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INTRODUCTION: LIFE WITHOUT

CONTINUATIONS?
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(1) The Reason for this Paper

• Much of the current interest in applying continuations to lin-

guistics is centered on issues about scope of quantified NPs, wh-
expressions, and the like.

• But the Extended Montague Grammar (EMG) of the 1970s al-
ready had good theories about these, though not always presented

in the best light.

• My goal here is to tell the best EMG-style story I can about these
things, as a kind of benchmark, so we can get clearer about what

is gained by “continuizing”.

• In this paper I focus mostly on wh-questions, and next week (in

the What Syntax Feeds Semantics Workshop) on some ellipsis
and comparative constructions.

• The paper is about Chinese, but this talk deals with English ques-

tions, because they involve both overt and covert movement.
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• A Little History

• Back to the Future: Convergent Grammar (CVG)

– Syntax: Bar-Hillel Meets Gazdar

– Semantics: Curry Meets Cooper

– The Syntax-Semantics Interface

• Quantifier Scope

• Wh-Questions

• Conclusion
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A LITTLE HISTORY
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(2) Extended Montague Grammar (EMG)

• EMG emerged in the 1970s as an alternative to the then-current

avatar of TG, Chomsky’s Revised Extended Standard Theory (REST).

• EMG sought greater simplicity, precision, and tractability.

• EMG included practicioners of:

– PSG, e.g. Cooper, Gazdar, Pullum

– CG, e.g. Dowty

– switch hitters, e.g. Bach.

• CG then (essentially AB grammars) was not much different from

PSG.

• Lambek’s (1958) calculus didn’t start to catch on with linguists
until the mid-1980’s.
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(3) Two Signal Achievments of EMG

• The most obvious difference between EMG and REST was that

EMG eschewed movement, both overt (e.g. Wh-Movement ‘at
Syntax’) and covert (e.g. Quantifier Raising (QR)).

• Two of the most significant achievements of EMG:

– Cooper’s (1975) storage replaced covert movement.

– Gazdar’s (1979) linking schemata replaced overt movement.

• Proof-theoretically, these two devices are almost identical.
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(4) The 1980s and Beyond

• REST evolved into GB, and then into the MP, where movement

is still the central explanatory device.

• Since Chomsky 1993, movement has been viewed as copying, and
the covert/overt distinction as a question of which copy is audible.

• EMG spawned such frameworks as CCG, HPSG, TLG, Pregroup
Grammars, ACG, etc.

• In spite of the multitude of important contributions of these frame-

works, none of them quite capture the simplicity of the intuitions
behind Cooper storage and the Gazdar schemata.
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BACK TO THE FUTURE: CONVERGENT

GRAMMAR (CVG)
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(5) What is CVG?

• CVG is yet another post-EMG framework..

• It seeks to synthesize from the best practices of CG and PSG

an approach to syntax and semantics that is simple enough to
be used as a research framework by actual linguists, not just
computational linguists and mathematical logicians.

• Logical reformulations of Cooper storage and the Gazdar schemata

play a central role.

• CVG closely resembles both ACG and HPSG.
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(6) CVG Compared with ACG and HPSG

• Like both ACG and HPSG, CVG has a parallel architecture: in-

dependent components generate candidate phonological, syntactic,
and semantic entities.

• Like ACG, these candidate entities are proofs, each in a differ-
ent logic. We call this pure derivationality as opposed to TG’s

structural derivationality in TG that builds arboreal representa-
tions by sequences of structural operations.

• Like HPSG, the relation between syntax and semantics need not

be a function: the same syntactic derivation can correspond to
two or more distinct semantic derivations.

• This nonfunctionality of the syntax-semantics interface arises from

the use of a generalized form of Cooper storage.
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(7) Syntax, Semantics, and their Interface in CVG

• Candidate syntactic derivations are specified by a syntactic logic

similar to ones used in CG, plus a (proof-theoretic version of) a
Gazdar-style linking schema.

• Candidate semantic derivations are specified by a semantic logic
similar to lambda calculus, but with abstraction replaced by a

(proof-theoretic version of) Cooper storage.

• The interface specifies which pairs of derivations go together.
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CVG SYNTAX: BAR-HILLEL MEETS GAZDAR
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(8) Format for CVG Syntactic Typing Judgments

Γ ⊢ a : A

• ‘Term a is assigned category A in context Γ.’

• This is in the Gentzen-sequent style of natural deduction
with Curry-Howard proof terms.

• The context is the (nonrepeating) list of typed syntactic vari-

ables, also called traces, that have been bound.

• Contexts work essentially like the HPSG slash.

• HPSGs are really natural-deduction systems, a fact which is ob-

scured by the feature-structure encoding.
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(9) CVG Categories

• There are some basic categories, such as S, NP, and N

• For present purposes we ignore morphosyntactic details such as

case, agreement, verb inflection (the kinds of details handled in
HPSG by head features). In a more detailed CVG, these would
be handled by subtyping.

• If A and B are categories, then so are A ⊸f B, where f be-

longs to a finite set F of grammatical function names. These
are called functional categories with argument category A and

result category B.

• If A, B, and C are categories, then so is G[A, B, C], usually abbre-
viated to AC

B. These are called operator categories with binding

category A, scope category B, and result category C.
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(10) Functional Categories

• We start off with the grammatical function names (gramfuns) s

(subject) and c (complement). Others can be added as needed.

• The gramfuns correspond to HPSG valence features.

• Since the grammatical functions aren’t relevant for this talk, you

can just think ⊸s as Lambek’s \ and ⊸c as Lambek’s /.

• Example: a transitive verb has category NP ⊸c NP ⊸s S.

• There is poetic justice here, since HPSG’s valence features origi-
nated as a feature-structure encoding of CG category cancellation.
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(11) Syntactic Operator Categories

• These are for expressions analyzed by TG as having overtly moved.

• They correspond to fillers in HPSG, which in turn go back to

Gazdar’s (1979) analysis of unbounded dependencies, hence
the name G for the category constructor.

• Example: if we call the category of interrogatives Q, then the
interrogative pronoun who has category SQ

NP.

• This means who combines with an S containing an unbound NP

gap to form a Q, at the same time binding the trace.

• The G constructor is reminiscent of Moortgat’s (1991) in-situ
scoping constructor q, but in the syntactic logic G is used for

overt—not covert—movement.
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(12) Some Syntactic Words, CVG Style

Words are axioms of the syntactic logic.

⊢ Chris : NP

⊢ everyone : NP

⊢ someone : NP

⊢ whoin-situ : NP

⊢ whatin-situ : NP

⊢ whofiller : NPQ
S

⊢ whatfiller : NPQ
S

⊢ barked : NP ⊸s

⊢ liked : (NP ⊸c (NP ⊸s S)

⊢ thought : S ⊸c (NP ⊸s S)

⊢ wondered : Q ⊸c (NP ⊸s S)

⊢ whether : (S ⊸c Q)
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(13) Modus Ponens in CVG Syntax

These are inference schemata of the syntactic logic.

Schema Ms (Subject Modus Ponens)

If Γ ⊢ a : A and Γ′ ⊢ f : A ⊸s B,

then Γ; Γ′ ⊢ (s a f) : B

Schema Mc (Complement Modus Ponens)

If Γ ⊢ f : A ⊸c B and Γ′ ⊢ a : A,

then Γ; Γ′ ⊢ (f a c) : B

Note: These corresponds to HPSG’s valence cancellation schemata.

Also note: The proof terms are written to be mnemonic of the order
in which the words are phonologically realized.
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(14) Introducing Syntactic Hypotheses in CVG

Schema T (Trace)

t : A ⊢ t : A (t fresh)

Note: TGists also call traces “syntactic variables”. But in EST/GB
a trace is left behind when the operator that binds it moves out of

the argument position; and in the MP, the trace and the operator that
binds it are copies.

Our traces are just ordinary variables.
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(15) Schema G (Generalized Gazdar Schema)

If Γ ⊢ a : AC
B and t : A; Γ′ ⊢ b : B,

then Γ; Γ′ ⊢ atb : C (t not free in a)

Note: This corresponds to HPSG’s Filler-Head schema, which in turn
derives from Gazdar’s (1979) Linking schemata.

Also note: the free occurrence of t in b is bound in atb.
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(16) The CVG Syntactic Schemata

Schema Ms (Subject Modus Ponens)

If Γ ⊢ a : A and Γ′ ⊢ f : A ⊸s B,

then Γ; Γ′ ⊢ (s a f) : B

Schema Mc (Complement Modus Ponens)

If Γ ⊢ f : A ⊸c B and Γ′ ⊢ a : A,

then Γ; Γ′ ⊢ (f a c) : B

Schema T (Trace)

t : A ⊢ t : A (t fresh)

Schema G (Generalized Gazdar Schema)

If Γ ⊢ a : AC
B and t : B; Γ′ ⊢ b : B,

then Γ; Γ′ ⊢ atb : C (t not free in a)
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(17) CVG vs. Lambek Calculus or Lambda Calculus

This resembles an ND presentation of lambda calculus or (Buszkowski
1987) Lambek calculus (i.e. bilinear logic). Biggest difference:

• there is no lambda-abstraction/hypothetical proof.

• Instead, the implication A ⊸ B that you expect to be introduced

by binding the trace is immediately eliminated by Schema G and
you go straight to a C.

• Evidently, in NL as opposed to familiar logics, implication in-
troduction is lexically coordinated with implication elim-

ination to avoid introducing implications in derivations.
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(18) A Simple Sentence

⊢ (s Chris (thought (s Kim (liked Dana c) c))) : S

(19) An Embedded Polar Question

⊢ (whether (s Kim (likes Sandy c)) c) : Q
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(20) An Embedded Constituent Question

⊢ [whatfiller t(
s Kim (likes t c))] : Q

Here what is an operator of type NPQ
S : it combines with an S containing

an unbound NP trace to form a Q, while binding the trace.

(21) A Binary Constituent Question

⊢ [whofiller t(
s t (likes whatin-situ

c))] : S

Here who is an operator but what is just an NP.

(22) Baker Ambiguity

⊢ [whofiller t(
s t (wonders [whofiller t′(

s t′ (likes whatin-situ
c))] c))] : S

Here, both who are operators but what is just an NP.

This sentence is ambiguous as to whether what scopes at the root
question or the embedded one.

So far this is just syntax. What do these sentences mean?

25



CVG SEMANTICS: CURRY MEETS COOPER
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(23) Toward RC Calculus

• RC is a term calculus for NL meaning composition, also in the

Gentzen-sequent style of ND with Curry-Howard terms.

• The easiest way to semantically interpret RC terms is to transform
RC into TLC (typed lambda calculus), more specifically Ty2.

• Fortunately that is trivially easy.
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(24) Format for RC Typing Judgments

Γ ⊢ a : A ⊣ ∆

a. ‘term a is assigned type A in context Γ and co-context ∆.’

b. The context is used to track semantic variables corresponding to
traces (like the semantic halves of HPSG slash values).

c. The co-context is a generalization of Cooper storage, not just for

quantifiers, but also indefinites, names, pronouns, reflexives, wh-
in situ, comparative and superlative operators, subdeletion gaps,
topic, focus, and more.

d. The ‘co-’ is mnemonic for ‘Cooper’ and ‘covert movement’.
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(25) RC Semantic Types

a. There are some basic semantic types.

b. If A and B are types, then A → B is a functional semantic type

with argument type A and result type B.

c. If A, B, and C are types, then G[A, B, C], abbreviated to AC
B, is

an operator semantic type with binding type A, scope type B,
and result type C.

d. To summarize: the semantic type system is just like the syntactic

category system, except

i. different basic types; and

ii. only one kind of implication (→).
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(26) Basic Semantic Types

For present purposes, we use three basic semantic types:

ι (individual concepts)

π (propositions)

and κ (polar questions).

Note: Here κ is mnemonic for ‘Karttunen’ because its transform (see
(32) below) into Ty2 will be the Karttunen type for questions.

Also note: If you are shaky on intensional types, most of the time
you can think of ι as e and π as t and still get the gist.
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(27) Abbreviated Notation for Functional Types

Where σ ranges over strings of types and ǫ is the null string:

i. Aǫ =def A

ii. ABσ =def B → Aσ (e.g. πιι = ι → ι → π)

iii. For n ∈ ω, An =def Aσ where σ is the string of ι’s of length n

Example: π2 =def πιι =def ι → ι → π.

Note: This clunky notation is the price we pay for not having con-

junction in the type logic.
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(28) How the Semantic Operator Types are Used (1/2)

• Semantic operator types are used for expressions which would be

analyzed in TG as undergoing (overt or covert) Ā-movement.

• ‘Covert movement’: the semantics is an operator, but the syntax
is not.

• Example: for Moortgat (1991) a QNP has category q[NP, S, S] and
semantic type (ι → π) → π.

This misses the generalization that the syntactic category of the

retrieval site is irrelevant; what matters is that the semantic type
be π (or, more generally, a functional type with final result π).

• Whereas for us a QNP is just an NP with semantic type ιππ.
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(29) How the Semantic Operator Types are Used (2/2)

• ‘Overt movement’: the semantic G-constructor works in lockstep

with the syntactic G-constructor.

• Example: ‘Overtly moved’ who has category NPQ
S and semantic

type ικ1

π , where κ1 is the type of unary constituent questions.

• The standard TLG way to get the effect of NPQ
S is Q/(S ↑ NP),

where ↑ is Moortgat’s (1988) extraction constructor.

• But this misses the generalization that there don’t seem to be any

phrases of category S ↑ NP.
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(30) What goes into the Co-Context?

a. The co-contexts will contain semantic operators to be scoped, each

paired with the variable that it will eventually bind.

b. We call such stored pairs commitments, and write them in the
form ax, where the type of x is the binding type of a.

c. Then we call x a committed variable, and say that a is commit-
ted to bind x.

d. By contrast, the variables in the (left-of-turnstile) context are

called uncommited variables.
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(31) The Semantic Schemata

Constants, variables, and Modus Ponens (Function Application) ex-
actly as in the familiar typed lambda calculus, plus:

Semantic Schema C (Cooper Storage)

If Γ ⊢ a : AC
B ⊣ ∆, then Γ ⊢ x : A ⊣ ax : AC

B; ∆ (x fresh)

Schema R (Retrieval)

If Γ ⊢ b[x] : B ⊣ ax : AC
B; ∆, then Γ ⊢ (axb[x]) : C ⊣ ∆,

(x free in b but not in ∆)

Schema G (Semantic Counterpart of Gazdar Schema)

If Γ ⊢ a : AC
B ⊣ ∆ and x : A, Γ′ ⊢ b : B ⊣ ∆′

then Γ; Γ′ ⊢ (axb) : C ⊣ ∆, ∆′ (x not free in a)

Note: the underscoring of the bound variable in Schema R is an
essential part of the proof term! Without it you can’t tell whether the

variable was bound by Schema R or by Schema G.
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(32) The Transform τ from RC Types to Ty2 Meaning Types

a. τ(ι) = s → e

b. τ(π) = s → t

c. τ(κ) = τ(π) → τ(π)

d. τ(A → B) = τ(A) → τ(B)

e. τ(AC
B) = (τ(A) → τ(B)) → τ(C)
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(33) The Transform τ on Terms

a. Variables and basic constants are unchanged except for their types.

b. τ((f a)) = τ(f)(τ(a))

The change in the parenthesization has no theoretical significance.
It just enables one to tell at a glance whether the term belongs to

RC or to Ty2, e.g. (walk’ Kim’) vs. walk’(Kim’).

c. τ((axb)) = τ(a)(λxτ(b))

Note: This is the important clause. It says that operator binding
consists of abstraction immediately followed by application.
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THE CVG SYNTAX-SEMANTICS INTERFACE:

SEVEN SCHEMATA
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(34) Schema L (Lexicon)

⊢ w, c : A, B ⊣ (for certain pairs 〈w, c〉 where w is a word of category
A and c is a basic constant of type B)

This tells what words mean.
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(35) Schema Ms (Subject Modus Ponens)

If Γ ⊢ a, c : A, C ⊣ ∆ and Γ′ ⊢ f, v : A ⊸s B, C → D ⊣ ∆′,

then Γ; Γ′ ⊢ (s a f), (v c) : B, D ⊣ ∆; ∆′

This says that heads combine with subjects semantically by function
application.

Note: Contexts (unbounded traces) and co-contexts (unscoped Cooper-
stored operators) just get passed up, as in old-fashioned PSG.
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(36) Schema Mc (Complement Modus Ponens)

If Γ ⊢ f, v : A ⊸c B, C → D ⊣ ∆ and Γ′ ⊢ a, c : A, C ⊣ ∆′,

then Γ; Γ′ ⊢ (f a c), (v c) : B, D ⊣ ∆; ∆′

This says that heads combine with complements semantically by func-
tion application. Again, (co-)contexts are just passed up.
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(37) Schema T (Trace)

t, x : A, B ⊢ t, x : A, B ⊣ (t and x fresh)

This says that traces (syntactic variables) are paired with semantic

variables from birth.

Note: In MP, traces must undergo a multistage process of ‘trace con-

version’ in order to become semantically interpretable.
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(38) Schema C (Cooper Storage)

If Γ ⊢ a, b : A, BD
C ⊣ ∆, then Γ ⊢ a, x : A, B ⊣ bx : BD

c ; ∆ (x fresh)

This says that when a semantic operator gets added to the Cooper
store, nothing happens in the syntax (because the phrase whose mean-

ing is stored is not an operator syntactically).

(39) Schema R (Retrieval)

If Γ ⊢ e, c[x] : E, C ⊣ bx : BD
C ; ∆ then Γ ⊢ e, (bxc[x]) : E, D ⊣ ∆

(x free in c but not in ∆)

This says that when a Cooper-stored semantic operator gets retrieved,
again nothing happens in the syntax.

Note: the underscoring of the bound variable is an essential part of
the proof term! Without it you can’t tell whether the variable was

bound by Schema R or by Schema G (next slide).
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(40) Schema G (Generalized Gazdar Schema)

If Γ ⊢ a, d : AC
B, DF

E ⊣ ∆ and t, x : B, D; Γ′ ⊢ b, e : B, E ⊣ ∆′,

then Γ; Γ′ ⊢ (atb), (dxe) : C, F ⊣ ∆, ∆′

(t free in b, x free in e)

This says that fillers (‘overtly moved’ phrases) are operators, both
syntactically and semantically.

Important: although co-contexts are sets of committed semantic
variables, contexts are lists of pairs of a trace and a semantic variable.

This captures the Prohibition on Crossed Dependencies.

Important: The operator a binds the trace t, but there is absolutely

no construal of the words ‘move’ or ‘copy’ under which a moved from
the argument position t occupies, or copied t, just as in lambda calculus

there is no sense in which λx.bite’(x)(Fido’) is derived by movement or
copying from bite’(λ)(Fido’).
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QUANTIFIER SCOPE
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(41) Lexicon for Quantifier Scope Fragment

⊢ Chris, Chris’ : NP, ι ⊣ (likewise other names)

⊢ everyone, everyone’ : NP, ιππ ⊣

⊢ someone, someone’ : NP, ιππ ⊣

⊢ liked, like’ : (NP ⊸c (NP ⊸s S), ι → ι → π ⊣

⊢ thought, think’ : S ⊸c (NP ⊸s S), π → (ι → π) ⊣

46



(42) A Refinement

• Actually the QNP meanings have to be polymorphically typed

to ιπσ

πσ

where σ ranges over strings of types, since quantifiers can
retrieved not just at proposition nodes, but also at nodes with
functional types whose final result type is proposition.

• An important case is σ = ι: quantifiers can be retrieved at nodes

which are semantically individual properties (πι = ι → π), such
as VPs and Ns:

a. [Campaigning in every state] is prohibitively expensive.

b. Most [people with few interests] are uninteresting.
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(43) Ty2 Meaning Postulates for Generalized Quantifiers

⊢ every’ = λQλPλw∀x(Q(x)(w) → P (x)(w))

⊢ some’ = λQλPλw∃x(Q(x)(w) ∧ P (x)(w))

⊢ everyone’ = every’(person’)

⊢ someone’ = some’(person’)

Types for Ty2 variables are as follows:

x, y, z : s → e (individual concepts)

p, q : s → t (propositions); w : s (worlds)

P, Q : ((s → e) → (s → t)) (properties of individual concepts).
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(44) Quantifier Scope Ambiguity

a. Syntax (both readings):

(s Chris (thinks (s Kim (likes everyone c) c))) : S

b. Semantics (scoped to lower clause):

RC: ((think’ (everyone’x((like’ x) Kim’))) Chris’) : π

Ty2: think’(λw(∀x(person′(x)(w) → like’(x)(Kim’)(w))))(Chris’) :

s → t

c. Semantics (scoped to upper clause):

RC: (everyone’x((think’ ((like’ x) Kim’)) Chris’)) : π

Ty2: λw(∀x(person’(x)(w) → think’(like’(x)(Kim’))(Chris’)(w))) :
s → t
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(45) Raising of Two Quantifiers to Same Clause

Note: from now on we omit the Ty2 transform.

a. Syntax (both readings): (s everyone (likes someone c)) : S

b. ∀∃-reading: (everyone’x(someone’y((like’ y) x))) : π

c. ∃∀-reading: (someone’y(everyone’x((like’ y) x))) : π

d. These are possible because for generalized quantifiers, the result

type is the same as the scope type.

e. Things are not so straightforward in the case of multiple in-situ

wh-operators, as we soon will see.
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(46) The Side Conditions in Schema R

If Γ ⊢ e, c[x] : E, C ⊣ bx : BD
C ; ∆ then Γ ⊢ e, (bxc[x]) : E, D ⊣ ∆

(x free in c but not in ∆)

a. The first conjunct prohibits vacuous quantification. For example,

there is no reading of

Every owner of a donkey has regrets.

where the existential is in the scope (as opposed to the restrictor)
of the universal, since a donkey binds no variable occurence.

b. The second conjunct makes sure that an operator binds every oc-

currence of ‘its’ variable. For example, there is no reading of

A rumor about him upset every boy.

where the universal is the antecedent of the pronoun but is outscoped
by the existential, since then every boy fails to bind the occurrence
of ‘its’ variable coming from the pronoun.

c. The side conditions obviate the need for nested storage.
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WH-QUESTIONS
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(47) Ty2 Meaning Types

These are defined as follows:

a. s → e (individual concepts) is a Ty2 meaning type.

b. s → t (propositions) is a Ty2 meaning type.

c. If A and B are Ty2 meaning types, then so is A → B.

(48) Extensional Types Corresponding to Ty2 Meaning Types

These are defined as follows:

a. E(s → e) = e

b. E(s → t) = t

c. E(A → B) = (A → E(B))
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(49) Extensions of Ty2 Meanings

The relationship between Ty2 meanings and their extensions is axiom-
atized as follows, where the family of constants extA : s → (A → E(A))

is parametrized by the Ty2 meaning types:

a. ⊢ ∀x∀w(extw(x) = x(w) (for x : s → e)

b. ⊢ ∀p∀w(extw(p) = p(w) (for p : s → t)

c. ⊢ ∀f∀w(extw(f) = λxextw(f(x)) (for f : A → B, A and B Ty2
meaning types.

Note: we suppress the type parameter, and write extw for ext(w).
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(50) Overall Approach to Interrogative Semantics

The approach is described in detail in Pollard 2008. Key ideas:

• The analysis of polar questions (after transformation into Ty2) is
that of Karttunen 1977: at each world w, an interrogative sentence

denotes a set of w-facts (in this case, a singleton).

• For n-ary constituent interrogatives, the denotation at w is a (cur-
ried) n-ary function to w-facts. The range of that function is sim-

ilar to the Karttunen semantics, except that it contains both pos-
itive and negative ‘true atomic answers.’

• An interrogative meaning of this kind induces an equivalence rela-
tion on worlds which is a refinement of the Groenendijk-Stokhof

(1984) partition semantics.
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(51) Types for Polar Questions

a. RC meaning type: κ

b. Meaning type of Ty2 transform: (s → t) → (s → t) (property of

propositions)

c. Type of Ty2 denotation: (s → t) → t (characteristic function of)

a (singleton) set of propositions)

d. Example: at w, Does Chris walk (or whether Chris walks) denotes
the singleton set whose member is whichever is true at w, the

proposition that Chris walks or the proposition that s/he doesn’t.
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(52) Types for Unary Constituent Questions

a. RC meaning type: κ1

b. Meaning type of Ty2 transform: (s → e) → ((s → t) → (s → t))

(function from individual concepts to properties of propositions).

c. Type of Ty2 denotation: (s → e) → ((s → t) → t) (function

from individual concepts to sets of propositions). Technically, the
curried version of the characteristic function of a certain binary

relation between individual concepts and propositions.

d. Example: at w, who walks denotes the (functional) binary relation
between individual concepts x and propositions p that obtains just

in case x is a w-person and and p is whichever proposition is a w-
fact, that x walks or that x does not walk.
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(53) Types for Binary Constituent Questions

a. RC meaning type: κ2

b. Meaning type of Ty2 transform: (s → e) → ((s → e) → ((s →

t) → (s → t))) (curried function from pairs of individual concepts
to properties of propositions).

c. Type of Ty2 denotation: (s → e) → ((s → e) → ((s → t) →
t)) (curried function from pairs of individual concepts to sets of
propositions). Technically, the curried version of the characteristic

function of a certain ternary relation between individual concepts,
individual concepts, and propositions.

d. Example: at w, who likes what denotes the (functional) ternary
relation between individual concepts x and y and propositions p

that obtains just in case x is a w-person, y is a w-thing, and p is
whichever proposition is a w-fact, that x likes y or that x does not
like y.
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(54) Types for Interrogatives (Summary)

a. The RC type for polar interrogatives (whether Fido barked) is

κ0 = κ, whose Ty2 transform is (s → t) → s → t (property of
propositions).

b. The RC type for unary constituent interrogatives (who barked) is
κ1 = ι → κ, whose Ty2 transform is ι → (s → t) → s → t

(function from individuals to properties of propositions).

c. The RC type for binary consituent interrogatives (who bit who) is
κ2 = ι → ι → κ, whose Ty2 transform is ι → ι → (s → t) →

s → t (curried function from pairs of individuals to properties of
propositions), etc.
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(55) Multiple Wh-In Situ vs. Multiple Quantifier Raising

a. The fact that not all questions have the same type introduces a

complexity that does not arise with quantifier scope.

b. But as we’ll see, it also explains s lot.

b. Since the result type of a quantifier is the same as its scope type,

we can scope multiple quantifiers one after the other (45).

c. But (for example,) scoping one (overtly moved) wh-operator at a
proposition produces a unary consituent question, so its type must

be ικ1

π .

d. So if we want to scope a second (in-situ) wh-operator over that
unary constituent question to form a binary consituent question,

then its type must be ικ2

κ1
, etc.

d. We will return to this point presently.
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(56) Ty2 Meaning Postulates for Some Standard Logical Con-
stants

a. ⊢ idA = λxx (Z : τ(κn))

b. ⊢ and’ = λpλqλw(p(w) ∧ q(w))

c. ⊢ or’ = λpλqλw(p(w) ∨ q(w))

d. ⊢ not’ = λpλw¬p(w)

e. ⊢ equals’A = λxλyλw(x = y)

(57) Ty2 MPs for Some Less Standard Logical Constants

a. ⊢ whether’ = λqλp(p and’ ((p equals’ q) or’ (p equals’ not’(q))))

b. ⊢ which0 = λQλPλxλp(Q(x) and’ whether’(P (x))(p))

c. ⊢ whichn = λQλZλx0
. . . λxn

λp(Q(x) and’ Z(x0) . . . (xn)(p)) (n > 0)

d. ⊢ whon = whichn(person’)

e. ⊢ whatn = whichn(thing’)
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(58) Lexicon for Interrogative Fragment

⊢ Kim, Kim’ : NP, ι ⊣

⊢ liked, like’ : (NP ⊸c (NP ⊸s S), ι → (ι → π) ⊣

⊢ whether, whether’ : (S ⊸c S, π → κ) ⊣

⊢ wondered, wonder’n : S ⊸c (NP ⊸s S), κn → (ι → π) ⊣

⊢ whofiller, who0 : NPQ
S , ικ1

π ⊣

⊢ whoin-situ, whon : NP, ι
κn+1

κn
⊣ (for n > 0)

⊢ whatfiller, what0 : NPQ
S , ικ1

π ⊣

⊢ whatin-situ, whatn : NP, ι
κn+1

κn
⊣ (for n > 0)
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(59) Observations about Interrogative who

• The interrogative ’pronoun’ who is syntactically ambiguous be-

tween a syntactic operator whofiller and an NP, whoin-situ.

• whofiller can only form an interrogative (Q) by scoping syntactically
over a ‘declarative’ (i.e. semantically propositional) S containing
at least one unbound NP trace, and the semantic result (formed

by scoping who0 over an open proposition), is a unary constituent
question (type κ1).

• whoin-situ cannot scope syntactically, but its stored meaning (any

of whon, n > 0) can be retrieved at a constituent question (type
κn, n > 0) to form a ‘higher’ consituent question (type κn+1).
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(60) Consequences

• There can be no purely in-situ interrogatives (leaving aside prag-

matically restricted, intonationally marked ones which we cannot
go into here):

*I wonder Fido bit who?

• A wh-expression cannot scope, either overtly or covertly, over a

polar interrogative:

*I wonder whether Fido bit who?

*I wonder who whether Fido bit?

• In each constituent interrogative, only one ‘overtly moved’ wh-
expression can take scope there:

*I wonder who who(m) bit?
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(61) More Consequences

• Arbitrarily many in-situ wh-expressions can take their semantic

scope at a given consituent interrogative:

Who gave what to who when?

• There are (Baker) ambiguities that hinge on how high an in-situ
wh-expression scopes:

Who wondered who bit who?

• Even though subject wh-expressions might look in situ:

Who barked?

they aren’t really; if they were, they could also scope higher to
form imposssible embedded questions as in:

*Kim wondered Chris thought who barked?

(Intended meaning: Kim wondered who Chris thought barked.)
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(62) Wh-In Situ Languages

In languages without overt wh-movement, the counterpart of who is
just an NP with all the meanings whon (n ≥ 0), including who0.

That is: the difference between overt and covert wh-movement lan-
guages is in the lexicon.
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(63) An English Embedded Polar Question

a. Syntax: ⊢ (whether (s Kim (likes Sandy c)) c) : S

b. Semantics: ⊢ (whether’ (like’ Sandy’ Kim’)) : κ0
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(64) An English Embedded Constituent Question

a. Syntax: ⊢ [whatfiller t(
s Kim (likes t c))] : S

b. Semantics: ⊢ (what0y((like’ y) (Kim’)) : κ1

(65) A English Binary Constituent Question

a. Syntax: ⊢ [whofiller t(
s t (likes whatin-situ

c))] : S

b. Semantics: ⊢ (what1y(who0
x((like’ y) (x))) : κ2
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(66) Baker Ambiguity

a. ⊢ [whofiller t(
s t (wonders [whofiller t′(

s t′ (likes whatin-situ
c))] c))] : S

b. ⊢ (who0
x((wonder’2 (what1y(who0

z((like’ y) z)))) x)) : π

(E.g. Chris wonders who likes what.)

c. ⊢ (what1y(who0
x((wonder’1 (who0

z((like’ y) z))) x)))) : π

(E.g. Chris wonders who likes the books, and Kim wonders who

likes the records.)
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CONCLUSIONS
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(67) What this Talk was About

• On the intuitive level, EMG had a simple and elegant theory of

so-called movement phenomena.

• But it was hard to present the theory persuasively using 1970’s

technology (no substructural logic or Curry-Howard).

• HPSG complicated the story line by

– coding everything up in feature logic

– abandoning Montague semantics for situation semantics.

• Later CG complicated things in different ways:

– insisting (as per Montague) that the syntax-semantics interface
be a function, no matter how much it complicates the syntax

– Not picking up on Gazdar’s insight that ‘overt movement’

binds a trace without ever introducing an implication.

• We re-told the EMG movement story, in Curry-Howard terms.
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(68) The EMG Story about Movement, Retold

• The syntax-semantics interface recursively specifies a set of pairs,

each consisting of a syntactic proof and a semantic proof.

• The syntactic logic is like familiar CG, but with ↑ replaced by
an ND reformulation of Gazdar’s machinery for overt movement
(traces and a linking schema).

• The semantic logic is like familiar lambda calculus, but with ab-

straction replaced by an ND reformulation of Cooper’s machinery
for covert movement (storage and retrieval).

• As far as it goes, this account seems simpler and more straightfor-

ward than continuation-based accounts.

• But it remains to be seen whether the full range of phenomena
treated in terms of continuations will yield to such elementary
methods.
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