
AN INTRODUCTION TO
CONVERGENT GRAMMAR

Carl Pollard
INRIA-Lorraine and Ohio State University

Séminaire Calligramme
Nancy, June 3 and June 10, 2008

1 Why yet another New Framework?

(1) Where CVG Came From, Part 1

• I worked within the framework of head-driven phrase structure
grammar (HPSG) for 15 years (1983-1998).

• Gradually I realized that the purely model-theoretic character of
HPSG made it hard to take advantage of advances in linguistic
analysis taking place in the categorial grammar (CG) community.

• From 1999 until Spring 2007, I developed higher order grammar
(HOG), a purely derivational reformulation of HPSG.

• By ‘purely derivational’ I mean that the derivations were proofs
as in CG, unlike derivations in transformational grammar (TG),
which construct arboreal representations by successive merging
and moving.

• HOG turned out to be similar to other Curryesque forms of
CG devloped by Ranta (GF), de Groote (ACG), Muskens (λG),
Anoun and Lecomte (LGL).

(2) Curryesque Architecture

In Curryesque frameworks:

• There are three kinds of (candidate) linguistic entities, specified
by independent components of the grammar:

syntactic entities (also called tecto or abstract syntax)

phonological entities (also called pheno or concrete syn-
tax)

semantic entities

• However, syntax still determines phonology and semantics, in the
sense that the syntax-phonology and syntax-semantics interfaces
are both functions from syntax.

1



(3) More about Curryesque Architecture

• HPSG is not Curryesque because the interfaces are not functions.

• TG is not Curryesque because phonological and semantic entities
(PF and LF) are obtained by sequences of structural operations
that transform syntax.

• Traditional CG (Lambek, Steedman, Moortgat, Morrill, etc.):

– is not curryesque because there are no tectos.

– Instead, the syntax logic is just a device for assigning category
symbols to pairs of pheno/tecto pairs.

– Thus traditional CGians never write syntactic Curry-Howard
proof terms: their categories are not the kind of things that
have inhabitants.

– What they call “Curry-Howard” terms aren’t really: they de-
note semantic entities, not syntactic ones.

(4) Where CVG Came From, Part 2

• About a year ago, I began working on so-called covert move-
ment phenomena (scoping of in-situ semantic operators such as
quantifiers, interrogative pronouns, comparative operators, etc.).

• That made me realize that I had needlessly given up an important
advantage that HPSG had over CG: its weakly syntactocentric,
parallel architecture. (I will explain these terms in a moment.)

• CVG was a course correction from HOG, in order to reincorporate
weakly syntactocentric parallelism.

2 Overall Architecture of CVG

(5) Cascaded vs. Parallel Architecture

• GB was cascaded in the sense that PFand LF are derived from
the ‘branch point’ SS.

• MP is more flexible than GB, allowing multiple branch points.

• But most non-TG frameworks are parallel: none of the compo-
nents is ‘derived’ from one of the others.

• Instead, independent subsystems generate candidate syntactic and
phonological (and in Curryesque frameworks, also syntactic) en-
tities, and then the grammar tells which pairs (or triples) are in
the language.

2



(6) Strong Syntactocentrism

In strongly syntactocentric frameworks, “syntax feeds semantics”
(and sometimes phonology too). Examples:

• In TG, LF (and likewise PF is transformationally derived from
syntax at one or more branch points.

• In Lambek’s (1988) categorical grammar, semantic interpretation
is a structure-preserving functor from a biclosed monoidal cate-
gory to a topos.

• In Curryesque frameworks, there are functions from syntax to
semantics and to phonology.

(7) Weak Syntactocentrism

In weakly syntactocentric frameworks:

• The syntax-semantics interface determines a relation (but not a
function) from syntax to semantics;

• The syntax-phonology interface determines a relation (but not a
function) from syntax to phonology; and

• There is no direct connection between phonology and semantics.

• Examples: LFG (I think), HPSG, Simpler Syntax, CVG

(8) CVG Compared with ACG and HPSG

• Purely derivational (like ACG)

• Weakly syntactocentric (like HPSG)

• Parallel (like both)

(9) Syntax, Semantics, and their Interface in CVG

• Candidate syntactic derivations are specified by a syntactic logic
broadly similar to ones used in CG.

• Candidate semantic derivations are specified by a semantic logic—
RC—closely related to TLC.

• The interface specifies which pairs go together.

3



(10) Lecomte 2005

• The version of categorial minimalism (CM) described by Lecomte
(2005) has a similar organization.

• CM seeks a categorial embodiment of Chomsky’s minimalist ideas.

• By contrast the roots of CVG lie in mid-to-late 1970s nontransfor-
mational linguistic theory (e.g. Bach, Cooper, Gazdar, Pullum).

(11) Observations about Syntactic Proof Terms

• From the point of view of mainstream CG (CCG,TLG), the weird-
est thing about CVG (and ACG) is that we write syntactic proof
terms.

• But the terms actually look very much like 1970’s TG labelled
bracketings with syntactic variables (traces) bound by (often in-
audible) operators.

• On the other hand, the fact that (still) Chomsky thinks binding
operators literally move seems to show that at some fundamental
level he and his followers are not really thinking of syntactic analy-
sis logically; instead the logical terminology is a kind of metaphor.

(12) Observations about the Interface

• From the point of view of ACG, the weirdest thing about CVG is
that the syntax-semantics interface is not a function.

• But that does not become evident until one looks at semantic
ambiguities that, according to CVG, are not reflected in the syntax
(such as scope of in situ operators or antecedents of pronouns).

(13) Signs that an Ambiguity is Purely Semantic

• No agreement of categorial features, e.g. a pronoun need not agree
with its antecedent for case.

• Where the operator can be retrieved does not depend on the syn-
tactic category of the retrieval node, e.g. the scope of a quantifier
does not have to be an S (but it does have to be a proposition).

• There is no checking of categorial features associated with the
operator, e.g. when a QNP or in situ wh-expression is scoped, its
case is not checked.

4



• In ‘covert movement’ there is no morphosyntactic marking of the
‘extraction path’ (e.g. on complementizers or verbs intervening
between the trace and the ‘landing site’) as is the case with ‘overt
movement’ in many languages (Levine and Hukari 2006).

3 The CVG Syntactic Logic

(14) Format for CVG Syntactic Typing Judgments

⊢ a : A

read ’the (syntactic) term a is assigned the category A.’

N.B. Later; to handle ‘over movement’, we will add a context to the
left of the turnstile to track unbound traces.

(15) CVG Categories

a. There are some basic categories.

b. If A and B are categories, then so are A ⊸f B, where f belongs to
a finite set F of grammatical function names; these are called
functional categories with argument category A and result cat-
egory B.

(16) Basic Categories

We start off with the familiar S and NP, ignoring case, agreement, verb
inflection, etc. Others will be added as needed.

(17) Functional Categories

a. We start off with the grammatical function names s (subject) and
c (complement).1 Others will be added as needed.

b. Readers who prefer only one flavor of implication in the syntax can
ignore the grammatical function subscripts.

c. Lambekians can replace A ⊸s B by A\B, and A ⊸c B by B/A,

(18) CVG Syntactic Terms

a. There are finitely many (syntactic) words of each category.

b. There are syntactic functional terms of the forms (f a f) and
(f f a)

1Here CVG betrays its HPSG pedigree.

5



(19) (Syntactic) Words

a. These correspond not just to Bloomfield’s “minimal free forms”, but
also to minimal syntactic units realized phonologically as phrasal
affixes, sentence particles, argument clitics, etc.

b. Some of these might be realized nonconcatenatively, e.g. by pitch ac-
cents, (partial) reduplication, phonological zero (inaudibility), etc.

(20) Syntactic Functional Terms

a. In principle these could always be written (f a f), but we write
(f a c) and (s a f) as a mnemonic that in English subjects are to
the left and complements to the right.

b. This enables us to read the word order off the syntactic terms, as
in EST/GB labelled bracketings.

(21) Syntactic Schema W (Words)

⊢ w : A (w a syntactic word of category A)

(22) Syntactic Schema Ms (Subject Modus Ponens)

If ⊢ a : A and ⊢ f : A ⊸s B, then ⊢ (s a f) : B

(23) Syntactic Schema Mc (Complement Modus Ponens)

If ⊢ f : A ⊸c B and ⊢ a : A, then ⊢ (f a c) : B

4 The CVG Semantic Logic: RC

(24) Cooper Storage and Retrieval (Intuitively)

a. Suppose that while semantically interpreting a syntactic derivation
bottom up, you encounter an in-situ operator with semantics a :
(A → B) → C. Then (storage) you can replace a by a variable
x : A and place the pair (a, x) in the store.

b. Stores ’percolate upward’ through derivations.

c. If you get to a node in the derivation with semantics b : B, then
(retrieval) you can remove (a, x) from the store and replace b : B
by a(λxb) : C.

d. In case the in-situ operator is a QNP, A = ι (individual concept),
and B = C = π (proposition).

6



(25) Sociology of Cooper Storage and Retrieval

a. Cooper didn’t describe it this way. He expressed it all in terms of
Montagovian model theory.

b. He was at pains to avoid using λ-calculus, to make it clear he was
not advocating some form of LF.

c. Even though this technology makes syntax much simpler (e.g. QNPs
are just NPs), the resulting nonfunctionality of semantic interpre-
tation was widely viewed with alarm.

d. However it was embraced in some quarters (e.g. Bach and Partee
1980, and in HPSG).

e. Categorial grammarians tend to describe this technology as ‘non-
compositional’, ‘baroque’, ‘ad hoc’, ‘a mess’, ‘as bad as covert move-
ment’, etc. (some of the more charitable characterizations).

f. The various schemes of continuized semantics proposed in recent
years are presented as major improvements on Cooper storage and
retrieval.

(26) Why RC Calculus?

a. I still think Cooper’s basic approach to scoping in situ operators is
the best one.

b. But it suffered from problems of presentation.

c. RC calculus is designed to overcome these presentational problems.

(27) Toward RC Calculus

a. RC is a term calculus in the labelled Gentzen-sequent style of nat-
ural deduction.

b. As far as I have been able to discern so far, RC can do all the
linguistic work that has been done so far with continuized semantics.

c. RC can be directly semantically interpreted, but the easiest way is
to transform RC meaning terms into TLC.

d. This transform is the RC analog of the CPS transforms used in “con-
tinuized” approaches to semantic interpretation, but much simpler.

e. Morover RC meaning terms look familiar to people used to LF.

7



(28) Format for RC Typing Judgments

⊢ a : A ⊣ ∆

a. Read ‘the term a is assigned the type A in the co-context ∆.’

b. The symbol ‘⊣’ is called the co-turnstile.

c. The ‘co-’ here is mnemonic for ‘Cooper’, ‘covert movement’, ‘con-
tinuation’ (since the operators stored in the co-context will scope
over their own continuations), and ‘Commitment’ (to be explained
presently).

d. Later, we will add a more familiar-looking context to the left of the
turnstile, to handle the semantic variables associated with syntactic
variables (traces).

(29) RC Semantic Types

a. There are some basic semantic types.

b. If A and B are types, then A → B is a functional semantic type
with argument type A and result type B.

c. If A, B, and C are types, then O[A,B,C], usually abbreviated
(following Shan 2004) to AC

B , is an operator semantic type with
binding type A, scope type B, and result type C.

(30) Basic Semantic Types

For present purposes, we use three basic semantic types:

ι (individual concepts), π (propositions), and κ (polar questions).

Here κ is mnemonic for ‘Karttunen’ because its transform (see (40
below) into Ty2 will be the Karttunen type for questions.

(31) Functional Semantic Types

We employ the following abbreviations for (necessarily curried) func-
tional types:

a. Where σ ranges over strings of types and ǫ is the null string:

i. Aǫ =def A

ii. ABσ =def B → Aσ (e.g. πιι = ι → ι → π)

b. For n ∈ ω, κn =def κσ where σ is the string of ι’s of length n.

For n-ary consituent questions where the constituents questioned
all have type ι. E.g. who likes what will get type κ2.

8



(32) Operator Types

a. These will be the semantic types for expressions which would be
analyzed in TG as undergoing Ā-movement (either overt or covert).

b. The O-constructor is like Moortgat’s (1996) q-constructor, but it
belongs to the semantic logic, not the syntactic one.

c. Thus, for example, while for Moortgat (1996) a QNP would have
category q[NP,S,S] and semantic type (ι → π) → π, for us it has
category (simply) NP and semantic type ιππ.2.

(33) RC Semantic Terms

a. There is a denumerable infinity of variables of each type.

b. There are finitely many basic constants of each type.

c. There are functional terms of the form (f a), where f and a are
semantic terms.

d. There are binding terms of the form (axb) where a and b are se-
mantic terms and x is a semantic variable.

e. But there is no λ!

(34) What goes into the Cooper Store?

a. The Cooper stores (co-contexts) will contain semantic operators to
be scoped, each paired with the variable that it will eventually bind.

b. We call such stored pairs commitments, and write them in the
form ax, where the type of x is the binding type of a.

c. Then we call x a committed variable, and say that a is commit-
ted to bind x.

(35) Semantic Schema A (Nonlogical Axioms)

⊢ c : A ⊣ (c a basic semantic constant of type A)

The basic constants notate meanings of syntactic words (cf. 19).

(36) Semantic Schema M (Modus Ponens)

If ⊢ f : A → B ⊣ ∆ and ⊢ a : A ⊣ ∆′, then ⊢ (f a) : B ⊣ ∆;∆′

a. This is the usual ND Modus Ponens, except that co-contexts have
to propagated from premisses to conclusions (cf. 24b).

b. Semicolons in co-contexts represent set union (necessarily disjoint,
since variables are always posited fresh).

2Actually QNPs have to be polymorphically typed. See Pollard 2008a fn. 4.

9



(37) Semantic Schema C (Commitment)

If ⊢ a : AC
B ⊣ ∆ then ⊢ x : A ⊣ ax : AC

B ;∆ (x fresh)

a. This is a straightforward ND formulation of Cooper storage (cf. 24a).

b. It generalizes Carpenter’s (1997) Introduction rule for Moortgat’s ⇑
(essentially the special case of q where the scope type and the result
type are the same), but in the semantics, not in the syntax.

(38) More about Schema C

a. The syntax-semantics interface will guarantee that when an opera-
tor gets committed in the semantics, no corresponding syntactic
change takes place.

b. This is one of two reasons why the relation between syntax and
semantics is not a function (the key difference between CVG and
other kinds of CG).

c. In this respect, our proposed architecture for the syntax-semantics
interface resembles Cooper 1975/1983, Hendriks 1993, and HPSG,
as well as most of the continuized-semantics proposals.

(39) Schema R (Responsibility)

If Γ ⊢ b : B ⊣ ax : AC
B ;∆ then Γ ⊢ (axb) : C ⊣ ∆ (x free in b but not in

∆)

a. This is a straightforward ND formulation of Cooper retrieval (24c).

b. It generalizes Carpenter’s (1997) Elimination rule for Moortgat’s ⇑,
but, again, in the semantics, not in the syntax.

c. It is called Responsibility because it is about fulfilling commitments.

d. As with Commitment, the syntax-semantics interface ensures that
instances of Responsibility correspond to no syntactic change.

e. This is the other reason why the relation between syntax and se-
mantics is not a function.

(40) The Transform τ from RC Types to Ty2 Meaning Types

a. τ(ι) = s → e

b. τ(π) = s → t

c. τ(κ) = τ(π) → τ(π)

d. τ(A → B) = τ(A) → τ(B)

e. τ(AC
B) = (τ(A) → τ(B)) → τ(C)

10



(41) The Transform τ on Terms

a. Variables and basic constants are unchanged except for their types.

b. τ((f a)) = τ(f)(τ(a))

The change in the parenthesization has no theoretical significance.
It just enables one to tell at a glance whether the term belongs to
RC or to Ty2, e.g. (walk’ Kim’) vs. walk’(Kim’).

c. τ((axb)) = τ(a)(λxτ(b))

This is the important clause. It says that operator binding consists
of abstraction immediately followed by application.

(42) Ty2 Meaning Postulates for Generalized Quantifiers3

⊢ every’ = λQλP λw∀x(Q(x)(w) → P (x)(w))

⊢ some’ = λQλP λw∃x(Q(x)(w) ∧ P (x)(w))

⊢ everyone’ = every’(person’)

⊢ someone’ = some’(person’)

5 The CVG Syntax-Semantics Interface

(43) Interface Schema L (Lexicon)

⊢ w, c : A,B ⊣ (for certain pairs 〈w, c〉 where w is a word of category
A and c is a basic constant of type B)

(44) Interface Schema Ms (Subject Modus Ponens)

If ⊢ a, c : A,C ⊣ ∆ and ⊢ f, v : A ⊸s B,C → D ⊣ ∆′

then ⊢ (s a f), (v c) : B,D ⊣ ∆;∆′

(45) Interface Schema Mc (Complement Modus Ponens)

If ⊢ f, v : A ⊸c B,C → D ⊣ ∆ and ⊢ a, c : A,C ⊣ ∆′

then ⊢ (f a c), (v c) : B,D ⊣ ∆;∆′

(46) Interface Schema C (Commitment)

If ⊢ a, b : A,BD
C ⊣ ∆, then ⊢ a, x : A,B ⊣ bx : BD

c ;∆ (x fresh)

(47) Interface Schema R (Responsibility)

If ⊢ e, c : E,C ⊣ bx : BD
C ;∆ then ⊢ e, (bxc) : E,D ⊣ ∆

(x free in c but not in ∆)

3Types for Ty2 variables are as follows: x, y, z : s→ e (individual concepts); p, q : s→ t
(propositions); w : s (worlds); and P, Q : ((s → e) → (s → t)) (properties of individual
concepts).

11



6 Analysis of Quantifier Raising in English

(48) Lexicon for English Fragment

⊢ Chris,Chris’ : NP, ι ⊣ (likewise other names)

⊢ everyone, everyone’ : NP, ιππ ⊣

⊢ someone, someone’ : NP, ιππ ⊣

⊢ likes, like’ : (NP ⊸c (NP ⊸s S), ι → (ι → π) ⊣

⊢ thinks, think’ : S ⊸c (NP ⊸s S), π → (ι → π) ⊣

(49) A Simple Sentence

a. Chris thinks Kim likes Dana.

b. ⊢ (s Chris (thinks (s Kim (likes Dana c) c))) :

((think’ ((like’ Dana’) Kim’)) Chris’) : S, π ⊣

c. Ty2: think’(like’(Dana’)(Kim’))(Chris’)

(50) Quantifier Scope Ambiguity

a. Chris thinks Kim likes everyone.

b. Syntax (both):

(s Chris (thinks (s Kim (likes everyone c) c))) : S

c. Semantics (scoped to lower clause):

RC: ((think’ (everyone’x((like’ x) Kim’))) Chris’) : π

Ty2: think’(λw(∀x(person′(x)(w) → like’(x)(Kim’)(w))))(Chris’) :
s → t

d. Semantics (scoped to upper clause):

RC: (everyone’x((think’ ((like’ x) Kim’)) Chris’)) : π

Ty2: λw(∀x(person’(x)(w) → think’(like’(x)(Kim’))(Chris’)(w))) :
s → t

(51) Raising of Two Quantifiers to Same Clause

a. Everyone likes someone.

b. Syntax (both): (s everyone (likes someone c) c) : S

c. ∀∃-reading (RC): (everyone’x(someone’y((like’ y) x))) : π

d. ∃∀-reading (RC): (someone’y(everyone’x((like’ y) x))) : π

e. These are possible because for generalized quantifiers, the result
type is the same as the scope type.

f. Things are not so straightforward in the case of multiple in-situ
wh-operators, as we will see in the next talk.

12



7 Background for the Analysis of Interrogatives

(52) Ty2 Meaning Types

a. s → e (individual concepts) is a Ty2 meaning type.

b. s → t (propositions) is a Ty2 meaning type.

c. If A and B are Ty2 meaning types, then so is A → B.

(53) Extensional Types Corresponding to Ty2 Meaning Types

These are defined as follows:

a. E(s → e) = e

b. E(s → t) = t

c. E(A → B) = (A → E(B))

(54) Extensions of Ty2 Meanings

The relationship between Ty2 meanings and their extensions is axiom-
atized as follows, where the family of constants extA : s → (A → E(A))
is parametrized by the Ty2 meaning types:

a. ⊢ ∀x∀w(extw(x) = x(w) (for x : s → e)

b. ⊢ ∀p∀w(extw(p) = p(w) (for p : s → t)

c. ⊢ ∀f∀w(extw(f) = λxextw(f(x)) (for f : A → B, A and B Ty2
meaning types.

Note: we suppress the type parameter, and write extw for ext(w).

(55) Overall Approach to Interrogative Semantics

The approach is described in detail in Pollard 2008. Key ideas:

• The analysis of polar questions (after transformation into Ty2) is
that of Karttunen 1977: at each world w, an interrogative sentence
denotes a set of w-facts (in this case, a singleton).

• For n-ary constituent interrogatives, the denotation at w is a (cur-
ried) n-ary function to w-facts. The range of that function is
similar to the Karttunen semantics, except that it contains both
positive and negative ‘true atomic answers.’

• An interrogative meaning of this kind induces an equivalence rela-
tion on worlds which is a refinement of the Groenendijk-Stokhof
(1984) partition semantics.

13



(56) Types for Polar Questions

a. RC meaning type: κ

b. Meaning type of Ty2 transform: (s → t) → (s → t) (property of
propositions)

c. Type of Ty2 denotation: (s → t) → t (characteristic function of)
a (singleton) set of propositions)

d. Example: at w, Does Chris walk (or whether Chris walks) denotes
the singleton set whose member is whichever is true at w, the
proposition that Chris walks or the proposition that s/he doesn’t.

(57) Types for Unary Constituent Questions

a. RC meaning type: κ1

b. Meaning type of Ty2 transform: (s → e) → (s → t) → (s → t)
(function from individual concepts to properties of propositions).

c. Type of Ty2 denotation: (s → e) → (s → t) → t (function
from individual concepts to sets of propositions). Technically, the
curried version of the characteristic function of a certain binary
relation between individual concepts and propositions.

d. Example: at w, who walks denotes the (functional) binary relation
between individual concepts x and propositions p that obtains just
in case x is a w-person and and p is whichever proposition is a
w-fact, that x walks or that x does not walk.

(58) Types for Binary Constituent Questions

a. RC meaning type: κ2

b. Meaning type of Ty2 transform: (s → e) → (s → e) → (s →
t) → (s → t) (curried function from pairs of individual concepts
to properties of propositions).

c. Type of Ty2 denotation: (s → e) → (s → e) → (s → t) →
t (curried function from pairs of individual concepts to sets of
propositions). Technically, the curried version of the characteristic
function of a certain ternary relation between individual concepts,
individual concepts, and propositions.

d. Example: at w, who likes what denotes the (functional) ternary
relation between individual concepts x and y and propositions p
that obtains just in case x is a w-person, y is a w-thing, and p

14



is whichever proposition is a w-fact, that x likes y or that x does
not like y.

(59) Multiple Wh-In Situ vs. Multiple Quantifier Raising

a. The fact that not all questions have the same type introduces a
complexity that does not arise with QR.

b. Since the scope result type of a quantifier is the same as its scope
type, we can scope multiple quantifiers one after the other (51).

c. But (for example,) scoping one in-situ wh-operator at a proposi-
tion produces a unary consituent question, so its type must be
ικ1
π .

d. So if we want to scope another in-situ wh-operator over that unary
constituent question to form a binary consituent question, then its

type must be ικ2
κ1

, etc.

d. We will return to this point presently.

(60) Ty2 Meaning Postulates for Some Standard Logical Constants

a. ⊢ idn = λZZ (Z : τ(κn))

b. ⊢ and’ = λpλqλw(p(w) ∧ q(w))

c. ⊢ or’ = λpλqλw(p(w) ∨ q(w))

d. ⊢ not’ = λpλw¬p(w)

e. ⊢ equals’A = λxλyλw(x = y)

(61) Ty2 MPs for Some Interrogative Logical Constants

a. ⊢ whether’ = λqλp(p and’ ((p equals’ q) or’ (p equals’ not’(q))))

b. ⊢ which0 = λQλP λxλp(Q(x) and’ whether’(P (x))(p))

c. ⊢ whichn = λQλZλx0
. . . λxn

λp(Q(x) and’ Z(x0) . . . (xn)(p)) (n >
0)

d. ⊢ whon = whichn(person’)

e. ⊢ whatn = whichn(thing’)

8 Chinese Interrogatives

(62) Types, Categories, and Schemata for Chinese Fragment

The same as for English (for this fragment anyway).

This improves on the analysis of Pollard 2007a,b which required construction-
specific rules for different kinds of in-situ operators.

15



(63) Lexicon for Chinese Fragment

⊢ Zhangsan,Zhangsan’ : NP, ι ⊣

⊢ xihuan, like’ : (NP ⊸c (NP ⊸s S), ι → (ι → π) ⊣

⊢ xi-bu-xihuan, like?’ : (NP ⊸c (NP ⊸s S), ι → (ι → κ) ⊣

⊢ xiang-zhidao,wonder’n : S ⊸c (NP ⊸s S), κn → (ι → π) ⊣

⊢ shei,who0 : NP, ικ1
π ⊣

⊢ shei,whon : NP, ι
κn+1

κn
⊣ (for n > 0)

⊢ shenme,what0 : NP, ικ1
π ⊣

⊢ shenme,whatn : NP, ι
κn+1
κn

⊣ (for n > 0)

(64) Meaning Postulate for an Interrogative Verb Meaning

⊢ like?’ = λyλxwhether’(like’(y)(x))

(65) Comments on the Chinese Lexicon

• xibuxihuan ‘like?’ is a partial-reduplicative interrogative verb form,
used for forming (both root and embedded) polar questions.

• The meaning of xiang-zhidao ‘wonder’ has to be type-schematized
according to the type of question expressed by the sentential com-
plement.

• The meanings of the sh-interrogative words have to be type-schematized
according to their scope type (and corresponding result type).

(66) A Simple Chinese Sentence

a. Zhangsan xihuan Lisi.

b. Zhangsan like Lisi

c. ‘Zhangsan likes Lisi.’

d. ⊢ (s Zhangsan (xihuan Lisi c)) : S

e. Ty2: ⊢ like’(Lisi’)(Zhangsan’) : τ(π)

(67) A Chinese Polar Question

a. Zhangsan xi-bu-xihuan Lisi?

b. Zhangsan like? Lisi

c. ‘Does Zhangsan like Lisi?’

d. ⊢ (s Zhangsan (xi-bu-xihuan Lisi c)) : S

e. Ty2: ⊢ whether’(like’(Lisi’)(Zhangsan’)) : τ(κ0)

16



(68) A Chinese Unary Constituent Question

a. Zhangsan xihuan shenme?

b. Zhangsan like who

c. ‘What does Zhangsan like?’

d. ⊢ (s Zhangsan (xihuan shenme c)) : S

e. RC: ⊢ (what0y((like’ y) (Zhangsan’)) : κ1 ⊣

(69) A Chinese Binary Constituent Question

a. Shei xihuan shenme?

b. who like what

c. ‘Who likes what?’

d. ⊢ (s Shei (xihuan shenme c)) : S

e. RC: ⊢ (who1
x(what0y((like’ y) (x))) : κ2 ⊣

f. RC: ⊢ (what1y(who0
x((like’ y) (x))) : κ2 ⊣

The ambiguity is inessential: the two functions are the same modulo
permutation of their arguments.

(70) Baker-Type Ambiguity in English

a. A: Who knows where we bought what?

b. B: Chris does. (Appropriate when what scopes to the embeded
question.)

c. B: Chris knows where we bought the books, and Kim knows where
we bought the records. (Appropriate when what scopes to the root
question.)

d. The ‘overtly moved’ wh-expressions must scope at their ‘surface’
positions: who can only scope to the root question, and where can
only scope to the embedded question.

e. But the in-situ wh-expression what can scope high or low.

(71) A Chinese Baker-Type Wh-Scope Ambiguity

a. Zhangsan xiang-zhidao shei xihuan shenme./?

b. Zhangsan wonder who like what

c. ⊢ (s Zhangsan (xiang-zhidao (s shei (xihuan shenme c) c))) : S

d. ⊢ ((wonder’2 (who1
x(what0y((like’ y) x)))) Zhangsan’) : π ⊣

‘Zhangsan wonders who likes what.’

17



e. ⊢ (who0
x((wonder’1 (what0y((like’ y) x))) Zhangsan’) : κ1 ⊣

‘Who does Zhangsan wonder what (that person) likes?’

f. ⊢ (what0y((wonder’1 (who0
x((like’ y) x))) Zhangsan’) : κ1 ⊣

‘What does Zhangsan wonder who likes?’

(72) The Gist of the Preceding

a. Both sh-expressions are in situ, so they can each scope high or low.

b. If both scope low (71d), then the root sentence expresses a propo-
sition and the embedded sentence expresses a binary question.

c. If one scopes high and the other low (71e,71f), then the root sentence
and the embedded sentence both express unary questions.

d. But they cannot both scope high, since then the complement sen-
tence would express a proposition, while the first argument of wonder’

must be a question.

9 Extending CVG for “Overt Movement”

(73) The Pretheoretical Term ‘Overt Movement’

• Here, by overt movement, we mean the class of phenomena that
have been discussed over the past half-century under such rubrics
as extraction and Ā-movement.

• Thus it refers to phenomena such as those discussed by Chomsky
(1977) ‘On wh-movement’ or by Levine and Hukari 2006 (The

Unity of Unbounded Dependency Constructions).

• So phenomena that have been discussed under the rubrics of head
movement (e.g. verb inflection, subject-auxiliary inversion) and
NP-movement/A-movement (e.g. passive, raising to subject)
are excluded.

• In English, there are both finite and infinitive overt movement
constructions, but for expository simplicity, here we consider only
the finite constructions.

(74) Some Examples of Overt Movement

a. Johni, Fido bit ti. [Topicalization]

b. I wonder [whoi Fido bit ti]. [Indirect Question]

c. Whoi did Fido bite ti? [Direct Question]

18



d. The neighbor [whoi Fido bit ti] was John. [Relative Clause]

e. Felix bit [who(ever)i Fido bit ti]. [Free Relative]

f. It was John [whoi Fido bit ti]. [Cleft]

g. [Whoi Fido bit ti] was John. [Plain Pseudocleft]

h. [Whoi Fido bit ti] was he bit John. [Amalgamated Pseudocleft]

i. [[The more cats]i Fido bit ti], [[the more dogs]j Felix scratched tj ].
[Left and right sides of Correlative Comparatives]

In all these examples, the expression on the left periphery that
is coindexed with the trace is called the filler, or extractee, or
dislocated expression.

(75) A Preview of the CVG Theory of Overt Movement

• We treat traces as variables/hypotheses in the syntactic logic, ex-
actly as semantic variables are treated in the semantic logic.

• Unlike Chomsky’s notion of syntactic variables, there is no sense
in which they arise from movement (or copying).

• Our schema for overt movement phenomena is a generalized ND
formulation of Gazdar’s (1979) linking schemata

• HPSG generalized Gazdars’s / to the list-valued slash feature,
and HPSG’s Filler-Head Schema also schematized over Gazdar’s
linking schemata.

• But HPSG’s feature-structure encoding obscured the inherent logic
behind Gazdar’s schemata.

• Whereas in CVG, the counterpart of the category under Gazdar’s
/ (or in HPSG’s slash feature value) is just the familiar variable
context of labelled sequent-style ND.

(76) The ↑ Connective of CG

• An intended CG counterpart of Gazdar’s /, namely ↑, was intro-
duced by Bach (1981).

• This was provided with a Gentzen-sequent-style Right rule by
Moortgat (1988), and with an ND-style Introduction rule by Car-
penter (1997).

• But the ↑ misses Gazdar’s key point: an instance of a linking
schema both binds the free semantic variable originating from
the trace and applies to the resulting abstract the meaning of the
‘filler’ (topicalized prase or -phrase).

19



(77) New RC Semantic Schema H for Hypotheses

x : A ⊢ x : A ⊣ (x fresh)

This is the same as the usual TLC schema for positing hypotheses. The
variable adds itself to the context, and the co-context is empty.

(78) New RC Semantic Schema O for ‘Overt Movement’

If Γ ⊢ a : AC
B ⊣ ∆ and x : A,Γ′ ⊢ b : B ⊣ ∆′

then Γ; Γ′ ⊢ (axb) : C ⊣ ∆,∆′

• O is also mnemonic for ‘Outside Assistance’.

• This replaces the Hypothetical Proof schema of TLC, because a
hypothesis can be withdrawn only if an operator shows up (the
‘outside assistance’) to eliminate the implication that would have
resulted had Hypothetical Proof been available.

• Note that the binding term constructor is the same one used in
Responsibility (Cooper Retrieval), but the binding comes from
without, not from within.

(79) Schema O and Gazdar’s Linking Schemata

Note the close similarity to the semantic side of (for example) Gazdar’s
linking schema for topicalization

〈44, [S α S/α], λh((S/α)′](α′)〉

where the free variable h originating from the trace is bound, and then
the resulting abstract immediately combined with the topic meaning.

(80) New Kinds of CVG Syntactic Terms

• There is a denumerable infinity of traces (syntactic variables)
of each of each category.

• There are binding syntactic terms of the form [atb] where a and
b are syntactic terms and t is a trace.

• But there is no λ!

(81) New CVG Syntactic Schema T for Traces

t : A ⊢ t : A (t fresh)

• This is just the syntactic counterpart of semantic schema H: traces
are (literally, not metaphorically) syntactic variables.

20



• Here CVG differs from Gazdar, who says of his own trace schema

〈43, [α/α t], h〉

“And t is a trace. Its only role is phonological . . . it serves no
semantic function (h is the variable, not t), and for other dialects
or languages we could replace t with the empty string e . . . or with
a proform.”

• Gazdar can be forgiven for not having been aware that Mints had
extended Curry-Howard to linear logic (in the guise of closed cat-
egories) in 1977 (not translated from the Russian till 1981). The
inventions of the linear and bilinear lambda calculi (van Benthem
1983 and Buszkowski 1987 respectively) still lay a few years ahead.

(82) New CVG Syntactic Schema G for ‘Overt Movement’

If Γ ⊢ a :CB A and t : A,Γ′ ⊢ b : B, then Γ; Γ′ ⊢ [atb] : C

• ‘G’ is mnemonic for ‘Gazdar’.

• Here we use a new ternary syntactic category constructor G: if
A, B, and C are categories, then G[A,B,C], usually abbreviated
to C

BA, is an operator category with binding category A, scope
category B, and result category C.

• This generalizes, in ND format, all of Gazdar’s linking schemata.

• HPSG’s Filler-Head schema also schematized over Gazdar’s link-
ing schemata, but the feature-structure encoding obscured the
logic underlying them.

(83) Gazdar vs. the Categorial ↑ Constructor

• Now look again at the syntactic side of Gazdar’s topicalization
schema

〈44, [S α S/α], λh((S/α)′](α′)〉

The right way to understand Gazdar’s / logically is not as an
implication but rather as the ND turnstile.

• For example, a verb that could take an S-complement could also
take an S/NP-complement.

• Hence the CG ↑ misses the point of Gazdar’s linking schemata:
they neither introduce nor eliminate an implication.

21



(84) Gazdar and CVG’s G Constructor

• Rather than introducing or eliminating an implication, Gazdar’s
topicalization schema “fills an α gap in an S with an α, resulting
in an S.”

• In this schema, the “filler” has the same category as the gap, but
in Gazdar’s schemata for wh-relative and interrogative clauses, the
filler (but crucially not the gap) bears a WH-feature.

• This reflects that the filler has neither moved from the gap site
(pace EST/GB) nor copied the gap (pace Chomsky 1993).

• So logically, these schemata are really ternary constructors (the
type of the gap, the type of the filler’s sister, and the type of the
mother).

• That is what the G-constructor is intended to capture.

• This is reminiscent of Moortgat’s q, but the filler is not in situ.

(85) Previous CVG Interface Schemata, with Contexts Added

Schema L (Lexicon)

⊢ w, c : A,B ⊣ (for certain pairs 〈w, c〉 where w is a word of category
A and c is a basic constant of type B)

Schema Ms (Subject Modus Ponens)

If Γ ⊢ a, c : A,C ⊣ ∆ and Γ′ ⊢ f, v : A ⊸s B,C → D ⊣ ∆′

then Γ; Γ′ ⊢ (s a f), (v c) : B,D ⊣ ∆;∆′

Schema Mc (Complement Modus Ponens)

If Γ ⊢ f, v : A ⊸c B,C → D ⊣ ∆ and Γ′ ⊢ a, c : A,C ⊣ ∆′

then Γ; Γ′ ⊢ (f a c), (v c) : B,D ⊣ ∆;∆′

Schema C (Commitment)

If Γ ⊢ a, b : A,BD
C ⊣ ∆, then Γ ⊢ a, x : A,B ⊣ bx : BD

c ;∆ (x fresh)

Schema R (Responsibility)

If Γ ⊢ e, c : E,C ⊣ bx : BD
C ;∆ then Γ ⊢ e, (bxc) : E,D ⊣ ∆

(x free in c but not in ∆)

(86) New CVG Interface Schemata for Overt Movement

Schema T (Trace)

t, x : A,B ⊢ t, x : A,B ⊣ (t and x fresh)

22



Schema G (Generalized Gazdar Schema)

If Γ ⊢ a, d :CB A,DF
E ⊣ ∆ and t, x : B,D; Γ′ ⊢ b, e : B,E ⊣ ∆′

then Γ; Γ′ ⊢ [atb], (dxe) : C,F ⊣ ∆,∆′

(t free in b, x free in e)

N.B.: Contexts are lists of pairs of a trace and a semantic variable.
This captures the Prohibition on Crossed Dependencies.

10 Topicalization in English

(87) A New Grammatical Function for Phrasal Affixation

• We add to the inventory of grammatical function names the name
affix (abbr. a), mnemonic for ‘(phrasal) affixation’.

• As with other grammatical functions, we add a new flavor of
Modus Ponens to the syntactic (and interface) schemata (the
Elimination rule for ⊸a).

• This schema will be used to analyze (e.g) intonationally realized
information-structural affixes, Japanese and Korean case markers,
Chinese sentence particles, English possessive -’s, etc.

(88) Syntactic Analysis of Topicalization in CVG

• We add to the lexicon a topicalization phrasal-affix schema

⊢ top, top’ : A ⊸a
T
S
A,B → Bπ

π ⊣

• The syntax-phonology interface will specify that top is optionally
realized as a contrastive-topic pitch accent on the realization of
the A.

• top changes the phrase it affixes to into a syntactic operator: it is
CVG’s analog of the notion of a ‘movement trigger’ in TG.

• We remain agnostic for now whether the category T of topicalized
sentences is distinct from S.

(89) Semantic Analysis of Topicalization in CVG

• The assumption that the meaning of a topicalized sentence is just
a proposition is a simplification in the absence of a concrete type-
theoretic embodiment of information-structural concepts such as
contrastive topic.

23



• Under the RC-toTy2 transform, the semantic operator top’ is
mapped to a family (parametrized by Ty2 meaning types B) of
constants of type B → (B → (s → t)) → (s → t).

• Intuitively, top’(b)(P ) means something like ‘P (b), but for cer-
tain other B’s, x, contextually associated with b, whether’(P (x))
remains unresolved.’

• This approach (I think) gets at the intuition that ‘structured
propositions’ try to get at, but as far as its type goes, top’(b)(P )
is just a proposition.

(90) CVG Analysis of Sandy, Kim likes

⊢ [(Sandy top a)t(
s Kim (likes t c))],

((top’ Sandy’)x((like’ x) Kim’)) : T, π ⊣

11 English Interrogatives

(91) Lexicon for English Fragment

⊢ Kim,Kim’ : NP, ι ⊣

⊢ likes, like’ : (NP ⊸c (NP ⊸s S), ι → (ι → π) ⊣

⊢ whether,whether’ : (S ⊸c S, π → κ) ⊣

⊢ wonders,wonder’n : S ⊸c (NP ⊸s S), κn → (ι → π) ⊣

⊢ whofiller,who0 :S
S

NP, ικ1
π ⊣

⊢ whoin-situ,whon : NP, ι
κn+1
κn

⊣ (for n > 0)

⊢ whatfiller,what0 :S
S

NP, ικ1
π ⊣

⊢ whatin-situ,whatn : NP, ι
κn+1
κn

⊣ (for n > 0)

(92) Comments on the English Lexicon

• Unlike Chinese, (embedded) polar interrogatives are formed by
‘complementizing’ declarative sentences with whether, which has
the same meaning as the Chinese interrogative reduplicative ver-
bal affix.

• The verb wonder is type-schematized according to the type of
question expressed by the sentential complement.

• The meanings of the wh-interrogative words are type-schematized
as in Chinese, with one crucial difference.

24



(93) The Difference between Chinese and English

• The main difference between English and Chinese, at least as far as
interrogatives are concerned, is a lexical one: in English, but not in
Chinese, the interrogative pronouns are syntactically ambiguous.

• For example, there is only one Chinese syntactic word shei ‘who’,
namely shei : NP.

• But in English, the who with meaning who0 : ικπ, the one that ‘gets
the ball rolling’, is not an NP but rather the syntactic operator
whofiller :S

S
NP).

• This is the wrong category to be a subject or a complement, but
the right category to be a filler in Schema G.

• On the other hand, the English who that expresses all the all the
other meanings (whon : ι

κn+1
κn

, for n > 0), namely whoin-situ, is an
NP just like Chinese shei, so it is always in situ.

(94) A Simple English Sentence

a. Kim likes Sandy.

b. ⊢ (s Kim (likes Sandy c)) : S

c. Ty2: ⊢ like’(Sandy’)(Kim’) : τ(π)

(95) An English Embedded Polar Question

a. whether Kim likes Sandy

b. ⊢ (whether’ (s Kim (likes Sandy c)) c) : S

c. Ty2: ⊢ whether’(like’(Sandy’)(Kim’)) : τ(κ0)

(96) An English Embedded Constituent Question

a. what Kim likes

b. ⊢ [whatfiller t(
s Kim (likes t c))] : S

c. RC: ⊢ (what0y((like’ y) (Kim’)) : κ1 ⊣

(97) A English Binary Constituent Question

a. who likes what?

b. ⊢ [whofiller t(
s t (likes whatin-situ

c))] : S

c. RC: ⊢ (what1y(who0
x((like’ y) (x))) : κ2 ⊣

No ambiguity, not even an inessential one.

25



(98) Baker-Type Ambiguity in English (Review)

a. A: Who wonders who likes what?

b. B: Chris does. (Appropriate when what scopes to the embeded
question.)

c. B: Chris wonders who likes the books, and Kim wonders who likes
the records. (Appropriate when what scopes to the root question.)

d. The ‘overtly moved’ wh-expressions must scope at their ‘surface’
positions: who can only scope to the root question, and where can
only scope to the embedded question.

Now we know why: because syntactic operators (fillers in Schema
G) are interpreted ‘in place’.

e. But the in-situ wh-expression what can scope high or low.

Now we know why: in-situ operators are stored, and have multiple
options as to where they are retrieved.

(99) CVG Analysis of Baker-Type Ambiguity in English

a. Who wonders who likes what?

b. ⊢ [whofiller t(
s t (wonders [whofiller t′(

s t′ (likes whatin-situ
c))] c))] : S

c. ⊢ (who0
x((wonder’2 (what1y(who0

z((like’ y) z)))) x)) : π ⊣

(E.g. Chris wonders who likes what.)

d. ⊢ (what1y(who0
x((wonder’1 (who0

z((like’ y) z))) x)))) : π ⊣

(E.g. Chris wonders who likes the books, and Kim wonders who
likes the records.)

(100) The Gist of the Preceding

a. Both instances of who are fillers, so they must scope ‘in place’.

b. But what is in situ, so it can scope high or low.

26



12 Conclusion

(101) Summary

• CVG is purely derivational like ACG, weakly syntactocentric like
HPSG, and parallel like both.

• It is a synthesis of ideas developed by phrase structure grammar-
ians and categorial grammmarians

• The syntax-semantics interface recursively specifies a set of pairs
consisting of a syntactic proof and a semantic proof.

• The syntactic logic is a kind of noncommutative multilinear logic
with the usual hypothetical proof rule replaced by a generalized
Gazdar-style linking schema.

• The semantic logic (RC) is a kind of (commutative) linear logic
with the usual hypothetical proof rule replaced by (1) ND for-
mulations of Cooper storage and retrieval (i.e. by ‘q but in the
semantics’), and (2) a semantic counterpart of the Gazdar-style
linking schema.

• There is a simple, explicit transform from RC to Ty2 (limited to
terms with empty Cooper stores).

• Quantifier raising, topicalization, and both ‘moved’ and ‘in situ’
constituent questions are all handled smoothly with no construction-
specific rules.

• Traces are literally syntactic variables.

• Syntactic binding operators never occupied the trace position, nor
are they copies of traces.

• Semantic binding operators (qua terms) ‘move’ only in the sense
that a copy of the term can be found in the Cooper store of every
node in the proof tree between the storage and the retrieval, but
in no sense is the operator a copy of the variable it binds.

27


