree contains no sub-derivation of ¢. We can (3-) expand derivations as follows

r [o]'

) : r

. —— —07,1

: ¢ —oy ¢

() ¢
(U

in order to build up new sub-derivations. For example, we can build an insertion site for
an (h —o f) —o (h —o f) modifier in a tree with no such site as follows:
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h—o(g—f) [h]
h—o(g—of) h g—of g9
g—of 9 = f

S

f h—of h
f

—o¢

For more complex modifiers, repeated applications of this expansion step extracting dif-
ferent hypotheses may be needed”.

Packed Modifier Insertion

Work in progress

5.5 Discussion

5.5.1 Comparison with Categorial Semantics
5.5.2 Extending the Glue Fragment

Expressing scope constraints.
Using linear logic to model context update and dynamics.

F-structure paths as resources: dealing with reentrancy and resource re-use.

"The expansion introduces a (8) detour in the natural deduction proof, i.e. an introduction step
immediately followed by an elimination. Inserting a modifier, or performing another expansion on the in-
troduced implication,eliminates the detour. A more general expansion scheme to enable modifier insertion
requires the introduction of 7-detours (elimination followed by introduction) to break complex formulas
into their component parts. However, the Horn form of the initial skeleton-modifier deduction ensures that
all derivation trees are in 7-long normal form; that is, every atomic proposition occurs as the conclusion
of some sub-derivation. Hence n-expansion is not needed.



Chapter 6

Categorial Grammar
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Chapter 7

Further Reading

Due to procrastination and poor time management, no bibliography has been compiled
yet. The following are suggestions for further reading

Proof Theory I don’t know of any good, really introductory books on proof theory. 1
benefitted a great deal from some unpublished notes of Gavin Bierman

e Troelstra & Schwichtenberg, Basic Proof Theory, Cambridge Tracts in Theoretical
Computer Science, CUP

Not all that basic, but comprehensive.

e Girard, Lafont and Taylor, Proofs and Types, Cambridge Tracts in Theoretical Com-
puter Science, CUP

Very readable — the table of contents looks forbidding, but the chapters on proof
theory are very accessible.

Linear Logic & Proof Nets There are various introductions on the web, for example

e Pfenning
www.cs.cmu.edu/ fp/courses/linear/

e Brauner
www.brics.dk/LS/96/6/BRICS-LS-96-6/BRICS-LS-96-6.html

e Danlos & Di Cosimo
http://www.dmi.ens.fr/users/dicosmo/CourseNotes/LinLog/

e Linear logic page
www.csl.sri.com/linear/sri-csl-11.html

e Bibliography available at
www.cs.cmu.edu/ carsten/linearbib/linear.bib
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In print
e Girard “Linear Logic” Theoretical Computer Science 50:1-102, 1987
The original

Girard “Linear Logic: its syntax and semantics”, in Girard, Lafont & Regnier (eds)
Advances in Linear Logic, CUP, 1995

Troelstra Lectures on Linear Logic, CSLI Lecture notes 29, 1992

Lafont, “From Proof Nets to Interaction Nets”, in Advances in Linear Logic

Lincoln, “Deciding provability of linear logic formulas” in Advances in Linear Logic

Linguistic applications For glue semantics see

e Dalrymple (ed) Semantics and Syntax in Lezical Functional Grammar, MIT Press,
1999.

For categorial grammar

e Morrill Type Logical Grammar, Kluwer 1994

e Moortgat “Categorial type logics” in van Benthem & ter Meulen Handbook of Logic
and Language, Elsevier, 1997

e Carpenter Type Logical Semantics, MIT 1996

e Hepple “Memoisation for Glue Language Deduction and Categorial Parsing”, Proc
Coling-ACL 1998

For chart-based deduction and Horn clause compilation

See also http://esslli.let.uu.nl/Courses/retore-stabler.html for resource logics
and minimalism.



