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ScienceDirect
Strategy is a crucial determinant for how attention is controlled.

In recent years, researchers have deployed a growing variety of

manipulations and dependent measures in service of

understanding strategy. This work has revealed a striking

degree of diversity and suboptimality in the use of attention,

and it prompts the realization that more research on strategy is

needed in order to fully understand and explain how attention

works. Here, we highlight several approaches to investigate

strategy, in what can be considered a ‘methodological toolbox’

for researchers. These methods can be customized and

combined flexibly in what we hope will be a continued

expansion of inquiry into this important domain.
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Introduction
‘You can do anything you set your mind to,’ goes the old

adage. Of course, we do not always aim toward the loftiest

goals, sometimes preferring to ‘just take it easy, man’ [1].

These contrasting approaches to life are captured by the

principles of maximizing and satisficing, in which individu-

als implement optimal or good-enough-to-get-by decision

strategies, respectively [2]. The use of strategies like

these, among others, has been broadly studied in a variety

of domains across psychology [3,4��,5], yet not as exten-

sively in the domain of attention, the target topic of this

special issue.

Nevertheless, it is crucial that we understand how atten-

tional strategy exerts its influence on performance. In this

pursuit, it is prudent to first define it. Borrowing from

several definitions of cognitive strategy [6–8], we define

attentional strategy as a mental plan, or policy, guiding how

individuals prioritize and select sensory information. It

can impact multiple stages of task performance, from
Current Opinion in Psychology 2019, 29:274–281 
choosing whether to perform a given attentional task

(e.g. should I actively search for my car keys or rest my

eyes and ask my friend to do it?), to choosing which

features and locations to prioritize during the task (e.g.

search for the red keychain versus the metal key), to

deciding when to terminate/update task performance

(e.g. should I keep searching this room or begin searching

another room?). A comprehensive understanding of strat-

egy thus invites examination of not how it dictates a single

choice but rather a complete decision tree, guiding steps

from start to finish in task performance.

To begin to appreciate the impact strategy makes on task

performance, consider a seminal contribution from Bacon

and Egeth, 25 years ago [9]. They questioned a now

classic finding, in which people searching for shape odd-

ball targets suffer response time (RT) interference costs

by salient, color oddball distractors [10]. While one could

presume this distraction to be unavoidable, Bacon and

Egeth posited that people were able to ignore the color

oddball but simply were unmotivated to do so. Perhaps

participants were satisficing, being unwilling to invest

additional cognitive effort required to ignore the color

singleton, especially since the cumulative RT costs of

distraction across a full experiment only amounted to

mere seconds [11]. Bacon and Egeth modified their task

to discourage such satisficing, predicting that shifts

toward a maximizing strategy would reduce the observed

RT distraction effects. Results indeed revealed the dis-

traction effects disappeared. Some debate surrounding

their work has ensued [12], but we can credit the study

with the powerful message that we ignore strategy at our

peril. Investigating it is vital for developing complete

models of attention, particularly in the real world, when

strategy use is least constrained (for reviews emphasizing

the importance of studying attentional strategy, see Refs.

[13,69]).

Methods for investigating attentional strategy
Our aim in this paper is a practical one: to encourage

greater study of attentional strategy. This prompts con-

sideration of roadblocks preventing such work. The over-

whelming majority of studies on attention rely on the

dependent measures of response time and accuracy.

These metrics serve as gold standard tools in investigat-

ing attentional abilities, and they have been classically

used in investigating some strategy indicators, such as the

speed-accuracy tradeoff [14,15]. However, any single

metric inherently carries limitations. Bacon and Egeth

[9] had to infer strategy by computing the difference in

RT between distractor present and distractor absent

conditions (see also Refs. [16,17]). Similar approaches
www.sciencedirect.com
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need to be taken with accuracy [18]. More broadly, efforts

to quantify strategy from RT and accuracy metrics largely

rely on the comparison of two or more conditions [19–23].

Unfortunately, while producing great insights, difference

scores are indirect and bring on unwanted statistical noise,

especially when employed in individual differences and

correlational designs [24]. Moreover, when strategy is

estimated by comparing different conditions, it is impos-

sible to measure strategy on individual trials. The good

news is that many methods exist for investigating strat-

egy, some more widely used than others, and a number of

these are not subject to the same limitations difference

scores. Therefore, it is prudent to use a diversity of

converging methods.

Here, we offer a ‘toolbox’ of methods to study attentional

strategy. We have divided them into both manipulations

and measurements. The former can be deployed to elicit

the use of a variety of strategies, while the latter provides

ways to assess which strategies are chosen. The narrative

review is accompanied by a schematic overview indicating

which stages of task completion the methods might influ-

ence and/or probe (Figure 1), as well as a table summarizing

when to use these approaches, along with some consider-

ations to keep in mind (Table 1). No pair of methods is

mutually exclusive; indeed, a robust study of strategy might

use many at once. This list is also not exhaustive, as there

are surely additional methods available.

Strategy manipulations

Instruction

Instructions are a fixture in attention experiments, pri-

marily because researchers want to make sure participants

understand what is expected of them. However,
Figure 1
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instructions can also be manipulated in a variety of ways

to shed light on strategy use. Explicit cues, such as those

used by Posner, serve as perhaps the most famous exam-

ple [25], showing that participants can strategically adjust

how they process information based on expectations [26].

Bacon and Egeth, in a separate study from the one

reviewed above, used instructions to mislead participants

about the ratios of features in a conjunction search task

(e.g. search for the red horizontal bar among red vertical

and green horizontal bars), to determine if expectations

about task structure would influence search strategy,

finding some influence of instructions on strategy use

[27]. Manipulations like this can be used to establish that

a single task can be approached with more than one

strategy.

When multiple strategies are available, and participants

use a suboptimal one by default, instructions can also be

deployed to help determine why. Participants may not

know what the optimal strategy is; alternatively, they

might know but are unable or unwilling to use the optimal

strategy. Proulx found in one experiment that participants

failed to use the optimal feature to guide a conjunction

search [28]. In a second experiment, he explained

the optimal strategy to participants; yet, about half of

the participants still used the suboptimal strategy. For

these participants, lack of explicit knowledge of the best

strategy did not seem to explain their choices (see also

Refs. [22,29]).

One consideration to keep in mind is that, particularly in

studies similar to Proulx’s, instructional manipulations

can sometimes be subject to carry-over effects. Once
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Table 1

Manipulations and measures of attentional strategy

Manipulations

Name Processing stage targeted Description Considerations

Instruction Depends on strategy

component of interest

Manipulated across gro

conditions to elicit diver

Cannot always ensure compliance;

susceptible to carry-over effects in

within-subject design

Reward Depends on strategy

component of interest

Performance-contingen

(i.e. reward prospect) us

optimal strategy

Generic improvements (i.e. overall

speeding) should be distinguished from

qualitative changes in strategy (i.e. choose

the more efficient search)

Measures

Name Processing stage targeted Description Considerations

Demand selection Before task performance Participants

possible task

Consistently choosing one task may

produce asymmetric practice effects

Target choice Stimulus selection Multiple targ

search,

of which part

one

To prevent participant tendencies to always

choose the same target, task contingencies

or environmental properties can be varied

over time

Saccadic choice Stimulus selection Measures wh No manual response required; does not

measure covert shifts of attention (i.e. those

occurring without eye movements)

RT/accuracy

difference

scores

Stimulus selection Compares re

multiple

conditions to

Cannot reveal strategy on single trials;

difference scores can have poor test/re-test

reliability

Speed-accuracy

tradeoff

Target decision Indicates the

accuracy is p

Model parameters relating to boundary

separation can reveal dynamic changes in

the tradeoff function over time; cannot

reveal strategy on single trials

Response criterion Target decision A metric from

reflects biase

Less about how attention is allocated

during task performance than about

strategic responding under uncertainty

about target properties

Patch leaving Stay/leave decision Specific to fo

decision to a

the next disp

Can compare search strategy to

well-developed models of ‘optimal

foraging’

Metacognitive

report

Depends on strategy

component of interest

Collects exp

strategy the

Should be combined with additional

strategy metrics to enable comparison

between reports and strategy used

Subjective effort

ratings

Depends on strategy component

of interest

Collects exp

demanding a

Should be combined with additional

strategy metrics; rating scales may suffer
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nstructed, the optimal strategy cannot be unlearned. In

these cases, between-group designs should be selected.

Reward

Reward has become a widely used tool in modern atten-

tion research. The bulk of such studies have focused on

value-driven learning, in which a specific stimulus can

become behaviorally salient after participants learn to

associate it with an expected payoff (see Refs. [30,31]

for recent reviews). Value-driven learning may be consid-

ered strategic in nature [32], although in some cases it is

viewed to be automatically driven [33,30].

One way reward can be used to arguably more directly

manipulate strategy is to implement performance contin-

gencies, also referred to as reward prospect, in which

participants are paid more for overall better performance

[34–37]. That is, if participants are paid more for faster

response times, then they should be motivated to seek

strategies yielding faster target detection.

This manipulation should be paired with a reliable

measure of strategy, to distinguish between generic per-

formance improvements (e.g. faster responding) versus

qualitative changes in chosen strategy (e.g. choosing the

more efficient method to find the target).

Strategy measures

Demand selection

Imagine you can buy your favorite snack at the conve-

nience store steps away for $2.75 or at the market at the

top of a steep hill for $2.00. Is the climb worth saving

$0.75? This choice can be referred to as a demand selection,
in which one weighs the relative physical or cognitive

effort of the options in making their decision [4��,38].
Pauszek and Gibson recently used this measure in an

attention task [39]. After previously demonstrating that

individuals often neglect to use valid spatial cues to

facilitate visual target identification [20,21,40], they

questioned the extent to which individuals would con-

sciously choose valid cue information that could both

speed performance but incur greater effort to process.

They had participants choose between a search task with

no spatial cue versus one that had a 70% valid spatial cue.

Results showed a preference for the no-cue task, reveal-

ing a strategic choice to forego information that could

facilitate performance.

Demand selection, along with target choice and saccadic

choice described below, is useful because it can measure

strategy on each individual trial. One consideration to

keep in mind is the potential for asymmetric practice

effects, in which choosing one task more frequently

produces learning improvements, thus making that task

subjectively easier and more desirable.
www.sciencedirect.com 
Target choice

Demand selection features an explicit choice that is

made prospectively. One might compare it to a New

Year’s resolution, in which someone announces their

commitment before they are required to execute it.

An individual might exhibit different behavior when

strategy choices are made on the fly, during effortful

task performance. We introduced a task called the

adaptive choice visual search [41,42��,43], in which parti-

cipants view a large-scale display containing about a

dozen items in one color (small subset) and about

two-dozen in another color (large subset). One target

is included in each subset, and participants can choose to

report either target. The optimal strategy is to identify

the smaller subset, configure an attentional template for

that subset color (i.e. enter a state of control that prior-

itizes the chosen feature for selection), and then search

within that subset for the associated target. Such a

strategy yields substantially faster RTs than searching

for the target in the larger subset or searching randomly.

Critically, the size of each color subset changes dynami-

cally over time, such that participants wishing to perform

optimally must complete the effortful steps of waiting

for the trial stimuli to appear, appraise the color infor-

mation, determine which is the smaller subset, and

occasionally update their search template to find the

optimal target. Only some participants demonstrate opti-

mal behavior in this task, and broad, stable individual

differences have been observed [42��].

Saccadic choice

Because stimulus perceptibility varies dramatically with

eccentricity, where someone chooses to fixate their eyes

greatly determines how profitably they can harvest infor-

mation from the visual scene. Thus, the choice of saccade

destinations represents an important strategy component

in attentional control [44–46].

Morvan and Maloney provided an elegant demonstration

of this point [47]. They displayed three horizontally

aligned boxes and presented a small target inside either

the leftmost or rightmost box. Participants, who began the

trial by fixating above or below the array, were allowed to

saccade to one of the boxes. By measuring each

participant’s retinal sensitivity and then varying the spac-

ing between the boxes, the researchers could predict an

optimal saccade strategy. That is, if the boxes were

spaced closely enough that a saccade to the center would

allow accurate target discrimination in both adjacent

boxes, the participant should fixate the center. If not, a

center strategy would fail to acquire either target and lead

to 0% accuracy, so the participant should choose either

the left or right box for a 50% chance at successful

identification. Results showed generally nonoptimal

saccade choices, providing important insights into the

strategic use of overt attention.
Current Opinion in Psychology 2019, 29:274–281
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More recently, Nowakowska et al. presented an oriented

bar target on either the left or right side of a large-scale

display [48�]. One side was filled with heterogeneously

oriented distractors while the other was filled with homo-

geneously oriented distractors that were distinct from the

target. This caused targets in the heterogeneous side to

demand a serial search, while those on the homogeneous

side popped out. For the latter, peripheral detection was

possible, rendering a saccade to that side inefficient.

Nevertheless, saccadic choice results revealed a striking

tendency of observers to direct their first saccade on each

trial to the homogeneous side, resulting in suboptimal

performance.

RT and accuracy differences

As highlighted in the introduction, comparisons of RT

and/or accuracy across multiple conditions have been a

mainstay of attention research, such as comparing valid

versus invalid cues [20,25], the presence or absence of

distractors [9,10,19], or different display set sizes [27].

Rajsic et al. analyzed relative display set sizes to reveal

a ‘confirmation bias’ in visual search [22,23]. In displays

comprised items in two color subsets, in which a target

(e.g. ‘p’) was always present in one of these colors,

participants had to test a rule on each trial: for example,

does the ‘p’ appear in blue? The optimal strategy is to

search through the smaller subset and then infer the color

of the target (if the ‘p’ is absent in the smaller red subset,

then it must be in the larger blue subset). However,

comparing RT across different color ratios revealed that

participants largely searched within the subset matching

the color named in the instruction. That is, participants

attempted to directly confirm the rule (e.g. find a blue

‘p’), regardless if it was the fastest way to solve the search

task (i.e. through inference).

Speed-accuracy tradeoff

As highlighted above, the speed-accuracy tradeoff is a

longstanding method for probing attentional strategy

[14,15]. It has classically been shown that participants

can be incentivized with reward to prioritize either speed

or accuracy [49]. More recently, Manohar et al. showed

that reward prospect does not just move someone along a

speed versus accuracy tradeoff curve but also enhances

their overall performance [37].

Continuous performance tasks can expose tradeoffs, in

which prolonged performance leads to faster and more

error-prone responding. Fortenbaugh et al. recently

analyzed a massive sample of 10 000 participants, finding

that this tradeoff function varies considerably with age,

with a gradual shift toward prioritizing accuracy with

advancing age [50]. This contrasted with their measures

of ability, which showed peak performance in the early

40 s, followed by a gradual decline.
Current Opinion in Psychology 2019, 29:274–281 
There exist several ways to quantify the speed-accuracy

tradeoff. One such approach, as implemented in sequential
sampling models [51], derives from the logic that evidence

toward choice thresholds, or boundaries, accumulates

over time. Here, variation in speed-accuracy tradeoff is

determined by how far alternative decision boundaries

are separated from each other; greater separations repre-

sent a higher evidence threshold, which result in slower

RTs and higher accuracy. In models like this, a robust

analysis of strategy can be carried out on parameters

relating to boundary separation. Recent work along these

lines has suggested that boundary separation can be

adjusted strategically over time [52,53]. This was recently

exemplified by Palestro et al. [54], who had participants

attend a field of moving dots and judge whether its global

coherence was moving left versus right. Here, an indi-

vidual might initially aim for a high level of accuracy; but

after a few moments, they might realize the task difficulty

exceeds their ability such that continued time on the task

would produce diminishing returns. Thus, it would make

sense to ‘collapse’ the separation between boundaries to

reach a quick, albeit inaccurate, response [53]. Palestro

et al.’s model results supported collapsing boundaries.

Note that the optimal boundary separation by time func-

tion need not always collapse; it could remain constant or

even diverge, depending on the specific task conditions

[55�]. Overall, analysis of boundary separation provides

support that individuals strategically and dynamically

adapt their speed-accuracy tradeoff over time.

Response criterion

Response criterion, or bias, is a classic metric of signal
detection theory that is typically associated with strategy

[56] (but see Ref. [57] for evidence that criterion can

reflect perceptual biases in addition to strategy).

Response criterion manifests when a decision is made

about the information that has been gathered. Was the

target present or absent? Where or what was it? Such

decisional processes are an important component of many

attention-related tasks and can be integrated into a task

completion process, such as deciding whether to continue

or quit a visual search [58].

Wolfe and Van Wert manipulated the rate of target

prevalence across trials, and found that participants

dynamically adjusted their response criteria to track prev-

alence (e.g. biasing toward target present responses when

target prevalence is high) [59]. Suboptimal decision

criteria have been revealed in other contexts, such as

deciding which of two locations contains a target [60].

Patch leaving

This metric relates to both speed-accuracy tradeoff and

signal detection theory, but as applied to the more

complex domain of foraging, in which individuals search

for an undefined number of targets (e.g. finding and

collecting quarters for laundry). This contrasts with many
www.sciencedirect.com
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visual search tasks that are satisfied upon finding one

target (the car keys or any hair clip). In the foraging

scenario, deciding when to stop searching a particular

scene is an essential strategy component. Foraging

behavior has classically been explained by Charnov’s

marginal value theorem, which holds that an organism will

quit searching one local ‘patch’ for food when it

determines that the expected yield of switching to a

new patch — while accounting for the cost of travel —

will exceed that of the present patch [61]. This theorem

has recently been applied to foraging behavior in visual

search [62,63,64�].

Cain et al. had participants search for a variable number of

targets in each display and measured when people

switched to the next display (i.e. patch leaving), as a

function of how long it had been since the last target was

found and of how many total targets had been collected

[63]. The researchers were interested in how individuals

updated their expectations, or Bayesian priors, based

on target prevalence, which they manipulated between

25–75%. Results showed reasonably optimal updating of

patch leaving time based on prevalence, albeit with

participants underestimating how variable a given display

could be.

Fougnie et al. adjusted target prevalence rate in cyclical

fashion over the course of trial blocks, to measure

individuals’ sensitivity to recent prevalence versus global

temporal structure of prevalence (i.e. ‘seasons’) [65].

They found slower patch leaving during periods, in which

prevalence was on the rise compared to when it was

falling, confirming sensitivity to global structure.

Metacognitive report

How much explicit knowledge do people have regarding

their strategy use, and does this knowledge predict

chosen strategy? Asking participants about their strategies

can address these questions.

Kawahara presented a visual search task with no instructions;

rather, he used an operant conditioning procedure to shape

search performance to gain insight into people’s ‘default’

strategy without any contamination of demand characteris-

tics [66]. In particular, he wished to see if people naturally

avoided salient singleton distractors. Overwhelmingly, they

did not. After task performance, he asked participants to

report the strategy they used, and the vast majority reported

the strategy consistent with avoiding distraction; this

revealed a striking lack of metacognition with respect to

attentional strategy (see also Ref. [28]).

Some researchers have found impressively high metacog-

nition. In our adaptive choice visual search, described

above, we found correlations as high as r = 0.77 between

the self-reported rates of optimal strategy use and actual

optimal strategy use [42��].
www.sciencedirect.com 
Subjective effort ratings

Much of the work we have described here identifies the

avoidance of cognitive effort as a key motivating factor in

the choice of suboptimal strategies. To better understand

the relationship between effort and strategy, effort costs

must be quantified. Subjective ratings are a valuable place

to begin [67,68].

We used a manipulation to require our participants to use

an optimal visual search strategy and subsequently col-

lected subjective effort ratings; then participants all per-

formed our adaptive choice task, in which they were free

to use an optimal or suboptimal strategy [42��]. We found

that people who reported the required-optimal task to be

more effortful were less likely to choose the optimal

strategy when given the option. These results show that

subjective ratings can help characterize the relationship

between effort and strategy use.

Subjective rating scales carry some potential limitations;

participants may vary in how they match the rating scale

to their subjective state, and their reports after task

completion may not accurately reflect the subjective

effort they experienced during performance.

Conclusions
We started by acknowledging that there is no single way

to live our lives, and we focused this notion within the

domain of attention: there is no single way to make use of

our attentional abilities. Given the wide variation in

strategy that people use in the lab — which is likely

even more variable in the real world — it is incumbent

upon attention researchers to carry out systematic, thor-

ough investigations of attentional strategy, particularly if

we wish to form a complete understanding of how atten-

tion works. We used this brief review format to offer a

methodological toolbox to manipulate and measure strat-

egy, which we view as a starting point rather than an

exhaustive list. We hope that this work prompts

researchers to consider new and productive ways to better

understand the strategic use of attention control.
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