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ABSTRACT
In recent years there has been rapid proliferation of studies demonstrating how reward learning
guides visual search. However, most of these studies have focused on feature-based reward, and
there has been scant evidence supporting the learning of space-based reward. We raise the
possibility that the visual search apparatus is impenetrable to spatial value contingencies, even
when such contingencies are learned and represented online in a separate knowledge domain.
In three experiments, we interleaved a visual choice task with a visual search task in which one
display quadrant produced greater monetary rewards than the remaining quadrants. We found
that participants consistently exploited this spatial value contingency during the choice task but
not during the search task – even when these tasks were interleaved within the same trials and
when rewards were contingent on response speed. These results suggest that the expression of
spatial value information is task specific and that the visual search apparatus could be
impenetrable to spatial reward information. Such findings are consistent with an evolutionary
framework in which the search apparatus has little to gain from spatial value information in
most real world situations.
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The principle of utility maximization, by which individ-
uals seek the greatest rewards and smallest losses, is
among the most fundamental motivators of human
behaviour (von Neumann & Morgenstern, 1953).
With all other things being equal, we take the bet
with the largest expected payout, we buy from the
seller offering the lowest price, and so on. Humans
do demonstrate a variety of non-normative ten-
dencies (Hastie & Dawes, 2010; Tversky & Kahneman,
1974), but we nevertheless are consistently sensitive
to value and pursue strategies to maximize our gains.

It is thus intriguing when people demonstrate
insensitivity to value, as these examples offer impor-
tant insights into our cognitive architecture. Such
behaviour can be attributed to several causes. First,
people could fail to learn the relevant value contin-
gencies; classic examples of such acquisition failures
include blocking (Kamin, 1969) and overshadowing
(Pavlov, 1927), in which previous or concurrent
exposure of a conditioned stimulus prevents a
second conditioned stimulus from being associated
with an unconditioned stimulus. Second, people
could successfully learn a value contingency but fail
to retrieve the memory of this contingency (Spear,

1973; Tolman, 1932; see Wasserman, 1981). Third,
people could decrease their subjective valuation of
the reward and thus possess lesser motivation
toward it, as highlighted by the classic example of a
free-feeding rat reaching satiety and then abstaining
from seeking food (Richter, 1922).

In this article, we consider a more perplexing scen-
ario, in which an individual demonstrates learning,
retrieval, and motivation yet only behaviourally
exploits the value contingency during some task set-
tings and not others. Such a task-dependent expression,
should it exist, is theoretically significant because it
would show domain specificity in the exploitation of
reward.

Here we examine the case of spatial value and
visual search. Recently, two studies using this combi-
nation of value manipulation and task, respectively,
failed to show any sensitivity to reward (Jiang, Sha, &
Remington, 2015; Won & Leber, 2016). In both of
these studies, participants were instructed to
perform a search task (target T among L distractors),
in which correct target identification was followed
by either a small or large monetary reward. Unbe-
knownst to participants, the expected value (EV) of
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the targets varied as a function of space. For instance,
targets in “high-EV” display quadrants could yield
rewards averaging approximately 6 times greater
value than targets appearing in the “low-EV” quad-
rants (e.g., Won & Leber, 2016, Experiment 1a). Note
that targets appeared with equal frequency in each
of the quadrants, so only the reward magnitude was
varied. What the studies showed repeatedly across
numerous experiments was that participants’ behav-
iour (i.e., response time and accuracy) was totally
insensitive to quadrant EV.

These findings are situated in a literature on atten-
tion and reward in which dozens of studies have
reported robust effects from feature-based value
manipulations (e.g., Anderson, Laurent, & Yantis,
2011; Della Libera & Chelazzi, 2006; Hickey, Chelazzi,
& Theeuwes, 2010; Kiss, Driver, & Eimer, 2009; Naval-
pakkam, Koch, Rangel, & Perona, 2010), while virtually
no studies have reported effects of spatial reward (but
see Chelazzi et al., 2014). In line with the lopsided state
of the literature, we found that participants did exploit
color-based value information when we modified our
task to endow colours instead of spatial locations with
value, using the same EV ratios (Won & Leber, 2016,
Experiment 2). Thus, there appears to be a clear dis-
sociation between the exploitation of spatial vs. non-
spatial value information during visual search.

Why would people be insensitive to spatial value?
Given that similar payoff schedules elicited value-sen-
sitive performance in other tasks, it is unlikely that par-
ticipants were unmotivated to seek the monetary
reward. Instead, it is possible that the act of conduct-
ing visual search interferes with either learning or
retrieval of the spatial value contingency. Given the
brain’s capacity limitations, it is simply not possible
to encode or retrieve task-relevant information
about all potential relationships among variables.
Such an encoding-based explanation suggests that
people would demonstrate sensitivity to spatial
reward during search if they were just able to properly
represent the relevant information. Alternatively,
expression of spatial value knowledge could be task
dependent; that is, observers could know the spatial
value contingencies but the visual search apparatus
could be impenetrable to incorporating this infor-
mation. Such a scenario represents the most intract-
able form of reward insensitivity, because any
method to endow the observer with knowledge of
the contingency will inevitably fail to circumvent the

mode of expression and will consequently fail to
produce behavioural change.

While it seems counterintuitive that the human
mind would selectively fail to express actively rep-
resented knowledge, it may be sensible from an eco-
logical standpoint. Consider that in the real world,
objects are usually the things to which we assign
value, not their locations. When we engage in a
search task for a specific item, such as our car key,
the target of our search is just as valuable to us if we
find it on the desk or hanging from the doorknob.
Because of the ecological oddity of a visual search
target varying in value as a function of its location,
the designer of a visual search apparatus – i.e., the
process of natural selection – may not have been
pressured to incorporate spatial reward sensitivity as
a necessary component. It has previously been
argued that the visual search apparatus does not take
all possible information into account when deploying
shifts of attention; for instance visual search might be
more efficient when it is allowed to run in “anarchic”
versus “orderly” fashion (Wolfe, Alvarez, & Horowitz,
2000), and it might sometimes proceed without
concern of revisiting previously rejected locations (Hor-
owitz & Wolfe, 1998; Wolfe, 2003).

Many forms of learning have been shown to modu-
late the visual search process, including phenomena
such as contextual cueing and probability learning
(e.g., Chun & Jiang, 1998; Geng & Behrmann, 2002;
Miller, 1988). Moreover, individuals are highly sensitive
to variations in the likelihood of target appearance, as
shown in visual foraging tasks (e.g., Cain, Vul, Clark, &
Mitroff, 2012; Wolfe, 2013). Finally, individuals are
plenty capable of claiming volitional control over their
search when they want to; apropos to this discussion,
Jiang, Sha, et al. (2015) showed that a subset of partici-
pants were able to direct attention to high-value
locations when asked to do so. Yet, in this paper, we
entertain the notion that, by default, the visual search
apparatus is impenetrable to spatial value information,
even when the observer is actively representing such
value within another knowledge domain.

Before proceeding in this venture, we must offer an
important disclaimer: proving that the visual search
apparatus is impenetrable to spatial value information
is a tall order, which might require a substantial
number of studies, using a variety of converging
approaches. Therefore, we will refrain from making
overly strong claims about the impenetrability of the
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search apparatus while presenting our current work.
We will emphasize that the discussion of this theoreti-
cal possibility is important and our results provide ten-
tative support for it.

Specifically, we conducted three experiments to
seek support for whether insensitivity to spatial
value during visual search constitutes a task-depen-
dent expression failure. Our general approach was to
mix together two types of tasks: Visual Choice and
Visual Search. During the choice task (see, e.g., Jiang,
Swallow, Won, Cistera, & Rosenbaum, 2015), partici-
pants were able to select a single item (Exp. 1) or a
subset of the display (Exp. 2 and 3) in the aim of
obtaining a reward. We varied potential reward as a
function of spatial location, and we anticipated that
participants would rapidly learn to choose high-EV
locations, replicating an earlier finding (Won & Leber,
2016, Exp. 4b). The visual search task was like that
used in previous work, in which targets were assigned
value depending on their spatial location. Critically,
the locations assigned as high-EV were identical
across the choice and search tasks within each partici-
pant. Assuming that the participants show a clear pre-
ference for the high-EV locations during choice, we
reasoned that a) this would demonstrate that obser-
vers are actively representing spatial value information
during choice and b) the information would be carried
into the interleaved search task. Given these assump-
tions, if previous findings of reward insensitivity
during search resulted only from learning, retrieval,
or motivational deficits, then the current manipula-
tions should overcome these limitations and facilitate
the expression of the value contingency knowledge
during search. If, however, the visual search apparatus
is insensitive to spatial value, participants will persist in
demonstrating a task-dependent expression failure
during search while successfully expressing learning
during choice. To preview, none of the current manip-
ulations succeeded in eliciting the expression of
spatial value knowledge during search. These results
provide intriguing support for the notion that our
search apparatus is, by default, impenetrable to
spatial value information.

Experiment 1: interleaved visual choice and
visual search

In the first experiment, we interleaved 16-trial mini-
blocks of Visual Choice and Visual Search. During

Visual Choice, participants viewed a display of 16 “L”
stimuli and clicked on any of them to receive a
reward. For each participant, we designated a single
High-EV quadrant, for which any object clicked
inside of it would typically return a high reward.
Because the remaining quadrants typically returned
low rewards, we expected to replicate our previous
finding that participants quickly learn to disproportio-
nately choose the high-EV quadrant (Won & Leber,
2016). The Visual Search task had stimuli that were
nearly identical to those in the choice task, except
one of the search items was a T, and participants
were told to click on it rapidly and accurately.

As we described in the introduction, we expected
that participants would bias behaviour toward the
high-EV quadrant during the Visual Choice trials, and
we thus sought to determine whether the participants
would express this knowledge during the Visual
Search task; such expression would be manifested
via faster response times (RTs) on trials in which
target appeared in the high-EV quadrant versus the
low-EV quadrant.

Method

Participants
In choosing our sample size, our goal was to include a
sufficient number of participants to obtain power = 0.9
for the visual choice manipulation. Based on the effect
size obtained for this manipulation in our previous
paper (Won & Leber, 2016, Experiment 4b), we esti-
mated that 15 participants would be needed.1 We
ran 16 participants in all experiments reported in this
manuscript. Of the 16 run in Experiment 1, 12 were
female (mean age = 22.7 years). All participants
reported normal or corrected-to-normal visual acuity
and normal hearing. The Ohio State University IRB
approved this protocol. Compensation for the 1.5 h
session was based on how many points were earned
during the experiment (point values will be further
explained in the Design). Participants’ payouts were
distributed in whole dollar amounts, as follows:
0–5000 points = $15; 5001–6000 points = $16; 6001–
7000 points = $17; 7001–8000 points = $18; 8001–
9000 points = $19; 9001 and up = $20.

Apparatus and stimuli
Participants were tested in a dimly lit room. Stimuli
were presented on a 24” LCD monitor and generated
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using MATLAB (www.mathworks.com), with Psy-
chtoolbox extensions (Brainard, 1997; Pelli, 1997). In
the Visual Search task, displays contained one target
(a white T rotated 0°, 90°, 180°, or 270°) and 15 distrac-
tors (white Ls rotated 0°, 90°, 180°, or 270°) on a grey
background. Targets and distractors subtended
1.02° × 1.02° (all visual angles assume a typical
viewing distance of 60 cm). Item locations were
chosen randomly from a 10 × 10 invisible matrix
(15.28° × 15.28°), with four items appearing in each
quadrant. Target and distractor orientations were all
selected randomly with replacement on each trial.
The number 20 or 1 (font size: .92°), indicating
reward points for a given trial, was displayed at the
target location, in green. Auditory feedback was
either a three “chirp” sequence lasting 300 ms for
20-point responses, a single high-pitched 100 ms
tone for 1-point responses. In the Visual Choice task,
stimuli were identical to the search task except that
choice displays contained 16 Ls and no Ts.

Design
In the Visual Search task, the target appeared with
equal frequency across the four quadrants (25% of
trials each), but the point-value was varied. Specifi-
cally, targets in the high-EV quadrant earned 20
points on 75% of trials and 1 point on 25% of trials.
Targets in the other three low-EV quadrants earned
the opposite: 1 point on 75% of trials and 20 points
on 25% of trials. These contingencies yielded individ-
ual quadrant EVs of 3.813 and 1.438 for high- and
low-EV quadrants, respectively. In the Visual Choice
task, we matched the payoffs to the Visual Search
task. Specifically, objects clicked in the high-EV quad-
rant yielded 20 points on 75% of trials and 1 point
on 25% of trials; objects clicked in the low-EV quadrant
yielded 1 point on 75% of trials and 20 points on 25%
of trials (see Figure 1(A)). Critically, the location of the
high-EV quadrant was the same across the search and
choice tasks for each participant.

Procedure

Main trials
Participants completed 46 mini-blocks, each 16 trials,
which consisted of alternating visual search and
visual choice 23 times. Half of the participants
started with visual search and the other half started
with visual choice. In both tasks, participants initiated

each trial by clicking on a small white square
(.51° × .51°), which appeared near the screen centre
(jittered randomly on each trial by +/- .77° in both ver-
tical and horizontal directions). After the click and a
500 ms delay, the search or choice display appeared
(for the two respective tasks). Participants were
instructed to click on the target in the search task
and click on any object in the choice task. Upon
response, the display was removed, and the point-
value earned was displayed, along with the auditory
feedback. Next, the cumulative total points were dis-
played at the screen centre for 500 ms (see Figure 1
(B)). Participants completed 16 practice trials in each
task before advancing to the main task.

Explicit learning assessment
After the main trials, participants were told about the
spatial reward manipulation and asked to complete a
16-trial generation task (similar to Chun & Jiang, 2003)
for each task, which assessed their explicit knowledge
of the quadrant EVs. Participants were shown a search
or choice display (depending on the task) and were
required to click on the target in the search task or a
randomly circled L in the choice task. In both cases,
this response then revealed two point values, 1 and
20. Participants had to then choose which of these
they felt to best match the reward typically earned
at that location. No feedback was provided.

Results and discussion

Visual choice
Choice frequency. The choice frequency data across
quadrant type and blocks are plotted in Figure 2
(bar graph). It was calculated as the proportion of
trials in which items in each of the quadrants was
chosen. For the low-EV data, we collapsed across the
three quadrants of this type for each participant.
Because low- and high-EV data were statistically
dependent, our analysis approach was to compare
high-EV choices vs. chance level. A sample to hypoth-
esized mean (of 0.25) t-test, on collapsed data from all
blocks, was significant, t(15) = 5.04, p < .001, Cohen’s d
= 1.26. To then determine if participants’ sensitivity to
the high-EV quadrant changed over time, we con-
ducted a 1-way ANOVA on choice data across 23
blocks. The results showed a significant main effect,
F(22, 330) = 7.48, p < .001, h2

p = .33. To test whether
the sensitivity to the high-EV quadrant increased
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over time, we entered the high-EV choices in each
block into a linear regression, for each participant,
and computed the slope values. These slopes were
entered into a one-sample t-test (compared to
a hypothesized mean of zero). Results demonstrated
a significantly positive linear trend, t(15) = 4.77,
p < .001, Cohen’s d = 1.19, consistent with increased
sensitivity to the high-EV quadrant over time.

Visual search
Because we only accepted click responses when the
mouse hovered over the target, errors were not poss-
ible, so accuracy data are not reported. We thus focus
solely on RT.

RT. We removed trials with RTs slower than 3 SD
above the mean (1.7%), and the remaining mean RTs
are plotted in Figure 2 (line graph). The quadrant
type x block ANOVA revealed a main effect of block,
as RT became faster as the experiment progressed, F
(22, 330) = 3.50, p < 0.0001, h2

p = .19. However, there
was neither a main effect of quadrant type, F < 1, h2

p

= 0.024, nor a 2-way interaction, F(22, 330) = 1.29, p
= 0.174, h2

p = 0.079, showing that participants were
insensitive to spatial value during search.

One of potential issues with this is that failing to
reject the null hypothesis could be due to limitations
in statistical power. One approach to increase confi-
dence in supporting the null hypothesis is to
compute the Bayes Factor (BF), which generates a
readily interpretable odds ratio of evidence for vs.
against the null hypothesis (e.g., Rouder, Speckman,
Sun, Morey, & Iverson, 2009). We computed BF on
visual search RTs,2 which yields BF01 = 3.34. The BF
indicates that the observed data were 3.34 times
more likely to be observed if the null hypothesis
were true than if the alternative hypothesis were
true. (for guidelines in the interpretation of Bayes
factor magnitudes, see Morey, Rouder, & Jamil, 2014;
Rouder, Morey, Speckman, & Province, 2012; Wetzels
et al., 2011).

Visual search vs. visual choice
We next wanted to compare visual search and visual
choice results. While it is difficult to directly compare
RT and choice frequency, our approach was to
convert these respective dependent measures of
interest to arbitrary learning efficiency units for each
block (see Figure 3). Specifically, for visual search, we
subtracted the mean RT in high-EV quadrant from
that in low-EV quadrants, and then divided by the

Figure 1. Design and procedure in Experiment 1. (A) Choice task. Participants chose one of 16 randomly rotated Ls. The High-EV quad-
rant yielded 20 points on 75% of trials and 1 point on 25% of trials, while the Low-EV quadrants had the opposite payoff. (B) Search task.
Participants searched for a target T among 15 randomly rotated L distractors. Targets appearing in the High-EV quadrant were worth 20
points on 75% of trials and 1 point on 25% of trials, while targets in the Low-EV quadrants yielded the opposite payoff (see method for
additional details). (C) A schematic procedure of Experiment 1. The two tasks were presented in a sequence of 23 alternating mini-
blocks (16 trials per mini-block).
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sum of the two mean RTs from high-EV quadrant and
low-EV quadrant (i.e., low-EV quadrant’s RT – high-EV
quadrant’s RT) / (low-EV quadrant’s RT + high-EV quad-
rant’s RT)). For visual choice, we subtracted expected
chance level choice frequency (0.25) from choice fre-
quency in high-EV quadrant, and then divided by the
sum of these two measures (i.e., (high-EV quadrant’s
choice −0.25) / (high-EV quadrant’s choice +0.25)).
We then conducted a pairwise t-test on the two
learning efficiency measures, revealing a significant
difference between the two, t(15) = 7.01, p < .001,
Cohen’s d = 1.75.

We interpret this result with some caution, as we
cannot verify that the choice and search manipula-
tions were equally strong and/or sensitive. And while
converting the respective choice and RT measures
learning efficiency units places the two on a
common scale, it does circumvent the inherent limit-
ations in our comparison. Keeping these points in
mind, the results suggest stronger expression of learn-
ing in visual choice than visual search.

Explicit learning assessment
A task × quadrant type ANOVA on the generation task
responses revealed that participants chose 20 points

more often in high-EV quadrant than in any of low-
EV quadrants, F(1, 15) = 10.29, p = 0.006, h2

p = .41.
Also, we found a significant interaction between task
and quadrant type, F(1, 15) = 14.30, p = 0.002, h2

p

= .49, which was driven by stronger recognition in
visual choice than in visual search. Specifically, for
visual choice, participants chose 20 points 75.0% of
the time in the high-EV quadrant vs. 32.8% of the
time in the low-EV quadrants. In contrast, for visual
search, participants chose 20 points 53.1% of the
time in the high-EV quadrant vs. 44.8% of the time
in the low-EV quadrants. When comparing recog-
nition performance with chance (50%), visual
choice was significantly more above chance
(69.1%), t(15) = 4.68, p = 0.0003; visual search was
not (54.7%), t(15) = 1.31, p = 0.210. Clearly, the par-
ticipants developed some degree of explicit knowl-
edge for the choice task while failing to do so for
the search task.

Experiment 2: combined choice and search
within trials

The first experiment showed a clear dissociation: even
though the high-EV location was fixed across both
tasks, participants prioritized it during choice but
ignored it during search. This is consistent with the
task-dependent expression account, in that partici-
pants demonstrated sufficient knowledge and active
retrieval of the high-EV location, and they demon-
strated sufficient motivation to prioritize that location,
yet they failed to use the value information during
search. However, there is one key limitation to this
experiment: it is possible that the brief breaks in
between the interleaved mini-blocks were long
enough to prevent transfer between the tasks.

Figure 2. Results from Experiment 1, showing RT in visual search (line graph) and the choice frequency in visual choice (bar graph) as a
function of quadrant type, across blocks. Error bars show ± 1 S.E. of the mean.

Figure 3. Learning efficiency of visual choice and visual search.
Error bars show ± 1 S.E. of the mean.
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Specifically, we presume that participants were oper-
ating with actively represented value information
during the choice trials, but it could have rapidly
decayed at the end of the 16-trial mini block; thus,
the value information might not have been actively
represented during the search trials.

To attempt to overcome this limitation, Experiment
2 combined both choice and search components
within single trials. When the display appeared, obser-
vers now had to choose to search one side of the
display vs. the other. After making this choice, the
search items appeared – only within the chosen
display side – and observers had to click on the
target T. Critically, a single high-EV quadrant was
assigned to each participant that could motivate
both the choice and search tasks similarly. That is, to
get the high reward, participants would first need to
click on the correct side of the display; then to demon-
strate a bias toward that same reward, participants
would need to prioritize search toward that high-EV
quadrant. Note that across blocks, we varied the
choice task to be either upper (top) vs. lower
(bottom) or left vs. right. Thus, a participant seeking
to maximize reward would need to know the
specific high-EV quadrant and not just a high-EV
side; for instance, if the upper left were high-EV, the
participant would need to choose top on some
blocks and left on others.

If observers demonstrate actively retrieved knowl-
edge of the high-EV quadrant during the choice
task, we could test whether that information would
be expressed moments later during the search task.

Method

Participants
Sixteen individuals participated in Experiment 2 (9
females; mean age = 19.9 years), which took approxi-
mately 1 h. Participants’ payouts were determined as
follows: 0–3000 points = $10; 3001–4000 points =
$11; 4001–5000 points = $12; 5001–6000 points =
$13; 6001–7000 points = $14; 7001 and up = $15.

Material, stimuli, and procedure
The experiment was modelled off of Experiment 1,
with the following changes. During the choice com-
ponent, top/bottom displays contained two dots
(.51° × .51°) in the centre of the upper and lower
sides of display, while left/right displays contained

dots in the centre of the left and right sides of the
display (see Figure 4). Top/bottom and left/right dis-
plays were alternated across blocks, with half of the
subjects doing left/right on even blocks and half
doing them on odd blocks. Participants were
instructed that each side has its own target, and
they were asked to click which side they preferred to
search. Once they clicked on a dot, that side of
search array was revealed. Participants completed 24
blocks (32 trials per block). During the first half of
these trials (blocks 1–12), quadrant EV was manipu-
lated to match the same EVs used in Experiment
1. During the second half (block 13–24) all four quad-
rants’ EVs were made to be equal, so that we could
examine any persisting effects of learning.

Explicit learning assessment
We focused here on assessing explicit learning during
search. The generation task was identical with that for
visual search’s generation task in Experiment 1, except
that in Experiment 2, participants were shown two
dots – white and black – before the search display,
and asked to click the white dot to reveal that side
of search display. This ensured that participants
would provide an equal amount of data for each
side. Additionally, we presented this task in two
blocks of 24 trials each; one block was top/bottom
and the other block was left/right. The order of
blocks was counterbalanced across participants.
Once the search display was revealed, participants
clicked on the target T to reveal two point values, 1
and 20; they then chose which one best matched
the reward typically earned at this location.

Results and discussion

Visual choice
Choice frequency. Analysis focused on chosen side.
We coded low-EV side as the one consisting of two
low-EV quadrants and high-EV side as the one consist-
ing of one low-EV quadrant and the high-EV quadrant.
Note that we collapsed across top/bottom and left/
right blocks. Again, we tested high-EV choices
against chance level, because low- and high-EV data
were statistically dependent. A sample to hypoth-
esized mean (of 0.5) t-test, on collapsed data from all
blocks, was significant, t(15) = 2.79, p = .014, Cohen’s
d = .70. To then determine if participants’ sensitivity
to the high-EV side changed over time, we conducted
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a 1-way ANOVA on choice data across 24 blocks. We
did not find any significant main effect of block, F
(23, 345) = 1.07, p > .3, which might be because learn-
ing emerged rapidly, in the earliest blocks.

We considered the possibility that each participant
could have learned the bias from only the top/bottom
(or left/right) blocks and totally ignored the left/right
(or top/bottom) blocks. This is important because we
inferred from the choice performance above that par-
ticipants represented their high-EV quadrant rather
than just a single display side. Critically, had the par-
ticipants only represented a display side, the visual
search performance would not be expected to vary
between the high- and low-EV quadrants. To address
this concern, we generated a scatterplot in which
the y-axis indicates high-EV preference in the top/
bottom blocks and the x-axis indicates high-EV prefer-
ence in the left/right blocks (Figure 5). If participants

Figure 4. Design and procedure in Experiment 2. (A) In top/bottom blocks, two dots were displayed in upper side and bottom side,
each. Participants clicked one dot to reveal that side of search display. In the left/right blocks, two dots were displayed in left and right
side, each. Which block – odd or even – was assigned as top-down dots or left-right dots were counterbalanced across participants.
Side/Quadrant EVs indicate sample reward contingencies based on location. Note that the high-EV quadrant was counterbalanced
across participants. (B) Sample trials of Experiment 2. Top/bottom blocks and left/right blocks were alternating 12 times.

Figure 5. High-EV quadrant preference in two block types – left/
right blocks and top/bottom blocks. Scores are calculated as the
different in proportion of trials in which the High-EV side was
chosen minus the proportion of trials in which the Low-EV side
was chosen. Each “X” represents one participant.
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represented the high-EV quadrant rather than only
one side, the dots should all settle into the upper-
right quadrant of the scatterplot; numerically speak-
ing, this occurred for 13/16 participants. To test this
preference statistically, we rank ordered the magni-
tude of the side preferences for each participant,
(for some, the stronger numerical preference was
for left-right and others it was for top-down). Then
we tested the correlation of the stronger vs. weaker
preference. Our logic was that, if participants only
had a side bias, then the weaker preference score
would not carry any meaningful information and
the correlation would thus not be significant.
However, if both stronger and weaker preferences
scaled with participants’ overall quadrant preference,
then the correlation would be significant. Indeed, it
was significant, r(15) = 0.943, p < 0.00001. However,
this result might have been driven partially by one
outlier who perfectly chose the high-EV side for
both odd and even blocks and another participant
who reliably chose the low-EV side. We repeated
the test while excluding these individuals, and the
result remained significant, r(13) = 0.858, p < 0.001.
All told, this analysis provides evidence that the par-
ticipants’ choices were biased toward a quadrant, not
a single side. It is worth noting that this result does
not necessarily reflect that the participants “inte-
grated” the representation of quadrant value from
two types of trials (i.e., top/bottom and left/right
trials). Whether the participants represented the
quadrant value will need to be fleshed out in future
experiments.

Visual search
RT. Analysis focused on target click RT, which com-
menced at the moment the participant completed
the choice (by clicking one of the two dots). RT trim-
ming removed 1.2% of trials. Mean RTs across quadrant
types and blocks are shown in Figure 6 (line graph). A
quadrant type x block ANOVA revealed a main effect
of block, F(23, 253) = 2.56, p < .001, h2

p = .19, meaning
the overall search RT became faster as the experiment
progressed. However, replicating the visual search in
Experiment 1, there was no RT difference between
the two quadrant types, F < 1, BF01= 3.90, demonstrat-
ing a failure to exploit the value information during
search. Quadrant type and block did not interact,
F(23, 253) = 1.53, p = .062, h2

p = .12.

Explicit learning assessment
During the generation task, on trials in which the high-
EV side was presented, participants did not reliably
vary in their selection of 20 points vs. 1 point across
the high-EV (59.7% vs. 40.3%) and low-EV (53.5% vs.
46.5%) quadrants, F(1, 15) = 1.47, p = .244, h2

p = .09
The recognition performance (49.8%) was not higher
than chance (50%), t(15) = .25, p = .81.

Visual search vs. visual choice
To compare results from visual search and visual
choice, as done in Experiment 1, we again calculated
learning efficiency units (see Figure 7). A pairwise t-
test revealed a significant difference between the
two tasks, t(15) = 2.77, p = .014, Cohen’s d = .69,
showing a reliably stronger learning effect during
choice than during search.

Experiment 3: combined choice and search for
single target

Experiment 2 showed that high-value locations could
be represented and acted upon via Visual Choice
while neglected during Visual Search within the same
trial. Along with the results of Experiment 1, these
results are consistent with the task-dependent
expression account.

Nevertheless, there are a few remaining potential
limitations we must address. One such limitation is
that, even though we fixed the same high-EV quadrant
across choice and search, it is possible that partici-
pants did not view the two tasks to be related to
one another. This is because the choice task produced
a target on either display side that was clicked, which
stands in contrast to the visual search task, whose
target is pre-determined to appear in only one
location. There is some evidence that learning could
fail to transfer across a choice and search task if they
are viewed as contextually dissimilar to one another.
For instance, Jiang, Swallow, et al. (2015) used a train-
ing/transfer procedure to see if a location preference
learned during a spatial probability cueing manipu-
lation – in which targets appeared more frequently
in one display quadrant than others – transferred to
a visual choice task. They tested whether learning
from visual choice task would transfer to visual
search. Learning did occur within each task type, but
the critical result showed no transfer in either direc-
tion. Thus, the two tasks were represented as distinct
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from one another. That study differed from the
present work in a few important ways. First, it used
probability cueing instead of a reward manipulation;
second, its design included hundreds of training
trials followed by hundreds of test trials, whereas we
interleaved or combined our tasks. Nevertheless, the
possibility remains that participants simply viewed
our choice and search tasks as unrelated to one
another and thus did not transfer learning from
choice to search. To address this concern, we now
told participants that they had to find a single target
on each trial, which would be completed in two
steps. First, the participants would only be able to
reveal half of the display, by clicking on any two quad-
rants. If neither of the quadrants they chose on a given
trial contained the target, the trial would be termi-
nated with no reward, and they would advance to
the next trial. If, however, their chosen quadrants did
include the target location, the participants would
then proceed to the search portion of the trial. For
the search portion, we revealed items in both of the
chosen quadrants, and participants had to click on

the target. This procedure allowed us to determine if
a) participants developed a bias toward the high-EV
quadrant during choice and b) if they prioritized the
same high-EV quadrant during search.

Additionally, we addressed one further potential
drawback of Experiments 1 and 2, which is that the
outcome of selecting high-EV locations during
choice is much more consequential than for prioritiz-
ing search toward the high-EV location. This is
because, in the previous experiment, the choice deter-
mined the payoff on each trial; that is, choosing high-
EV locations more frequently resulted in increased
overall earnings for the participants. In contrast,
directing visual search toward the high-EV location
before inspecting the other locations may not have
had as great of an impact on earnings. For instance,
in Experiment 1, participants searched the full
display exhaustively until they found the target,
which was the only way for them to advance to the
next trial. Because the target was equally likely to
appear in all four quadrants, directing the search
initially to the high-EV quadrant would not, on
average, speed target identification compared to
searching a low-EV quadrant first. In Experiment 2,
the same logic can be applied, albeit within the
chosen side of the display. As a result, even if partici-
pants knew where the high-EV location was, it would
not necessarily have benefitted them to prioritize
their search one way or another.

Note that the same criticism can be levelled at
experiments showing color-based prioritization, yet
those experiments generate robust expression of
learned value. For instance, as mentioned in the

Figure 7. Learning efficiency of visual choice and visual search.
Error bars show ± 1 S.E. of the mean.

Figure 6. Results from Experiment 2 showing RT in visual search (line graph) and the choice frequency in visual choice (bar graph). Error
bars show ± 1 S.E. of the mean.
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introduction, we previously ran an experiment using
the same 16-item T among L displays in which
target colour, not location, was associated with
reward (Won & Leber, 2016, Exp. 2). We matched the
reward ratios in that experiment (i.e., high-EV colour
vs. low-EV colours) to a spatial reward manipulation
much like Exp. 1 of this article. While participants
could gain no monetary advantage for initially priori-
tizing search within the high-EV colour, they did so
anyway, showing faster RTs to high-EV targets. This
is reminiscent of a study by Goldstein and Spence
(1963), in which rats were placed in one of two 60-
inch alleys that contained a food reward at the other
end. One alley consistently had a greater reward
than the other, which rats learned, and they expressed
this learning by running faster when placed in the
high-reward alley than the low-reward one. Thus,
even though the rats could not alter their behaviour
to influence the reward outcome, they demonstrated
greater motivation in one condition than another.
Given these results, we should have reasonably
expected our observers to search the high-EV
locations more rapidly than low-EV locations in the
previous experiments.

Nevertheless, there is a clear way to experimentally
address this concern. Indeed, the two papers that
previously failed to find spatial reward effects each
included a manipulation to incentivize participants
to prioritize search to the high-EV location (Jiang,
Sha, et al., 2015, Exp. 3; Won & Leber, 2016,
Exp. 3). Jiang and colleagues only rewarded trials
in which RTs were faster than each participant’s
median RT; in this case, strategically searching the
high-EV quadrant first would yield greater overall
rewards than searching low-EV quadrants first.
Won and Leber limited display exposure, which
reduced overall accuracy and provided a similar
incentive in which prioritizing the high-EV quadrant
would bring greater overall earnings (since rewards
were only provided on correct trials). In the current
experiment, we adopted Jiang et al.’s approach by
only providing a reward on faster-than-median
trials during search.

Altogether, this experiment maintained the same
approach as Exp. 2, in that it provided for the active
representation of spatial value information during
choice, which we assumed to be available a moment
later during search. Moreover, it merged the task
context across choice and search, as participants

now sought the same target on each trial. And
finally, the incentive to exploit the value information
to maximize reward was roughly equivalent in both
the choice and search components of the task.

Method

Participants
We ran sixteen individuals (9 females; mean age = 23.2
years), which took approximately 1.5 h. Participants’
payouts were determined as follows: 0–3000 points
= $15; 3001–4000 points = $16; 4001–5000 points =
$17; 5001–6000 points = $18; 6001–7000 points =
$19; 7001 and up = $20. This payoff schedule was
slightly modified from the previous experiments.
This was because we made rewards dependent on
search RT, which reduced the total number of points
earned; the modified payoff schedule ensured com-
parable total dollars earned per hour across the
experiments.

Material, stimuli, and procedure
The first half of the experiment began with the same
Visual Search used in Exp. 1. In particular, we did not
condition reward based on search RT; our goal was
to have the greatest possible chance of forming an
association between quadrant and reward magnitude,
and providing rewards on every correct trial maxi-
mized this. We also wanted to familiarize participants
with this task before layering on the choice com-
ponent; this served to reinforce the participants’
interpretation that choice and search were part of
the same task.

In the second half of the experiment, each trial
began with the presentation of four black dots, each
centred in one of the four quadrants. Participants
were told to click any two of the dots to reveal the
search items in those quadrants, then click on a
small white square which appeared near the screen
centre to initiate search. If neither quadrant contained
the target (which was equally likely to appear in each
of the four quadrants), the message “no T” (font size:
0.92°) appeared for 1 sec, before proceeding to the
next trial. If one of the two chosen quadrants did
contain the target, the search items in those chosen
quadrants were revealed. Participants then had to
click on the target, at which point their RT was calcu-
lated. For trials in which the RT was slower than the
previous block’s median RT, the message “too slow”

492 B.-Y. WON AND A. B. LEBER



appeared in white, along with the point-value they
would have earned, which appeared in red. For trials
in which the RT was faster than previous block’s
median, a reward was provided, with the point value
displayed in green. Note that we needed a full block
of this combined choice/search task to calculate a
stable median RT, so the median cutoff was not used
until the 2nd block of this phase (i.e., the Block 13 of
the experiment).

There were 24 total blocks, with 32 trials per block.
The first 12 blocks consisted of the search task only,
and the remaining 12 blocks included the combined
choice and search task (see Figure 8 for design and
procedure details). The explicit learning assessment
was identical with that of the search task in Exper-
iment 1.

Results and discussion

First half: visual search only
RT. Analysis focused on target RT. Trimming removed
1.8% of trials, and mean RTs across quadrant types and
blocks are shown in Figure 9(A). A quadrant type ×
block ANOVA revealed a main effect of block, F(11,
165) = 2.07, p = 0.014, h2

p = .12, meaning the overall
search RT became faster as the experiment pro-
gressed. The main effect of quadrant type was signifi-
cant, F(1, 15) = 8.84, p = 0.0095, h2

p = .37. This result
was very surprising, given the multiple previous fail-
ures of us and others to produce any evidence of
spatial value exploitation during search under highly
similar conditions. The effect of quadrant did not
increase across blocks, as shown by a non-significant
quadrant × block interaction, F(15, 165) = 1.06, p =
0.397. Moreover, an inspection of the means shows
the largest numerical effects of quadrant to appear
in the first phase, when the manifestation of learning

should be the weakest. When excluding these two
blocks from the ANOVA, the main effect is no longer
significant, F(1, 15) = 2.191, p = 0.160, h2

p = 0.13.
Overall, the results from the first half of this exper-

iment are not easily interpreted as support for the
expression of spatial reward learning. However, to
ensure that we were not too quick to dismiss this
result, we ran a more powerful analysis across
pooled results from five total experiments run under
highly similar conditions. These experiments all con-
tained a T among L search task in which quadrant
value was manipulated, the displays had unlimited
exposure, and rewards were provided on all correct
trials. The analysis included: Experiment 2 from
Jiang, Sha, et al. (2015), who kindly shared their data
(blocks 1–8, n = 16); Won and Leber (2016), Exper-
iment 1a (all 12 blocks, n = 12); Won and Leber
(2016), Experiment 3 (blocks 1–4, n = 12); Won and
Leber (2016), Experiment 4a (blocks 1–12, n = 12);
and the current Experiment 3 (blocks 1–12, n = 16).
Given the highly similar experimental conditions
across experiments, we simply ran a paired-samples
t-test on the pooled group of 68 participants, compar-
ing mean RT on the lowest EV vs. highest EV quad-
rants. Results showed a total mean quadrant effect
of M = 20.7 ms, SD = 46.3, which was not significant, t
(68) = 0.351, p = 0.727, d = 0.043. This analysis
increases our confidence that the surprising main
effect of quadrant in the first half of Experiment 3
was likely a Type I error.

Second half: visual choice
Choice frequency. Analysis focused on the frequency
of trials in which participants chose the high-EV. Note
that while we requested participants choose two
quadrants on each trial, our experimental code
allowed for them to click on the same quadrant

Figure 8. Design and procedure in Experiment 3. (A) The first half of the experiment (blocks 1–12), consisted of visual search. In the
second half of experiment (blocks 13–24), participants clicked any two of four presented dots (one in each quadrant) to be able to
search for the target within those chosen quadrants. When targets were clicked on, rewards were determined by 1) the target quad-
rant’s EV and 2) whether the response was faster than the previous block’s median RT. (B) Sample reward contingencies in each quad-
rant. The actual location of the high-EV quadrant was counterbalanced across participants.
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twice; we excluded such trials from the analysis (2.3%).
A sample to hypothesized mean (of 0.5) t-test, on col-
lapsed data from all blocks, was significant, t(15) =
2.40, p = .03, Cohen’s d = .60, reflecting that partici-
pants more often chose the high-EV quadrant in one
of their two clicks than chance. We performed a 1-
way ANOVA on the choice data across the 12 blocks
to determine if the learning effect changed over
time. Mauchley’s test showed a violation of the spheri-
city assumption, so we applied the Greenhouse-
Geisser correction; results were significant, F(4.12,
143) = 2.65, p = .042, h2

p = .17. As we did previously,
we used linear regression to calculate slopes in high-
EV choices across the blocks for each participant,
and the one-sample t-test was significant, t(15) =
2.60, p = .020, Cohen’s d = .65, consistent with an
increase in learning over time. Mean choice
frequency across quadrant types and blocks are
shown in Figure 9(B) (bar graph).

Second half: visual search
RT. Trimming removed 1.1% of trials. Because we
could not measure RTs from the trials in which partici-
pants did not find a target, we only analyzed the trials
in which participants found a target, which was 49.1%
(among those trials, “too slow” trials were 43.4%). This

relatively small number of trials produced several
missing data points and noisy data when we separ-
ated RTs separately by quadrant type and block
(Figure 9(B) line graph). Therefore, we collapsed
across blocks, and conducted a paired samples t-
test, which showed no effect of quadrant type, t(15)
= 0.912, p = 0.376, d = 0.228, BF01= 2.85 (Figure 9(C)).
Therefore, any evidence of participants prioritizing
the high-EV quadrant during search in the first half
of the experiment had vanished during the second
half. This is notable, given that the second half was
specifically designed to maximize any chance of
such prioritization.

One potential reason for our failure to observe prior-
itization of the EV quadrant during search could have
stemmed from the order of clicks in the choice task.
That is, if participants routinely clicked the high-EV
quadrant first, followed by a low-EV quadrant, then
an attentional bias could remain in the last clicked
quadrant (low-EV) at the start of the search. While our
requirement that participants click the centre point
prior to the onset of the search was designed to
prevent the persistence of such a bias, we further
checked to see if any click order preference was
present in the choice data. We found that, on trials in
which the high-EV quadrant was clicked, it was no

Figure 9. Results in Experiment 3. (A) Search RT in the first half of experiment as a function of quadrant type, across blocks. (B) The
choice frequency (bar graph) in the second half of experiment as a function of quadrant type, across block and search RT (line graph) in
the second half of experiment as a function of quadrant type, across blocks. (C) Search RTs for the two quadrant types in the second half
of the experiment, collapsed across block. Error bars show ± 1 S.E. of the mean.
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more likely to be clicked first or second, t(15) = 1.35,
p = .20, BF01 = 1.83.

Explicit learning assessment
During the generation task, participants did not reliably
vary in their selection of 20 points vs. 1 point across the
high-EV (57.7% vs. 42.3%)and low-EV quadrants (53.4%
vs. 46.6%), F(1, 15) = 1.88, p = 0.199, h2

p = .11.

Visual search vs. visual choice
We compare results from visual search and visual
choice during the combined search and choice trials
in the second half of the experiment, we calculated
learning efficiency units for each task (see Experiment
1 for detail). A pairwise t-test revealed numerical but
non-significant difference between two tasks, t(15) =
1.513, p = .151, BF01 = 1.51. Learning efficiency of
visual choice and visual search is shown in Figure 10.

General discussion

Across three experiments, we found a clear qualitative
distinction between visual choice and visual search.
Participants learned to prioritize high-value locations
when their taskwas one of choice, but the samepartici-
pants failed to prioritize high-value locations when
their task was visual search (we found just one excep-
tion to this, in the first half of Experiment 3, although
a pooled analysis across 5 experiments suggested the
result was a Type I error). Even when we incorporated
choice and search within the same trial, such that the
two were jointly involved in representing the same
target information – and both were incentivized such
that behaviour determined the reward outcome – we
continued to observe significant prioritization during
choice but not during search. That is, we demonstrated
that participants learned the spatial value contingen-
cies, actively represented this information, and

displayed sufficient motivation to seek reward, but
they nonetheless failed to express this knowledge
during search. We thus find support for a task-depen-
dent expression failure in the domain of visual search.

Broadly, these findings represent an example of the
notion that some cognitive mechanisms are impene-
trable to knowledge represented in different
domains (e.g., Fodor, 1983). For instance, it has been
argued that our low-level perceptual processing is
uninfluenced by higher-level object knowledge, as
highlighted by our inability to willfully alter how we
perceive some visual illusions (e.g., the Müller-Lyer;
see Firestone & Scholl, 2015; Pylyshyn, 1999). Other
examples come from the domain of motor control,
in which, knowledge of mirror tracing is clearly disso-
ciated from the time-consuming process of skill acqui-
sition (Milner, 1962).

While we present evidence favouring a default
impenetrability of the visual search apparatus, we
must acknowledge several caveats. First, from an
experimental standpoint, we rely on producing learn-
ing in one task (visual choice) andmeasuring the trans-
ference to another (visual search). However, we cannot
know if the choice task carried a strongermanipulation
than the search task; moreover, equating the two tasks
would be virtually impossible. That said, we do believe
that the chosen search task is amenable to robust learn-
ing, based on a broad array of studies using this task
and demonstrating strong learning effects (including
some of our own, such as Won & Leber, 2016).

Second, some might question how much the
spatial value learning is useful for the visual search
task because, unlike in the choice task, learning that
a location is more valuable than other locations does
not help one to find the target any sooner. That is,
because the target must be found, regardless of
whether it appears in a high-value or low-value
location, participants in our basic paradigm could
not alter their earnings by first searching within the
high-value quadrants. Although this is a valid point,
consider classic animal learning studies in which the
rats do prioritize high-value locations even when
such behaviour need not yield a better outcome
(Crespi, 1942; Herrnstein, 1961; Spear & Pavlik, 1966).
Furthermore, if spatial value learning would occur
only when the information could facilitate search
behaviour (and earnings), then non-spatial features
(e.g., colour) that are associated with high reward
should not prioritize attention in visual search. Yet,

Figure 10. Learning efficiency of visual choice and visual search
in the second half of experiment. Error bars show ± 1 S.E. of the
mean.
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many studies including our previous study (Won &
Leber, 2016) showed that high-reward associated
colours prioritize attention in visual search even
when the colour is no longer rewarded (or even
when it becomes penalized, Failing & Theeuwes,
2017; Le Pelley, Pearson, Griffiths, & Beesley, 2015).
Regardless, to address these concerns, we conducted
Experiment 3, where learning spatial value was actu-
ally useful and incentivized, but again, we found no
significant search bias toward the high value location.

Third – and also related to the first point – our argu-
ment rests in large part on supporting the null hypoth-
esis. Failing to reject the null hypothesis with classical
statistics could occur due to limitations in statistical
power, even when a true difference is present (type II
error). One approach to increase confidence in the
null hypothesis is to compute the Bayes Factor (BF),
which generates a readily interpretable odds ratio of evi-
dence for vs. against the null hypothesis (e.g., Rouder
et al., 2009). We computed these statistics on our test-
phase visual search RTs for Experiments 1-3, using
JASP 0.8.1.2 (JASP Team, 2017), with the default prior
width of 0.707, and found that our data were more
likely to be observed given that the null hypothesis
were true vs. if the null hypothesis were false (Wetzels
et al., 2011). Taken together, these results strengthen
the interpretation that visual search performance in
our experiments was insensitive to spatial value.

Previous concerns notwithstanding, we do not
intend to argue that the visual search apparatus is imper-
vious to all learning, an extreme argument that is contra-
dicted by several robust findings. For one, the
phenomenon of contextual cueing shows that individ-
uals performing a visual search task learn when the
search array is presented in spatial configurations that
repeat multiple times. When these configurations are
associated with specific target positions, participants
exploit this information and begin to rapidly prioritize
search to these expected target locations, facilitating
both RT (Chun, 2000; Chun & Jiang, 1998; Gibson,
Leber, & Mehlman, 2015; Hout & Goldinger, 2010; Jiang
&Wagner, 2004) and eyemovements (Hout &Goldinger,
2012; Peterson, Kramer, Wang, Irwin, & McCarley, 2001).
Another well-documented phenomenon, described in
this paper, is probability cueing, which shows that indi-
viduals rapidly learn to prioritize locations in the search
display that contain more frequent targets (Geng &
Behrmann, 2002; Jiang, Swallow, Rosenbaum, & Herzig,
2013; Miller, 1988; Won & Leber, 2016).

Additionally, visual search is penetrable by volition;
individuals can voluntarily choose to search some por-
tions of the display over others, as in the classic case of
endogenous cueing (Posner, Snyder, & Davidson, 1980).
Hadwe explicitly told our participantswhich quadrant to
search first, we undoubtedlywould have found that they
could comply; indeed, when Jiang, Sha, et al. (2015,
Exp. 4) informed their participants about the spatial
reward contingencies and asked the participants to
prioritize the high-value locations, several of the partici-
pants were able to do exactly that. In the current exper-
iments, we employed an incidental learning approach, in
which we did not explicitly inform participants of the
value manipulation. Clearly the visual search apparatus
is not universally impenetrable to outside cognitive
inputs (i.e., volition and certain forms of spatial learning).
However, we have observed here that the visual search
apparatus does not spontaneously act upon currently
represented spatial value information.

This finding is parsimonious with our speculation
that the search apparatus evolved without any
environmental pressures to incorporate spatial value.
That is, it is of great ecological significance for us to
learn the value of individual object properties for
which we might search. For instance, when searching
for berries in a patch where red ones are desirable
while yellow ones are poisonous, we could benefit
greatly from a visual search apparatus that can boost
the priority of red information, regardless of its
location. Consistent with this notion, as mentioned
above, there have been dozens of recent reports in
which color-based or object-based value information
drives visual search (e.g., Anderson et al., 2011; Della
Libera & Chelazzi, 2006; Hickey et al., 2010; Kiss et al.,
2009; Navalpakkam et al., 2010; Shomstein &
Johnson, 2013), including in our own paradigm (Won
& Leber, 2016). However, as we stated in the introduc-
tion, prioritizing search based only on spatial value is
an ecological oddity. That is, we devised a task in
which only one target of search was to be found. In
the real world, when an individual has committed to
finding a specific target, its objective value becomes
irrelevant. Moreover, its value should rarely vary as a
function of its ultimate location, as we argued when
discussing the relative value of car keys that are
hanging from the door vs. on a desk. Thus, perhaps
it should not be surprising that the visual search
apparatus does not adapt to an artificial scenario in
which a target’s value does vary depending on its
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spatial location. Of course, it is not impossible that an
object’s value changes as a function of location. For
instance, ice cream on the table is more valuable
than ice cream on the ground.3 However, we believe
that examples like this occur infrequently, compared
to everyday searches for items such as keys, people,
articles of clothing, etc. Such examples may not carry
sufficient behavioural significance to drive evolution-
ary changes in the design of our search apparatus.

To conclude, this study takes a step toward resol-
ving a puzzling pattern in the literature, in which
dozens of papers have reported feature or object-
based reward learning at the same time as a striking
scarcity in reports of space-based reward learning.
We have systematically shown that individuals fail to
express such learning even while simultaneously
demonstrating it in other task domains. We propose
that the visual search apparatus is not be designed
to make use of this information source.

Notes

1. We do acknowledge, however, that estimates of effect
size and power from previous data are prone to
inflation, due to a “winner’s curse,” in which researchers
are biased to primarily follow up on positive results
(Halsey, Curran-Everett, Vowler, & Drummond, 2015).
Therefore, our true power may have been less than 0.9.

2. The Bayes factors are written as BF10 when the evidence
is in favor of H1 and as BF01 when the evidence is in favor
of H0. We computed the BF using JASP 0.8.1.2 (JASP
Team, 2017), with the default prior width of 0.707.

3. We thank the anonymous reviewer for this example.
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