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Goal-directed attentional control can substantially aid visual search, but only if it is recruited in an 
effective manner. Previously we found that strategies chosen to control attention vary considerably 
across individuals, and we proposed that effort avoidance may lead some individuals to choose 
suboptimal strategies. Here we present a more thorough analysis of individual differences in 
attentional control strategies. We used the adaptive choice visual search (ACVS), which provides a 
method to quantify an individual’s attentional control strategy in a dynamically changing, 
unconstrained environment. We found that individual’s strategy choices are highly reliable across 
sessions, suggesting that attentional control strategies are stable and trait-like. In Experiment 2, we 
explored the extent to which strategy use was related to subjective evaluations of effort and 
performance. Results showed that the extent to which individuals found the optimal strategy to be 
effortful and effective predicted their likelihood of making optimal choices on a subsequent choice 
block. These results provide the first evidence for a relationship between effort and strategic 
attentional control, and they highlight the important and often neglected role of strategy in 
understanding attentional control.    

 
        Keywords: attentional control, visual search, strategy, individual differences 
 

To intentionally prioritize task-relevant information while ignoring irrelevant information is among our 
most valuable attributes.  It is made possible by goal-directed attentional control mechanisms, which selectively 
bias the processing of a desired target’s known features, such that items possessing these features receive 
preferential processing (Desimone & Duncan, 1995; Folk, Remington & Johnston, 1992; Green & Anderson, 
1956; Treisman & Sato, 1990; Wolfe, Cave & Franzel, 1990; Yantis, 2000). A classic example of goal-directed 
control is searching for a friend in a crowd: if we know this friend is wearing a red t-shirt, we can establish an 
attentional control setting for red, allowing us to narrow our search to red items. However, while examples like 
this are useful, they are simplistic because search targets are typically composed of many properties: our friend 
is wearing a red t-shirt and blue pants, and is tall and has dark hair. That is, the example omits that we must 
often choose among many possible features to prioritize – which may vary in their degree of effectiveness –  
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when implementing goal-directed control. If our friend is surrounded by others who are mostly wearing red, 
then we should choose a control setting tuned not to their red shirt but instead to their height, hair color, or 
another feature. 

This expanded example helps illustrate a fundamental distinction between two facets of goal-directed 
attentional control: strategy, which refers to the choice of which control setting to use vs. ability to implement 
the chosen control setting.  The two facets are both necessary for successful behavioral outcomes; the ability to 
use a control setting can only go so far if that ability is not exercised appropriately.  It is therefore vital to study 
both ability and strategy to form a complete understanding of the mechanisms of goal-directed attentional 
control in the real world.   

Ability has been comprehensively studied over the past several decades, in which the experimenter 
typically instructs observers to search for something specific (e.g., the red thing) and then measures how well 
the observers can comply. This approach has spurred contentious debate over many years, centering on whether 
and in what situations goal-directed control is capable of overcoming bottom-up stimulus-driven factors (Folk et 
al., 1992; Theeuwes, 1991, 1992). The current consensus suggests that we are capable of precise tuning of 
attention to transient changes such as onsets, offsets, and movement (Atchley, Kramer & Hillstrom, 2000; Folk 
& Remington, 1998; Folk, Remington & Wright, 1994), and static features including color, shape, and size 
(Ansorge & Heumann, 2003; Becker, 2008, Folk & Anderson, 2010). Goal-directed control has also been 
demonstrated for some conjunctions of features (e.g. Becker, Harris, York & Choi, 2017) and category 
membership (Wyble, Folk & Potter, 2013), although control for these more complex appears to be limited (e.g., 
Treisman & Gelade, 1980; for a general review of attentional abilities, see Wolfe & Horowitz, 2017).    

Studies of strategy, however, have lagged behind those of ability.  This is possibly because experimental 
designs have tended to constrain strategic options during attentional tasks in order to reduce variability or 
prevent potential confounds. Furthermore, researchers may have assumed that observers are all performance 
maximizers; that is, they pursue options that yield the greatest benefit. In the realm of attentional control, this 
means choosing the strategy that brings the best performance metrics (i.e., accuracy, response time, and/or 
reward).  The assumption of universal performance maximization might seem supported by the broader visual 
search literature, in which a number of studies have argued that visual search performance matches that of an 
ideal observer (e.g., Ma, Navalpakkam, Beck, Van Den Berg, & Pouget, 2011; Najemnic & Geisler, 2005; 
Navalpakkam & Itti, 2007; Scolari & Serences, 2009; Wolfe, 2013). If everyone is choosing the optimal 
strategy, little variation in such behavior should exist, and it is thus of little interest to investigate the influence 
of strategy choice on attentional control. 

Nevertheless, several studies have highlighted non-optimal strategy selection. In a classic study, Bacon and 
Egeth (1994) showed that distraction by a salient, irrelevant feature singleton was not automatic, as had been 
previously argued (e.g., Theeuwes, 1992); rather, when coaxed to adopt a narrower “feature search mode” via 
experimental manipulations, individuals demonstrated an ability to override such distraction. Several others 
have reported conceptually similar results in which observers have used ineffective feature-based control, 
resulting in slower search latencies, poorer accuracy, and/or greater susceptibility to distraction (e.g., Leber & 
Egeth, 2006a, 2006b; Leber, Kawahara & Gabari, 2009; Kawahara, 2010; Proulx 2011; Rajsic, Wilson & Pratt, 
2015; Rajsic, Taylor, & Pratt, 2017). Similar findings exist for the control for spatial attention. For example, 
observers often distribute their attention resources across different task components in an inefficient manner, an 
effect that can be mitigated through training in more effective strategies (Gopher, 1993; Gopher, Weil & Siegal, 
1989). Additionally, several eye-movement studies have shown that observers do not always make fixations in a 
manner than maximizes information gain (Araujo, Kowler & Pavel, 2001; Boot, Becic & Kramer, 2009; Boot, 
Kramer, Becic, Wiegmann & Kubose, 2006; Clarke, Green, Chantler, & Hunt, 2016; Clarke & Hunt, 2016; 
Morvan & Maloney, 2012; Nowakowska, Clarke & Hunt, 2017; Williams, Pollatsek, Cave, & Stroud, 2009; 
Zelinsky, 1996). Taken together, it is evident that individuals use suboptimal strategies in a variety of 
attentional control tasks in the laboratory, and it seems likely that such suboptimal behavior extends to the less 
constrained environments encountered in the world outside the lab. 
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Why might individuals use such suboptimal strategies? Bacon and Egeth (1994) speculated that adopting a 
more optimal control setting required a greater investment of mental effort, which their participants at least 
somewhat avoided.  To articulate this idea further, individuals may be effort minimizers, in which they seek to 
strategically conserve a limited cognitive resource (Fiske & Taylor, 1984; Kool, McGuire, Rosen & Botvinick, 
2010). Decisions are made by weighing up the potential benefits against the effort costs to determine the value 
of a given strategy (Kool & Botvinick, 2014). In the realm of attentional control, multiple demands on effort 
exist.  These including proactive monitoring of one’s sensory environment to determine whether the current 
setting should be updated (Braver, 2012; Braver, Gray & Burgess, 2007; Chatham, Frank & Munakata, 2009; 
Locke & Braver, 2008), as well as task switching, or implementing the new task setting (Arrington & Logan, 
2004; Monsell, 2003).   

 
The Adaptive Control Visual Search (ACVS) Task  
 
In seeking to learn how strategy choice is motivated (i.e., by factors such as performance maximization and 

effort minimization,) we recently devised the adaptive choice visual search (ACVS; Irons & Leber, 2016), 
which features three main components.  First, individuals are free to choose one – and only one – of two targets 
on each trial.  Second, the search environment is constructed in such a way that searching for one target is likely 
to be faster than the other (i.e., the optimal target).  That is, using performance maximization would yield clear 
and robust behavioral benefits. Third, the search environment, and consequently the most optimal search target, 
changes frequently.  Thus, maintaining optimal performance requires observers to continuously monitor the 
environment, decide when to update, and engage in task switching – all effortful activities that produce a 
tension between performance maximization and effort minimization.    

In our first study (Irons & Leber, 2016), we found that, on average, search strategies were well below 
optimal, with participants choosing the non-optimal target on a substantial 40% of trials. Additionally, 
participants switched between the two targets much more frequently than necessary, incurring significant switch 
costs.  

However, perhaps the most striking finding was vast individual differences on both the choice and 
switching measures. Some participants did search strategically for the optimal target on the majority of trials, 
updating their control settings as the environment changed. Others used strategies that were unaffected by the 
changing search environment, choosing the optimal target at chance levels (half of the trials). Of these, some 
avoided switching between targets and searched for the same target for extended periods, while others switched 
frequently and seemingly at random. Importantly, strategy use predicted overall performance, with high optimal 
choices and low switching rates corresponding to faster response times. There was also little evidence that the 
variation in strategy could be attributed to attentional control ability: we found no relationship between search 
strategy and working memory capacity or response time on a control visual search task (in which only one 
strategy was available). 

The implications of these individual differences are potentially far reaching.  While so much attentional 
control research has focused on ability, the relatively understudied component of strategy accounts for large 
variation in performance. In real-world search scenarios, where there are even fewer constraints on choice, a 
searcher’s strategy may have just as much effect on their performance as ability, if not more. If each 
individual’s strategy usage could be characterized, this would offer great promise in predicting the use of 
attentional control outside of the lab; for example, it could improve assessment and training in professions 
relying heavily on the optimal use of attentional strategies (e.g., airport baggage screening and radiological 
image interpretation), and it could provide a diagnostic marker for a variety of attention-related disorders (e.g., 
ADHD and frontal lobe damage). From a theoretical perspective, analysis of individual differences has great 
utility in illuminating the structure and interrelations between cognitive constructs (e.g., Cronbach, 1957; Vogel 
& Awh, 2008; Wilmer, 2008). 
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Here we present a study that seeks to advance the understanding of individual differences in attentional 
control strategy, using the vehicle of the ACVS. Our goal is twofold. First, we explore whether attentional 
control strategies are “trait-like” and stable over time. A general assumption of individual differences research 
is that a person’s behavior remains consistent across multiple measurements. While we observed clear 
individual variation in our previous work, it is unclear whether this reflects enduring, trait-like behavior. It may 
be that strategies are transient, chosen arbitrarily or driven by various temporary states (e.g. the individual’s 
level of fatigue). In Experiment 1, we explore this question by examining the reliability of attentional control 
strategies across testing sessions. 

 In Experiment 2, we turn to the factors underlying individual variation in attentional control strategies. As 
discussed previously, the failure to optimize attentional performance may be driven by a desire to minimize 
effort (Bacon & Egeth, 1994). In this second experiment, we examine the extent to which strategy choice is 
related to individuals’ subjective evaluations of effort and performance.  

 
 

Experiment 1 
 
Experiment 1 was designed to assess the stability of attentional control strategies, using the adaptive choice 

visual search task. If an individual’s strategic control of attention reflects stable, trait-like behavior, they should 
use the same strategy across different sessions. To test this, we asked participants to perform the ACVS on two 
different days (spaced 1-10 days apart), and used test-retest reliability to assess the consistency of strategies 
across sessions. The ACVS task was based on that of Irons and Leber (2016), with some refinements. Each 
search display contained 54 colored squares containing a digit (see Figure 1). Two targets, a red and blue square 
containing a digit within a specific range (2-5), were embedded within every search display, and participants 
were free to search for either one on each trial. The other squares (distractors) were either red, blue, green or 
“variable” colored. Variable distractors changed color from trial to trial, moving between red and blue in color 
space. This change followed a “plateau-transition” pattern (see Figure 1b): red for five trials (red plateau), then 
incrementally transitioning from red to blue over the course of seven trials (red-to-blue transition), then blue for 
five trials (blue distractor plateau), and finally transitioning back to red over the course of seven trials (red-to-
blue transition). In this way, the variable distractors determined the optimal target: when the variable distractors 
were red or close to red in color space, there were twice as many red/reddish distractors in the display and 
search for the blue target would generally proceed more quickly. Conversely, when the variable distractors were 
blue or close to blue, the red target was optimal. To maintain optimal performance, then, one must search for 
the target that is most different from the variable distractors, switching when the variable distractors reached the 
midpoint between red and blue. 

We assessed each individual’s strategy using two parameters. First, we calculated percent optimal, or the 
percentage of trials in which the observer chose the optimal target color – i.e., the one belonging to the smaller 
color subset – on plateaus. We focused specifically on plateau trials because here the variable distractors fully 
matched one of the two targets, providing the clearest scenario in which one target is more optimal than the 
other target. Second, we assessed how frequently individuals updated their search properties using switch rate, 
the percentage of trials in the chosen target color on trial N was different from the chosen target color on trial 
N-1.  

 
Method 
Participants 
Fifty individuals (20 male, 30 female) aged 19 to 40 (M = 22.37) were recruited from The Ohio State 

University. All participants had self-reported normal or corrected-to-normal visual acuity and normal color 
vision. With this sample size, we had a 90% chance of detecting Pearson r-values of 0.42 or greater in each of 
our critical test-retest reliability measures (percent optimal and switch rate). Participants came in for two 
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separate hour-long sessions on different days, and were compensated $10 per session. Forty-seven participants 
returned for a third session to complete several additional cognitive tasks and surveys, as part of ongoing 
analyses of individual differences in attentional control strategies. Most of these measures were only added 
partway through the study and full data set was not collected, and consequently the data are not reported here. 

General Procedure 
All methods were approved by the Ohio State Institutional Review Board. Participants completed the 

ACVS task in both the first and the second session. The two sessions were separated by at least one day and no  
 

 
 
Figure	1.	ACVS	stimuli	in	Experiment	1.	A)	Example	search	display	from	a	trial	halfway	through	a	
transition	with	magenta-colored	variable	distractors.	Targets	(here	circled)	were	a	red	and	blue	square	
with	digit	between	2	and	5.	B)	Cyclical	progression	of	the	variable	distractor	color	across	trials.	
Variable	distractors	were	red	for	five	trials,	then	transitioned	from	red	to	blue	across	seven	trials,	blue	
for	five	trials,	and	finally	transitioned	from	blue	to	red	across	another	7	trials.	This	cycle	was	repeated	
throughout	the	experiment.	
 

more than ten days (M = 3.1 days). The strategy self-report survey and the BIS-11 were completed at the end of 
session 2.   

Adaptive Choice Visual Search (Sessions 1 and 2) 
Stimuli. The adaptive choice task was based on the task used in Irons & Leber (2016), with some 

modifications. The search display was composed of 54 colored squares (sized 1 ° x 1 °) evenly spaced around 
three concentric rings centered on fixation. There were 12 squares in the inner ring (6.6 cm from fixation, or 6.3 
° at a 60cm viewing distance), 18 in the middle ring (9.9 cm or 9.4 ° from fixation), and 24 in the outer ring 

B)		Variable	distractor	color:

A)

Plateau PlateauTransition Transition

Trials
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(13.2cm or 12.4 ° from fixation). Thirteen squares were colored red, 13 were colored blue, 14 were colored 
green, and 14 were “variable distractors”. The color of the variable distractors oscillated predictably between 
red and blue throughout the experiment. The distractors would be red for five trials (red plateau). Then, across 
seven trials, the distractor color would change from trial-to-trial from almost red through magenta to almost 
blue, in seven discrete “jumps” across color space (red-to-blue transition). The distractors would then be blue 
for five trials (blue plateau) and then transition back through magenta to red over seven trials (blue-to-red 
transition). The central color of the transition was halfway between red and blue (magenta), and the remaining 
transition colors were clustered towards either end of the transition, in order to highlight the changeover point 
between redder and bluer colors. That is, the three colors between red and magenta were clustered closer to red 
than to magenta, and the three colors between blue and magenta were clustered closer to blue (see Table 1 for 
color values.) 

All squares contained a small digit between 2 and 9 in white font. Every display contained two targets: a 
red square with a digit from 2 to 5 inclusive, and a blue square with a digit from 2 to 5. The digits on the targets 
were chosen pseudo-randomly, with the restriction that they were always different from each other to enable us 
to determine which target was chosen. All other red and blue squares, as well as the variable distractors, 
contained digits between 6 and 9. The green squares could contain any digit from 2-9, to prevent participants 
from simply searching based on number and ignoring color entirely. 

 
 

Table	1.	Target	and	distractor	RGB	and	CIE	XYZ	Color	Values	

	 RGB	 	 CIE	XYZ	

Red	 255	 0	 0	 	 42.24	 21.26	 1.93	

Blue	 0	 0	 255	 	 18.05	 7.22	 95.05	

Green	 0	 200	 0	 	 20.65	 41.31	 6.89	

Variable	
distractors	

(red-to-blue	
transition)	

255	 0	 63.75	 	 42.16	 21.63	 6.77	

255	 0	 95.63	 	 43.34	 22.10	 12.96	

255	 0	 127.50	 	 45.11	 22.81	 22.27	

255	 0	 255	 	 59.29	 28.48	 96.97	

127.50	 0	 255	 	 26.87	 11.77	 95.44	

95.63	 0	 255	 	 22.83	 9.69	 95.25	

63.75	 0	 255	 	 20.14	 8.30	 95.13	

 
 
Procedure. The experiment was completed in an individual light-controlled and sound attenuated testing 

room, on a Mac Mini computer with a 24-inch Dell monitor. Participants were seated at a viewing distance of 
approximately 60 cm. Stimulus presentation was controlled using Matlab (Mathworks, Natick, MA), with 
Psychophysics Toolbox extensions (Brainard, 1997; Pelli, 1997). 
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Participants were informed that each search display would contain both targets and that they could choose 
to search for either target on each trial. No instruction was given as to how they should choose targets. 
Participants responded by identifying the digit inside the target by pressing the V, B, N and M keys on the 
keyboard (corresponding to 2, 3, 4 and 5 respectively). Each trial began with a fixation cross for 1 s, followed 
by the presentation of the search display, which remained until a response was made and was then followed by a 
blank screen ITI of 1 s. The spatial arrangement of the targets and distractors within the display was randomized 
on each trial. Each block began at the start of the plateau (either the red or blue plateau, counterbalanced across 
participants) and contained 4 full cycles of the variable distractor color, resulting in a total of 96 trials per block. 
Participants completed five blocks (480 trials total) with self-paced breaks in between. 

Strategy self-report questionnaire 
At the end of the experiment, participants rated the approximate percentage of trials (0, 20, 40, 60, 80 or 

100 percent) in which they used each of the following strategies: 1) Searched for the color that had the fewest 
squares in the display; 2) Searched for just one color for a long period of time (without switching to the other 
color); 3) Searched for the color than had the most squares in the display; 4) Searched for whichever color 
appeared first to them; and 5) Searched through squares of both colors for any that had a target number. Ratings 
were converted to percent of the total sum of ratings to standardize across participants. These ratings were used 
to classify the extent to which participants self-reported using one of three distinct strategies. Ratings on 
strategy 1) were taken as a measure of self-reported optimal searching. Ratings on strategy 2) were classified as 
the repeated searching (i.e., searching repeatedly for the same target color). Ratings on strategies 4) and 5) were 
added together to measure self-reported random searching (i.e., searching for either target at random).  

Participants also reported their motivations for using this chosen strategy from the following five options: 
1) It required the least amount of effort; 2) It was the best strategy for getting fast response times and high 
accuracy; 3) It was the fastest way to finish the task; and 4) It was the least boring way to do the task; and/or 5) 
Other.  

Barratt Impulsiveness Scale (BIS-11)  
Finally, we administered the BIS-11, a well-established scale used to measure individual differences in trait 

impulsiveness (Patton, Stanford, & Barratt, 1995). In Irons & Leber (2016), we found a non-significant 
relationship between BIS-11 scores and increased random switching, and we speculated that unnecessary 
switching might be the consequence of an impulsiveness or novelty-seeking mechanism. We sought to test this 
hypothesis directly in the current study. The BIS-11 is composed of 30 items and individuals rate how much 
each statement is true of them on a scale from 1 to 4. Example questions include “I plan tasks carefully” and “I 
act on impulse”. 

 
Results 
 
ACVS: Group results 
Error trials were excluded from RT analyses, along with trials with RTs less than 300ms or more than 3 

standard deviations from the mean (1.8% of trials in session 1 and 1.4% in session 2). When multiple 
comparisons were conducted, we applied the Holm-Bonferroni method (Holm, 1979) to control false discovery 
rate (corrected p-values are denoted by pHB). Accuracy on the ACVS was at ceiling for both sessions (session 1 
M = 97.95%, session 2 M = 98.52%). Response time decreased significantly from session 1 (M = 2846 ms) to 
session 2 (M = 2540 ms; t(49) = 8.86, p < .001, d = 1.26), suggesting practice benefits.  

We first analyzed the pattern of choices at each position in a run. A run extends from the start of the 
plateau until the end of the following transition. Data were combined for runs starting on a red plateau and runs 
starting on a blue plateau. Target choices were categorized as being either optimal at the start of the run (start-
optimal) or optimal at the end of the run (end-optimal). For instance, in a run involving a red plateau followed 
by a red-to-blue transition, choosing a blue target would be start-optimal (optimal when the distractors are red 
or close to red) and choosing a red target would be end-optimal (optimal when the distractors have almost fully 
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transitioned to blue). For best performance, participants should select the start-optimal target on all trials in the 
plateau and for the first half of the transition, and then select the end-optimal target for the second half of the 
transition. 

As shown in Figure 2a, the data for the entire group replicated the pattern of choices found in Irons and 
Leber (2016). Choice data, combined across the two sessions, varied significantly as a function of the changing 
variable color, F(11,539) = 29.13, p < .001, ηp

2 = .37. At the start of the run, participants selected the start-
optimal target more frequently than the end-optimal target (all pHB < .001). Choices converged at position T5, 
one trial after the midpoint of the transition (t(49) = 1.40, pHB = .17).  By positions T6 and T7, participants were 
selecting the end-optimal target most frequently (all pHB < .004). Choices across the run did change somewhat 
from session 1 to session 2 (significant session x run position interaction, F(11, 539) = 2.11, p = .018, ηp

2 = 
.04); there was a tendency for participants to make more optimal choices in session 2 (more start-optimal 
choices on plateaus and at the start of the transition, and more end-optimal choices at the end of the transition), 
and there was also a tendency for the switchover point to occur slightly earlier. However, the differences 
between sessions were numerically small and did not reach significance when averaged across the plateau trials 
(p = .17), or at any single position in the run (all pHB > .81). 

Next we examined switching frequency. A switch occurred when the target chosen on trial N was different 
from the target color chosen on trial N-1. Switches were costly, producing an averaging cost of 439 ms. 
Nevertheless, as with Irons & Leber (2016), participants switched on 24.8% of trials (approximately three times 
per run), significantly higher than the optimal rate (once per run, or 8.3% of trials, t(49) = 8.94, p < .001, d = 
1.90). Switch rate varied significantly across position in the run, F(11, 539) = 11.35, p < .001, ηp

2 = .19 (see 
Figure 2b). The switch rate was highest at the optimal switching point, T5, one position after the middle of the 
transition. However, a substantial amount of switching still occurred at less optimal times, including on plateau 
trials where no switching should take place (22.7% switch rate). ). The pattern of switches across the run 
differed significantly across sessions (F(11, 539) = 1.97, p = .03, ηp

2 = .04) and again this was due to a trend for 
performance to become slightly more optimal in session 2, with fewer switches made on plateaus and a larger 
peak at the position T5. However, the differences were small and did not reach significance on plateaus (p = 
.27) or at any individual position in the run (psHB > .79). 

 

 
 

A) B)
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Figure	2.	Results	from	Session	1	and	2	of	Experiment	1.	A)	Percent	of	start-optimal	and	end-optimal	
choices	across	a	run.	Start-optimal	refers	to	the	target	that	is	optimal	at	the	start	of	the	run,	and	end-
optimal	is	the	target	that	is	optimal	at	the	end	of	the	run.	B)	Switch	rate	across	a	run.	Error	bands	depict	
standard	error	of	the	mean.	

 
Individual differences. All individual differences measures (percent optimal, switch rate switch rate, BIS-

11 and self-report questionnaire measures) were screened for outliers. Cases in which outliers were detected are 
described in the text. Individuals were classified as univariate outliers if the z-score exceeded +/- 3.29 (p < 
.001). For correlations, multivariate outliers were based on a Mahalanobis distance exceeding 13.82 (p < .001). 

ACVS measures. For each individual at each session, we extracted their percent of optimal choices on 
plateaus, and their switch rate across the entire run. Both measures showed considerable variation across 
individuals (see Figure 3a and 3b for histograms of scores across the two sessions). Percent of optimal choices 
varied from 36.8% to 99.5% (M = 66.7, SD = 20.25, averaged across both experimental sessions). The 
distribution appeared bimodal, with one peak centered on chance performance (50%) and another peak 
approaching fully optimal performance (100%). Internal consistency was estimated using split-half reliability 
with a Spearman-Brown correction, calculated and averaged over 50 random splits of the data (with the 
restriction that there was always an equal number of plateau and transition trials in each split half), following 
the method of Susilo et al. (2010). Average split-half reliability was very high (r = .97 for Session 1 and r = .98 
for Session 2). Switch rate ranged from 0.9% to 47.4% (M = 24.8, SD = 13.0, averaged across both 
experimental sessions). Both measures correlated with overall search performance: slower search RT was 
correlated with fewer optimal choices (r = -.58, t(48) = 4.87, p < .001) and higher switching rates (r = .50, t(48) 
= 4.04, p < .001). Average split-half reliability was also very high for switch rate (r = .98 for both Session 1 and 
Session 2). 

Note that to some extent, switch rate is constrained by the percent of optimal choices: the more frequently 
an observer chooses the optimal target, the closer their switch rate must be to the optimal number of switches 
(once per run). Consistent with this, the two measures were reasonably well correlated (r = -.57 in session 1 and 
-.65 in session 2, see Figure 3c). To derive an independent measure of switching after percent optimal is 
accounted for, regressions were performed with percent optimal as the predictor and switch rate as the 
dependent variable, separately for each session. The residuals after percent optimal was accounted for were 
retained as an independent switch measure. In general, the pattern of results was very similar to the results 
found for the non-independent switch rate, however for completeness we report results using both measures. 

 

 
 

A) B) C)
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Figure	3.	Individual	differences	data	in	Experiment	1.	Histograms	show	individual	scores	in	A)	percent	
optimal	choices	and	B)	switch	rate.	C)	Scatterplot	of	the	relationship	between	percent	optimal	and	
switch	rate.	

 
Test-retest reliability. Figure 4 shows session 1 scores plotted against session 2 scores. Both percent 

optimal choices and switch rate produced good test-retest reliability. The correlation for percent of optimal 
choices across sessions was r = .83, significantly greater than zero, t(48) = 10.48, p < .001, 95% CI [.72, .90]). 
The disattenuated correlation, which estimates the correlation if internal consistency were perfect, was r = .86. 
This suggests that consistency is reduced somewhat across sessions (i.e., the correlation across sessions does not 
quite reach the level of the correlations within sessions), but nevertheless remains high. Test-retest reliability for 
switch rate was r = .77 (disattenuated r = .80), t(48) = 8.46, p < .001, 95% CI [.63, .87]. However, outlier 
screening identified one bivariate outlier (Mahalanobis distance = 14.69, p < .001), and removing this data point 
increased reliability to a small extent, r = .82, t(47) = 9.69, p < .001, 95% CI [.69, .89]. For independent switch 
rate after accounting for percent optimal, the correlation across sessions was r = .77 with outlier included (t(48) 
= 8.29, p < .001, 95% CI [.62, .86]), and r = .77 with outlier excluded (t(47) = 8.14, p < .001, 95% CI [.63, 
.87]). These findings indicate that both measures are reliable and stable indicators of individual attentional 
control strategies. 

 

 
	
Figure	4.	Test-retest	reliability	for	A)	percent	optimal	choices	and	B)	switch	rate	in	Experiment	1.		
	

Strategy self-report questionnaire. Ratings on the strategy self-report survey were used to assess 
individuals’ metacognitive insight into their strategy use. Scores on the survey were compiled to give self-
reported estimates of how frequently each person engaged in optimal searching, repeated searching (repeatedly 
searching for one color) and random searching (searching for either color randomly). We correlated each of 
these self-report measures with percent optimal choices, switch rate, and independent switch rate (see Table 2). 
Overall, individuals’ self-report data were highly consistent with their behavior. Those who self-reported higher 
rates of optimal searching chose the optimal target on a larger percentage of trials, r = .67, t(48) = 6.53, pHB < 
.001. There was a trend for a high self-reported optimal strategy to also be associated with a lower switch rate (r 
= -.35, t(48) = 2.55, pHB = .056), but this correlation disappeared after controlling for percent of optimal choices 
(correlation with independent switch rate, pHB = .48). Self-reported repeated strategy did not correlate 
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significantly with percent optimal (pHB = .21), but higher ratings were associated with a lower switch rate (r = -
.36, t(48) = 2.71, pHB = .047) and independent switch rate (r = -.64, t(48) = 5.85, pHB < .001). Note, however, 
that these correlations may have been partly driven by two univariate outliers on self-reported repeated strategy 
(both with z-scores of 3.36). When these datapoints were excluded, the correlation with switch rate was no 
longer significant (r = -.16, t(46) = 1.10, pHB = .83), although the correlation with independent switch rate 
remained (r = -.39, t(46) = 2.91, pHB = .034). Self-reported random searching correlated with a higher switch 
rate (r = .54, t(48) = 4.43, pHB < .001) and independent switch rate (r = .46, t(48) = 3.54, pHB = .005). The 
correlation with percent optimal did not reach significance, pHB = .12.] 

 
	

	

Table	2.	Correlations	between	ACVS	measures	and	strategy	self-report	questionnaire	items.	

	 ACVS	Measures	

	 Percent	Optimal	 Switch	Rate	 Ind.	Switch	Rate	

	 r		[95%	CI]	 r		[95%	CI]	 r		[95%	CI]	

Experiment	1	 	 	 	

Self-reported	Optimal	Searching	 .69	[	.50,		.81]	**	 -.35	[-.57,	-.07]	#	 .10	[-.18,		.37]	

Self-reported	Repeated	Searching	 -.23	[-.48,		.05]	 -.36	[-.58,	-.10]	*	 -.64	[-.78,	-.45]	**	

Excluding	outliers	 -.16	[-.42,		.13]	 -.16	[-.43,		.13]		 -.39	[-.61,	-.12]	*	

Self-reported	Random	Searching	 -.29	[-.53,	-.01]	#		 .54	[	.31,		.71]	**	 .46	[	.20,		.65]	*	

Experiment	2	 	 	 	

Self-reported	Optimal	Searching	 .77	[	.63,		.86]	**	 .07	[-.22,		.34]	 	

Self-reported	Repeated	Searching	 -.35	[-.57,	-.08]	*	 -.52	[-.70,	-.29]	**	 	

Excluding	outliers	 -.29	[-.53,	-.01]	#	 -.11	[-.39,		.17]		 	

Self-reported	Random	Searching	 -.47	[-.66,	-.22]	*	 .28	[	.01,		.52]	#	 	

*	=	p	<	.05,	**	=	p	<	.001	(Holm-Bonferroni	corrected).					#	=	p	<	.05	(uncorrected)	

 

With regards to individuals’ motivations for selecting their preferred strategy, thirty-four reported 
maximizing performance (either responding quickly and accurately, or completing the task in a timely manner) 
as their sole motivation. Four reported minimizing effort and two reported alleviating boredom as their sole 
motivations. The remaining 10 reported being motivated by both maximizing performance and minimizing 
effort, with one person reported also reporting a combination of all three motivating factors. Numerically, 
individuals who reported performance maximization as one of their motivations made more optimal choices 
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(68%) than those that did not (59%); however, given that almost all participants (44 out of 50) had maximizing 
performance as once of their motivations, we did not conduct formal analyses on these data.	

Impulsiveness. Finally, we examined whether any ACVS measures correlated with scores on the BIS-11 
impulsiveness scale, to more rigorously test our previous speculation that impulsiveness may be related to 
higher rates of random switching. Internal consistency on the BIS-11 was adequate (Cronbach’s α = .77) and in 
line with previous findings (e.g., Patton et al., 1995, found α = .82 for undergraduates). Table 3 shows the 
correlations between BIS-11 scores and switch rate, independent switch rate and percent optimal. Because 
internal consistency estimates were available for independent switch rate and percent optimal, disattenuated 
correlations are also reported. Impulsiveness did not correlate significantly with any of the ACVS measures (all 
pHB > .72).   

 
Discussion 
Experiment 1 verified and further articulated our previous finding of broad individual differences along the 

two measures, optimal choices and switch rate. Most importantly, it demonstrated that individual strategies 
were reliable across testing sessions, indicating stable behavior and suggesting individual trait characteristics. 
From a methodological standpoint, the results also provide evidence for the utility of the ACVS as a 
measurement tool. Key measures of internal consistency (split-half reliability) and test-retest reliability were 
high for both percent optimal and switch rate.  
	

Table	3.	Correlations	between	ACVS	measures	and	personality	scales	(disattenuated	correlations	in	
parentheses).	

	 ACVS	Measures	

	 Percent	Optimal	 Switch	Rate	 Ind.	Switch	Rate	

	 r	(disatt.	r)	 [95%	CI]	 r	(disatt.	r)	 [95%	CI]	 r	 		[95%	CI]	

Experiment	1	 	 	 	 	 	 	

BIS-11	 .13		(.15)				[-.15,		.40]	 .05		(.06)		 [-.23,		.32]	 .17		 [-.12,		.43]	

Experiment	2	 	 	 	 	 	 	

IPIP	Novelty-Seeking	 .03		(.03)				[-.25,		.31]	 .17		(.20)		 [-.12,		.43]	 	 	

Need	for	Cognition	 .08		(.09)				[-.20,		.35]	 -.40	(-.46)	*	 [-.61,	-.14]	 	 	

Intolerance	of	Uncertainty	 -.20	(-.22)	 [-.46,		.08]	 .20		(.22)		 [-.08,		.45]	 	 	

*	=	p	<	.05	(Holm-Bonferroni	corrected)	

 
Experiment 2 

 
Our goal in Experiment 2 was to examine the source of the observed individual differences. That is, are 

there theoretically important determinants of strategy use? We investigated this question in Experiment 2, by 
specifically focusing on the role of motivation in driving ACVS performance. As discussed earlier, one 
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explanation for sub-optimal strategy use is effort avoidance (Araujo et al., 2001; Bacon & Egeth. 1994; Egeth, 
Leonard & Leber, 2010; Irons & Leber, 2016). The amount of effort an individual is willing to expend depends 
on their motivation to perform well. This effort-performance trade-off has been incorporated in models of 
decision-making (Bettmann, Johnson, & Payne, 1990; Hull, 1943; Johnson & Payne, 1985, Russo & Dosher, 
1983) and cognitive control (Botvinick & Braver, 2015; Kool & Botvinick, 2014), and it may similarly apply to 
attentional control. In the ACVS, the optimal strategy requires individuals to maintain attention control settings 
in a proactive manner, monitor the search environment and their own performance, and update their strategy 
when the environment changes, all of which place additional cognitive demands on the observer (Arrington & 
Logan, 2004; Braver, 2012; Braver, Gray & Burgess, 2007; Chatham et al., 2009; Locke & Braver, 2008; 
Monsell, 2003). If an individual is not willing to expend this additional effort, they may revert to less effortful 
and less effective strategies.  

Weighing up performance benefits against effort costs is a subjective process. A task that is highly effortful 
to one person may be less so for another. Likewise, a strategy may be considered more effective to one person 
than to another. Therefore, if strategy selection is driven by effort-performance trade-offs, then the relationship 
will be contingent on each individual’s internal judgment of effort and performance for that strategy. 

We test this in the current experiment, using a modified version of the ACVS. Before completing the 
original target choice version of the task, participants completed short “enforced strategy” blocks designed to 
simulate three distinct strategic approaches to performing the task. In each block, only one target appeared on 
each trial, and the target feature depended on the specific instructions for that block. In the repeated strategy 
condition, target color was blocked, red for the first half of trials and blue for the second half. Thus, the target 
was only optimal at chance levels, and only a single switch was required.  Note that by “optimal,” we mean that 
the target appears in the smaller subset (although technically, there is no option to choose an optimal vs. non-
optimal strategy on enforced strategy blocks, as there is only one target). In the random strategy block, target 
color was mixed randomly within the block and cued via a word in the center of the display. Again, only half of 
the trials were optimal, but now switching was frequent (on average 50% of trials). Finally, in the optimal 
strategy block, the target was always the color of the smallest subset. As such, all targets were optimal, and a 
moderate amount of switching was required. To simplify the strategy instructions across the experiment, we 
decided to exclude the transition trials and use only plateau trials, with a variable plateau length between 1 and 
6 to ensure that participants had to monitor the environment to determine the best target. 

For each of these enforced strategy blocks, participants were asked to rate how effortful they found the 
block, and how fast they thought their performance to be.  Our rationale was that individual differences in 
subjective effort and performance ratings on the three enforced strategy blocks would predict subsequent 
strategy use in the choice block.  Specifically, the more effortful an individual finds an enforced strategy to be, 
the less likely that individual should be to later choose that strategy voluntarily.  Likewise, the worse an 
individual rates their performance during an enforced strategy block, the less likely that individual should be to 
later choose that strategy. To preview the results, we found that this was indeed the case for subjective ratings 
on the enforced optimal strategy. That is, those who found the optimal strategy to be more effortful or less 
effective were less likely to adopt this strategy in the choice block. 

 
Method 
Participants 
Fifty young adults (26 female and 24 male, age M = 19.25, SD = 1.71, range = 18-26) participated in return 

for Psychology course credit at The Ohio State University. An additional five participants completed the task 
but were excluded because their accuracy in at least one of the blocks was more than three standard deviations 
below the group mean. These participants were replaced to keep the sample size at 50. As with Experiment 1, 
we set the sample size at 50 to ensure a 90% chance of detecting Pearson r-values of approximately 0.4. 

 
Stimuli and Equipment 
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 The stimuli were based on the ACVS task in Experiment 1. However, the pattern of the variable 
distractor was altered in the current experiment. Transition trials were no longer included in this experiment, 
and the variable distractor instead jumped back and forth between red plateau and blue plateau. Transition trials 
were removed for two reasons. First, as percent optimal was based on plateau trials only, removing transition 
trials enabled us to increase the number of usable plateau trials per condition. Second, it  made the explicit 
instructions for the enforced optimal strategy block easier to communicate to participants. To incentivize the 
monitoring of colors in each display, we now varied the length of each plateau unpredictably, such that they 
could be anywhere between one and six trials long (see Figure 5a). In the choice block, a red and a blue target 
appeared on every trial as before. In the enforced strategy blocks, only one target appeared on each trial, and the 
other target was replaced with a distractor of the same color.  

 The experiment was conducted on a Mac Mini computer and 24-inch ASUS monitor positioned 70cm 
from the viewer. Constant viewing distance was maintained using a chin-  

rest. Although we do not report the data here, eye-tracking was performed for the duration of the 
experiment using an Eyelink 2000 eye-tracker running at 500Hz. The eye-tracker was calibrated at the 
beginning of each block, however we did not enforce fixation checks or recalibrate within blocks, out of 
concern that this may be disruptive to participants’ strategies. We found that the accuracy of the eye-tracking 
data varied considerably across participants (i.e., estimates of eye-tracking accuracy based on the percent of 
trials in which the chosen target varied between 37% and 98%), and because we did not wish eye-tracking 
accuracy to confound analyses of individual differences, we chose not to report the eye-tracking results here.  

Procedure 
 The experiment began with the three single-target, enforced strategy blocks (see Figure 5b) consisting of 

84 trials each, 42 with a red target and 42 with a blue target. The order of the blocks was the same for all 
participants to minimize noise in the measurement of individual differences (see e.g., Mollon, Bosten, Peterzell 
& Webster, 2017). The color of the variable distractors on the first plateau was counter-balanced across 
participants. At the beginning of the experiment, participants were told that they would be searching for a red or 
blue square containing a digit between 2 and 5, and that each block would have different instructions for finding 
the target. They were told that some trials would have more red distractors and some would have more blue 
distractors. Informing participants about the relative proportions of distractors was necessary in order to explain 
the strategy in the optimal strategy block (see below).  

Enforced strategy block 1: Repeated strategy.  In the first block, the target was red for the first half 
of the block (42 trials) and then blue for the second half. Participants were informed of the target color at the 
start of the block and when the color changed to blue. 

Enforced strategy block 2: Random strategy. To simulate frequent, unpredictable switching, red and 
blue target trials were mixed randomly within the block. Word cues “RED” and “BLUE” appeared in the center 
of the display to indicate the target color for each trial. The word cue appeared simultaneously with the search 
display, to prevent advance preparation. 

Enforced strategy block 3: Optimal strategy. In the third block, participants were told that the target 
would always be the color with the fewest distractors in the display.   

Choice block. Following the enforced strategy blocks, participants completed a block with the standard 
choice instructions, in which both targets appeared on every trial and participants were always free to search for 
either color. The block consisted of 252 trials, in three sub-blocks of 84, with breaks in between. 

Subjective ratings and preferences. Subjective ratings were probed after each enforced strategy block 
and at the end of the choice block. First, participants were asked to rate how effortful each block was (with the 
additional prompt “In other words, how much of your mental resources did it take up, or how tiring did it 
feel?”) on a rating scale from 0 (“least effort”) to 10 (“most effort”). Participant made their response by using a 
mouse to select a response on an 11-point sliding scale. Next, they rated how fast they felt their responses were 
on a scale from 0 (“most slow”) to 10 (“most fast”). Participants were encouraged to try to compare with their 
experience on previous blocks in making their ratings. At the end of the third enforced strategy block, 
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participants were shown their ratings for the three enforced strategy blocks and were given the option to adjust 
any ratings in light of their subsequent experience.  

At the end of the experiment, we also assessed strategy preferences, by leading participants to believe that 
there would be one more block to complete, and that this would be whichever of the four block types they most 
preferred. The four block types were listed on the screen (“Block 1: Search for the same color for a long time”; 
“Block 2: Search for the color written on the screen”; “Block 3: Search for the color with the fewest squares”; 
“Block 4: Choose either color on each trial”). For each, participants rated how much they preferred that block 
on a scale from 0 (“least preferred”) to 10 (“most preferred”). Participants were asked to give a different rating 
to each block (i.e., no tied ratings). For their most preferred blocks, participants were asked why they preferred 
this block, by rating the extent to which they agreed with each of the following statements: “It requires the least 
effort”, “It takes the least amount of time”,” My performance is the best on this block”,” It is the least boring 
block” (from 0 = “strongly disagree” to 10 = “strongly agree”). Finally, participants used a similar approach for  

 
 

Figure	5.	Examples	of	A)	variable	distractor	color	and	B)	corresponding	target	color	across	trials	in	
the	enforced	strategy	blocks.	A)	Variable	distractor	colors	were	organized	into	short	runs	of	red	or	
blue.	B)	In	the	Repeated	Strategy	block,	target	color	was	held	constant,	and	in	the	Random	Strategy	
block,	target	color	was	selected	at	random.	In	the	Optimal	Strategy	block,	the	target	was	always	the	
color	with	the	fewest	distractors.	

 
their least preferred block, by rating their agreement with the following statements: “It requires the most effort”, 
“It takes the most amount of time”,” My performance is the worst on this block”,” It is the most boring block”. 
After they reported their preferences, participants were informed that they did not need to complete this 
additional block. 

Surveys 
At the end of the experiment, participants completed the same strategy self-report questionnaire conducted 

in Experiment 1, to gauge self-reported awareness of strategy use in the Choice block. We also administered 
several personality scales, described below. 

International Personality Item Pool (IPIP) Novelty Seeking Scale. We predicted that trait novelty-
seeking, which is related to impulsiveness, may help to explain why some individuals engage in more random 
switching. We used a novelty-seeking scale based on items from the IPIP, a well-established pool of survey 
items available in the public domain (Goldberg, 1999; Goldberg et al., 2006; available at http://ipip.ori.org/). 

Repeated
Strategy
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Strategy

Optimal	
Strategy

B)		Target	Color:

…

…

…

…

Red	run

A)		Variable	distractor	color:

Blue	runTrials
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The Novelty-Seeking scale (Goldberg et al., 2006) takes 34 items from the IPIP and is based to the novelty-
seeking scale included in the Temperament & Character Inventory (Cloninger, Przybeck, Svrakic & Wetzel, 
1994). Items are rates on a 5-point Likert Scale and include “I like to act on a whim” and “I think twice before 
doing something”. 

Need for Cognition Scale (short form). The Need for Cognition Scale (Cacioppo & Petty, 1982; Petty, 
Cacioppo & Kao, 1984) is a measure of an individual’s willingness to engage in, and enjoyment of, cognitively 
demanding activities. The short form contains 18 items (e.g. “I would prefer complex to simple problems”) that 
are rated on a 5-point Likert Scale. We predicted that individuals high on Need for Cognition would might be 
more willing to expend effort to maximize performance on the ACVS. 

Intolerance of Uncertainty. Intolerance of Uncertainty measures an individual’s ability to cope with 
ambiguity and desire to control the future (Buhr & Dugas, 2002; Freeston, Rheaume, Letarte, Dugas & 
Ladouceur, 1994). Scores on this scale have been linked to response strategy on complex search tasks (Muhl-
Richardson et al., 2016). When performing the ACVS, participants are placed in a state of uncertainty with 
regards to which target they should choose and when they should switch. We speculated that those who have a 
higher Intolerance of Uncertainty would be more likely to limit this ambiguity by adopting a definitive strategy 
to complete the task (either the optimal strategy, or repeating the same color for extended periods), rather than 
searching in a random manner.  

Results 
Given the large number of analyses, the results section is ordered such that the analyses most pertinent to 

the primary research question – assessment of choice block performance and its association with subjective 
ratings – are reported first, before additional analyses are discussed.  

Accuracy was uniformly high across all four blocks (M = 97.14%, no main effect of block, p = .71). As 
with Experiment 1, error trials and those with RTs less than 300ms or more than 3 SD above the means (2.3% 
of trials) were excluded from RT analyses. When multiple comparisons were conducted, the Holm-Bonferroni 
correction was applied. All continuous variables in correlational analyses (percent optimal, effort and 
performance ratings, preference ratings, personality scales and self-report questionnaire measures) were 
screened for univariate and multivariate outliers using the same procedures as in Experiment 1, and any cases in 
which outliers were detected are described in the text. 

Choice performance 
Recall that Experiment 2 only included plateau trials, and the length of each plateau varied unpredictably 

between 1 and 6. Consequently, percent optimal and switch rate are plotted at each position in the plateau (see 
Figure 6a and 6b). 

On average, participants chose the optimal target on 70.04% of trials, although there was substantial 
variation across individuals (range 32.77 - 97.59%, SD = 17.83). Split-half reliability, averaged across 50 
random splits, was high (r = .98). Percent of optimal choices was lowest on the first trial of the plateau and 
increased as the plateau progressed, F(5, 245) = 12.70, p < .001, ηp

2 = .21. Average switch rate was 32.54% 
(range 1.68% to 50.70%, SD = 9.64) and internal consistency was adequately high (average split-half reliability 
r = .90). This was significantly higher than the optimal switch rate of 27.71%, t(49) = 3.55, p < .001 (note that 
the optimal switch rate here was higher than in Experiment 1, due to the removal of transition trials). Switch 
rate was highest at the first position in the plateau and decreased substantial by the second position, F(1, 49) = 
63.03 p < .001, ηp

2 = .56. Unlike Experiment 1, percent optimal and switch rate were not strongly correlated (r 
= -.17), mostly likely due to the higher optimal switch rate in Experiment 2 (compare Figure 6c to Figure 3c). 
For this reason, we did not calculate independent switch cost.  

Subjective ratings on Enforced Strategy blocks 
Individuals’ ratings of effort and performance across the three enforced strategy blocks (Repeated Strategy, 

Random Strategy, Optimal Strategy) are shown in Figure 7a and b. Effort ratings varied significantly across 
block, F(2, 98) = 11.93, p < .001, ηp

2 = .20. The Random Strategy was considered more effortful than the 
Repeated Strategy (t(49) = 5.88, pHB < .001, d = .83) and Optimal Strategy (t(49) = 2.90, pHB = .011, d = .47). 
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The Repeated Strategy was numerically, but not significantly, less effortful than the Optimal Strategy (pHB = 
.08). Likewise, subjective performance ratings varied significantly (F(2, 98) = 6.97, p = .001, ηp

2 = .12), and 
performance was rated lower on the Random Strategy block than the Repeated Strategy block (t(49) = 4.44, pHB 
< .001, d = .64) and the Optimal Strategy block (t(49) = 3.06, pHB = .008, d = .44). Repeated and Optimal blocks 
did not differ (pHB = .54). 

Predicting choice performance from subjective ratings 
 The key question was whether individuals’ effort and performance ratings predicted choice performance 

(percent optimal and switch rate). Table 4 shows the correlations between these measures. For the Repeated and 
Random strategy blocks, subjective ratings were unrelated to either choice measure (all pHB = 1.00). For the 
Optimal strategy, ratings were not correlated with switch rate (pHB = 1.00), but critically, they were correlated 
with optimal choices: more optimal choices was associated with both lower effort ratings (r = -.43, t(48) = 3.31, 
pHB = .021) and higher subjective performance  (r = .43, t(48) = 3.31, pHB = .021; see Figure 7). 

 
 

Figure	6.	Experiment	2	Choice	block	results.	A)	Percent	optimal	and	non-optimal	choices	and	B)	
switch	rate	across	run	position.	Error	bands	indicate	standard	error	of	the	mean.	C)	Proportion	
optimal	plotted	against	switch	rate.	

  
Given that both effort and performance were related to optimal choices, we next looked at the extent to 

which these two factors overlapped. Effort and performance ratings were correlated with each other (r = -.38), 
which may indicate multicollinearity. Moreover, both measures may be entirely dependent on actual 
performance. That is, participants who perform better on the optimal strategy block (i.e., faster RTs) may be 
more likely to rate their performance as high and the effort demand as low. To test this, we used hierarchical 
regression to predict optimal choices and entered RT on the Optimal Strategy block as the first predictor. 
Optimal strategy-block RT did account for a significant proportion of the variance in optimal choices (R2 = .08, 
F(1, 48) = 4.25, p = .04), with faster RT during that block predicting more optimal choices. However, adding 
performance and effort ratings to the model significantly improved prediction (R2

change = .23, F(2, 46) = 7.55, p 
= .001). This was largely driven by effort: effort ratings significantly predicted choice performance over and 
above the other two predictors (R2

change = .11, F(1, 46) = 7.42, p = .001), but subjective performance did not 
(R2

change = .02, F(1, 46) = 1.41, p = .24). 
Additional individual differences analyses 
Subjective ratings on the Choice block. While our main focus was on subjective ratings on the enforced 

strategy blocks, we also looked at ratings on the Choice block and their relationship to choice performance. The 
Choice block was considered more effortful than the Repeated Strategy block (t(49) = 3.11, pHB = .009, d = 
.45), but of equal effort to the Random or Optimal Strategies (both pHB > .39). Choice performance ratings did 
not differ significantly from any other block (all pHB > .17).  

A) B) C)
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Correlations between subjective ratings and percent optimal or switch rate were not significant when 
correcting for family-wise error rate (see Table 4); uncorrected, two correlations were significant: participants 
with higher switch rates rated the Choice block as more effortful (r = .30, t(48) = 2.17, p = .035) and their 
performance as lower (r = -.33, t(48) = 2.45, p = .018).   

 
	

	

	

	

Table	4.	Correlations	between	ACVS	measures	and	subjective	ratings	in	Experiment	2.	

	 ACVS	Measures	

	 Percent	Optimal	 Switch	Rate	

	 									r			[95%	CI]	 								r			[95%	CI]	

Repeated	Strategy	 	 	

Subjective	Effort	 -.18	[-.34,	.10]	 .13	[-.16,	.39]	

Subjective	Performance	 .14	[-.14,	.40]	 -.13	[-.40,	.15]	

Random	Strategy	 	 	

Subjective	Effort	 -.21	[-.46,	.07]	 -.14	[-.41,	.14]	

Subjective	Performance	 .16	[-.12,	.42]	 -.01	[-.28,	.28]	

Optimal	Strategy	 	 	

Subjective	Effort	 -.43	[-.63,	.17]	*	 .03	[-.25,	.30]	

Subjective	Performance	 .43	[.17,	.63]	*	 -.18	[-.44,	.10]	

Choice	block	 	 	

Subjective	Effort	 -.21	[-.46,	.07]	 .30	[.02,	.53]	#	

Subjective	Performance	 .26	[-.02,	.50]	 -.33	[-.56,	-.06]	#	
*	=	p	<	.05	(Holm-Bonferroni	corrected).		#	=	p	<	.05	(uncorrected) 

 
Preference ratings. At the end of the experiment, participants rated their preferences for each of the four 

blocks. Preference ratings varied significantly across blocks, F(3, 147) = 6.16, p < .001, ηp
2 = .11. The Random 

Strategy, which was rated as most effortful and least effective, was also the least preferred, lower than the 
Repeated Strategy block (t(49) = 3.60, pHB = .004, d = .51), Optimal Strategy block (t(49) = 4.11, pHB < .001, d 
= .58), and the Choice block (t(49) = 2.94, pHB = .02, d = .42). The other three blocks did not differ. 

 Preference ratings were largely uncorrelated with choice performance. Only one relationship was 
significant: individuals with a higher switch rate also showed a higher preference for the Random Strategy 
block relative to those with a lower switch rate, r = .41, t(48) = 3.11, pHB = .025. There was also a trend for 
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those with a higher switch rate to have a lower preference for the Choice block, r = -.37, t(48) = 2.72, pHB = 
.064. No other correlations were significant (all pHB > .12). 

 Finally, we looked at the motivations underlying each individual’s most and least preferred strategy. 
Four motivating factors were rated, emphasizing performance, effort, time or boredom. A 2-way mixed 
ANOVA revealed a significant interaction between most preferred strategy (between-subjects) and motivating 
factor, F(9, 138) = 2.36, p = .017, ηp

2 = .13. Motivation ratings varied significantly for individuals who chose 
the Repeated Strategy block as their preferred strategy (N = 15; F(3, 42) = 9.19, p < .001, ηp

2 = .40), with effort 
minimization rated as highest motivating factors and boredom alleviation as the lowest. For the remaining 
participants, there were no differences across motivating factor (ps > .46). Least preferred strategy also 
interacted with motivating factor, F(9, 138) = 3.95, p < .001, ηp

2 = .21. Participants for whom the Repeated  
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Figure	7.	A)	Subjective	effort	and	B)	performance	ratings	on	each	block	in	Experiment	1.	Error	bars	show	
standard	error	of	the	mean.	C)	–D)	Scatterplots	showing	Choice	block	percent	optimal	choices	as	a	function	
of	C)	effort	ratings	and	D)	performance	ratings	on	the	Optimal	Strategy	block.	

 
Strategy was their least preferred option (N = 10) rated boredom as the main reason they disliked this block, 
F(3, 27) = 3.13, p = .04, ηp

2 = .26. Participants who selected the Choice block as their least preferred (N = 15) 
were more likely to cite effort as the reason to avoid this block, and least like to cite boredom, F(3, 42) = 6.83, p 
= .001, ηp

2 = .33. Motivations did not vary for those who selected the Random Strategy as their least preferred 
(p = .11), and were not analyzed for those selecting the Optimal Strategy as their least preferred (as only 4 
people fell in this group). 

Strategy self-report questionnaire. As with Experiment 1, responses to the strategy self-report 
questionnaire showed that participants had good insight into their strategy on the Choice block (see Table 2). 
Self-reported optimal searching was positively correlated with optimal choices (r = .77, t(48) = 8.42, pHB < 
.001), but unrelated to switch rate (pHB = .65). Self-reported repeated searching was negatively correlated with 
both optimal choices (r = -.35, t(48) = 2.59, pHB = .038) and switch rate (r = -.52, t(48) = 4.25, pHB < .001). 
However, these latter two correlations appeared to be driven by two outliers with high self-reported repeated 
searching scores (z-scores = 4.58 and 3.53), and neither correlation reached significance when these outliers 
were removed (pHB > .19). Self-reporting random searching was associated with fewer optimal choices (r = -.47, 
t(48) = 3.67, pHB = .002) and a higher switch rate, although this latter correlation did not reach significance 
when corrected (pHB = .098). 

 Again, participants indicated the motivating factors underling their strategy choice. Twenty-nine 
participants reported that the sole motivation for their chosen strategy was to maximize their performance. 
Seven selected effort minimizing as their only motivation, and two selected boredom alleviation only. The 
remaining participants reported multiple motivations: Eleven selected both performance maximization and 
effort minimization, and one person chose all three motivations. Because participants were able to select 
multiple options, and because most (41 out of 50) participants selected performance maximizing as one of their 
options, we did not formally analyze the data. We note, however, that the nine individuals who did not choose 
performance maximization as a motivation (choosing only either effort minimization or boredom alleviation) all 
rated self-reported random searching as their more frequently used strategy, and made fewer optimal choices 
(58%) than those who were motivated to maximize performance (73%). 

Correlations with personality scales. Correlations between ACVS scores and IPIP novelty-seeking, need 
for cognition and intolerance of uncertainty are shown in Table 3. One participant’s score on the IPIP was 
identified as a univariate outlier (z-score = 3.94) and multivariate outlier (Mahalanobis distance > 13.82 for 
correlations with both percent optimal and switch rate), and this data point was excluded from analyses. Internal 
consistency, measured using Cronbach’s alpha, was adequate for all scales (IPIP novelty-seeking α = .80; 
intolerance of uncertainty α = .90; need for cognition α = .84). Results showed that individuals higher on need 
for cognition had a lower switch rate, r = -.40 (disattenuated r = -.46), t(48) = 3.06, pHB = .022, which may 
indicate that these individuals are more likely to discern that unnecessary switching is costly to performance. 
No other correlations were significant (all pHB > .75).  

Response time analyses 
Enforced strategy blocks. Mean response time varied significantly across blocks (F(9, 98) = 17.30, p < 

.001, ηp
2 = .26). Responses were fastest in the Optimal Strategy block (M = 3037ms), followed by the Repeated 

Strategy block (M = 3302ms), and slowest in the Random Strategy block (M = 3563ms). This pattern is 
consistent with the predicted costs associated with each strategy: relative to the Optimal Strategy, RT on the 
Repeated and Random block should be slowed by the presence of non-optimal trials, and the addition of 
frequent switch trials should slow RTs even further on the Random block.  However, because the blocks were 
not counter-balanced, practice may have also contributed to the faster responses in the Optimal Strategy block. 
Analysis within blocks confirmed that RTs were faster on optimal trials than non-optimal trials, and the size of 
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the cost was similar on the Repeated Strategy block (non-optimal cost = 1015ms, t(49) = 13.40, p < .001, d = 
1.53) and the Random Strategy (non-optimal cost = 1080ms, t(49) = 18.12, p < .001, d = 2.93). Additionally, we 
found a significant switch cost in both blocks containing switches: the Random Strategy block (switch cost = 
340ms, t(49) = 3.76, p < .001, d = .65) and the Optimal Strategy block (switch cost = 358ms, t(49) = 5.90, p < 
.001, d = .84).  

Choice block. Mean RT in the Choice block was 2921ms (significantly faster than the Repeated and 
Random blocks, pHB < .001, but not faster than the Optimal block, pHB = .16). Unlike in the enforced strategy 
blocks, non-optimal choices were not slower than optimal choices, t(49) = .29, p = .77. This might seem 
surprising at first glance, but there was still solid evidence that the performance maximizing strategy was most 
effective: overall RT correlated significantly with the percent of optimal choices (r = -.48, t(48) = 3.79, p 
<.001), which could not be explained by visual search ability (there was no correlation between optimal choices 
during the choice block and RT on the Random strategy or Repeated strategy blocks, r = .10 and r = .06 
respectively). We speculate that the apparent lack of cost for non-optimal trials is driven by different factors 
depending on an individual’s strategy. For those who primarily use the optimal strategy, non-optimal trials – 
which only represented a small proportion of trials – were relatively quite fast, and these may represent the 
occasional, opportunistic cases in which individuals happened to fixate the non-optimal targets incidentally. In 
support of this, we found that chosen non-optimal targets were more often located closer to fixation than 
optimal targets (t(49) = 2.74, p  = .008), suggesting that they were more likely to have been found 
opportunistically. This effect was larger for those who used the optimal strategy more often (r = .35, p = .012). 
In contrast, for individuals with low percent optimal and high switch rate, we found that both optimal and non-
optimal trials were quite slow. We suspect that many trials may have involved searching through items of both 
colors, and hence whether the optimal target or the non-optimal target was found first would make no difference 
to RT.  

Discussion 
 Experiment 2 shed light on the motivational factors underlying attentional control strategies. Despite the 

fact that all observers had the opportunity to try out the optimal strategy, many used suboptimal strategies when 
given the choice. Importantly, the extent to which individuals chose the optimal strategy depended on how 
effortful and how effective they found that strategy to be. Moreover, performance and effort were shown to be 
separate contributing factors. Subjective performance ratings no longer predicted choice when optimal strategy 
RT was accounted for, implying that subjective ratings track well with actual performance. Effort, on the other 
hand, independently predicted choice after accounting for performance. This finding suggests that in strategy 
selection, effort and performance are weighted independently.  

 
General Discussion 

 
A complete understanding of attentional control in everyday life must take into account not only the 

capabilities of the attentional control system, but also strategic factors. Here we show that there are stable and 
predictable individual differences in the strategies used to control attention. We used a novel paradigm, the 
ACVS, to assess two measures of individual variation in attentional control strategy: how frequently an 
individual chooses the optimal control setting, and how frequently they switch between settings. In Experiment 
1, we found that both measures correlated with overall performance on the task (search RT), replicating our 
previous results (Irons & Leber, 2016). Additionally, we showed that that both measures, which varied 
considerably across individuals, were reliable across different testing sessions, suggesting that variation in 
attentional control strategy reflects stable individual behavior.  

In Experiment 2, we went on to explore the factors underlying strategy choice, by testing whether strategy 
choice was related to subjective evaluations of effort and performance. If, as we predicted, strategy choice 
emerges as the result of an internal comparison of performance gains against effort costs, then subjective 
evaluations of the optimal strategy in particular should predict choice performance. This was indeed supported 



	
	

      
22 

by the data: participants who rated the optimal strategy as less effortful, or as more effective, were more likely 
to use this strategy when placed in a choice context. The results suggest that performance-effort trade-offs form 
a meaningful basis for strategy selection. Moreover, it is the experience of effort, not just the willingness to 
expend effort, that drives strategy choice. In other words, it is not necessarily the case that those who used the 
optimal strategy were more willing to expend effort than those who did not. Rather, they did so because they 
found it to be less effortful and more effective than others did.  

Although subjective evaluations played a role in choice behavior, they did not account for all the variance, 
and it seems likely that other factors also contribute to attentional control strategies.  The notion that 
unexplained variance in behavior exists in this task is something we previously discussed (Irons and Leber, 
2016); there, we observed that the two factors of effort minimization and performance maximization alone 
could not easily account for the tendency for participants to switch between target colors more than necessary, 
given that switching is both effortful and costly to performance (Kool et al., 2010; Rogers & Monsell, 1995). In 
the previous study, we speculated that a novelty-seeking mechanism influences choice behavior, driving 
individuals to actively explore new information in their environment even when this runs counter to the task 
goal. If this were true, however, we would expect ACVS performance to correlate with indices of trait novelty-
seeking or impulsiveness, and the present study showed that this was not the case. Thus, the other factors that 
contribute to attentional control strategy remain the target of future research.  

This study adds to the existing literature on individual differences in attentional control, by highlighting the 
substantial effect of strategy on attentional control performance.  While individual differences in attentional 
control have been well studied, such work has focused primarily on abilities rather than strategy (e.g. Gopher & 
Kahneman, 1971; Lansman, Poltrock & Hunt, 1983; Hunt, Pellegrino & Yee, 1989; Miyake et al., 2000; Fan et 
al., 2002; Engle, 2002; Kane & Engle, 2003). This research has enabled the development of detailed models 
encompassing multiple facets of attentional control (e.g. Fan et al., 2002; Miyake et al., 2000; Miyake & 
Friedman, 2012), and has demonstrated links between attentional control and a variety of important dimensions 
such as working memory capacity (Engle, 2002; Kane & Engle, 2003; Shimi, Kuo, Astle, Nobre & Scerif, 
2014; Fukuda & Vogel, 2009; 2011; Gaspar, Christie, Prime, Jolicoeur, & McDonald, 2016), IQ (Friedman et 
al., 2006; Kane & Engle, 2002), impulse control (Hofmann, Friese & Roefs, 2009), and emotion regulation 
(Schmeichel, Volokhov & Demaree, 2008). In contrast, only a handful of studies to date have reported on 
individual differences in attentional control or visual search strategies (e.g. Hogeboom & van Leeuwen, 1997; 
Irons & Leber, 2016; Kristhansson, Johannesson, & Thornton, 2014; Lleras & von Mühlenen, 2004; 
Nowakowska et al., 2017), and usually as post hoc observations rather than as a priori goals. A more 
comprehensive analysis was conducted by Boot and colleagues (Boot et al., 2006, 2009), who identified 
individual differences in the use of covert (searching without eye movements) versus overt (searching with eye 
movements) search strategies. These studies demonstrated that strategy use generalized across different tasks, 
and, importantly, accounted for most of the variation across individuals on an attention task (change blindness), 
providing further evidence for the need to understand strategy choices. The current study adds to this work by 
offering a new way to interpret individual differences in strategy, within the framework of an effort-
performance trade-off. Such an approach may explain existing findings. For example, in Nowakowska et al.’s 
(2017) task, the optimal visual search strategy involved preferentially fixating informative, heterogeneous 
regions of a search display. While some observers used this strategy, others showed a bias away from these 
regions and towards more homogenous parts of the display. This bias towards regions of the display where 
search would be easier (pop-out) may be driven by a desire to minimize the effort associated with difficult, 
heterogeneous search. 

These results also highlight the potential of the ACVS as a methodological tool. A common limitation in 
using standard cognitive tasks in individual differences designs is that they tend to have low reliability. For 
example, a recent study assessing a variety of commonly used attention capture measures found that internal 
consistency ranged between 0 and .56 (Roque, Wright & Boot, 2016). This may be the result of a number of 
different factors. Hedge, Powell and Sumner (2017) argue that low reliability is a natural consequence of 
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designing cognitive tasks to minimize between-subject variability, which improves sensitivity to changes across 
groups or conditions, but reduces the amount of measurable individual variation in relation to noise. 
Additionally, many cognitive tasks rely on difference scores (e.g., the magnitude of attentional capture as 
measured by the difference between distractor present and distractor absent trials), and differences scores are 
known to be unreliable (Johns, 1981). The ACVS does not have either of these concerns, and has very high 
internal consistency (.9 or higher for both measures in both experiments) and good test-retest reliability (.83 for 
percent optimal and .77 switch rate, considered by many to be acceptable for individual differences, e.g. Barch 
& Carter, 2008; Hedge et al., 2017). Thus, the ACVS may offer a stable option for researchers contemplating 
studying individual differences in attentional control.   

We note, however, that the reliability of this task has only thus far been measured in a specific version of 
the task performed under the same experimental context. Further research is required to examine whether an 
individual’s strategy remains stable across state-based changes. Preliminary evidence in our lab suggests that 
this might be the case – individuals’ scores appear to be robust to changes in search configuration and task 
contexts.  

In summary, this study provides evidence for stable individual differences in strategies for controlling 
attention, and a relationship between strategy use and subjective evaluations of effort and performance. The 
results reaffirm previous work showing that understanding strategy is essential for fully understanding 
attentional control (e.g., Bacon & Egeth, 1994; Leber & Egeth, 2006a). Additionally, these finding lay the 
groundwork for developing a more detailed profile of how an individual uses attentional control, which may 
have broad applied and clinical uses.  
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