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Abstract

Connectionist simulation was employed to investigate processes that may underlie the 

relationships between prior expectancies or prejudices and the acquisition of attitudes, 

under conditions where learners can only discover the valence of attitude objects 

through directly experiencing them. We compared contexts analogous to learners 

holding either false negative expectancies (‘prejudices’) about a subclass of objects 

that were actually good, or false positive expectancies about objects that were actually 

bad. We introduced expectancy-related bias either by altering the probability of 

approach, or by varying the rate of learning following experience with good or bad 

objects. Where feedback was contingent on approach, the false positive expectancies 

were corrected by experience, but negative prejudices resisted change, since the 

network avoided objects deemed to be bad, and so received less corrective feedback. 

These findings are discussed in relation to the effects of intergroup contact and 

expectancy-confirmation processes in reducing or sustaining prejudice.

* Main document (inc. abstract, figs and tables)
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Prejudiced learning: A connectionist account.

From a meta-analytic review of 515 experimental and correlation studies, 

Pettigrew and Tropp (2006) recently concluded in favour of the longstanding 

hypothesis that intergroup contact reduces prejudice. The effect sizes for the contact-

prejudice association averaged around -.21, but with considerable hetereogenity. This 

evidently leaves room for studying the influence of other variables. Some support was 

found for Allport’s (1954) suggestion that the association would be stronger if the 

contact situation had features such as equal status, common goals, cooperation and 

societal support, although these were not necessary conditions for prejudice reduction 

as he originally proposed. Pettigrew and Tropp note that much less research has 

sought to identify processes that make it less likely that contact will lead to a 

reduction in prejudice.

An intuitively plausible possibility is that prejudiced individuals may be less 

likely to expose themselves to, and/or believe, evidence that challenges their 

prejudices. In simple terms, intergroup contact provides information that may confirm 

or disconfirm prior beliefs to varying extents. Since prejudice is conceptualised as 

involving prior beliefs that are both negative in valence and incorrect in fact, the 

implication is that intergroup contact will typically disconfirm such beliefs and lead to 

their change. At the same time – to the extent that they have a choice – prejudiced 

individuals may be less likely to seek out contact with outgroup members, and even 

when they do, may be resistant to change their viewpoints on the basis of a few 

positive experiences.

The issue of choice is considered by Pettigrew and Tropp (2006). Their 

concern was that the overall negative association between contact and prejudice might 
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reflect a selection bias, with only non-prejudiced individuals seeking intergroup 

contact. This implies that the association should be stronger where participants had a 

choice over whether to engage in intergroup contact than where participants had no 

such choice. In fact, the reverse was the case. The effect size of the association was 

significantly larger (-.28) in those studies where participants had no choice. This 

implies that the contact-prejudice association is not an artifact of a selection bias. 

Nonetheless, several questions remain. 

First, exactly what is it about contact that produces this effect? The 

assumption that contact provides evidence that disconfirms prejudiced beliefs is very 

difficult to test in field studies where mostly prejudice is operationalised as a general 

attitude and the feedback provided by intergroup contact (related to the validity of 

prior beliefs) is hard to control or identify. Also, it is unclear whether the important 

issue is whether initially prejudiced individuals have their false beliefs concerning 

outgroup members disconfirmed through greater contact, or whether, more simply, 

they change their evaluations of outgroup members in a more favourable direction, 

presumably as a function of positive interaction experiences.

Second, the nature and selectivity of the intergroup contact in which 

individuals engage may depend on how much choice they have, even though the 

overall negative association between contact and prejudice is no stronger (in fact, 

Pettigrew and Tropp found it to be weaker) under conditions of free choice. If, given 

free choice, individuals with negative attitudes engage in more restricted forms of 

intergroup contact, this means that they should receive less feedback (that might 

disconfirm their prejudices) from interacting with outgroup members than those with 

positive attitudes.
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How much, and what kind of, intergroup contact is actually engaged in by 

individuals with different attitudes, and how far such contact is freely chosen, are

questions that fall beyond the scope of our present research. Instead, we focus on how

any such contact experiences may shape, and be shaped by, processes of attitude 

formation and change. Previous empirical research confirms the existence of a general 

contact-prejudice association but does not exclusively point to a single causal 

explanation: contact may reduce prejudice, but prejudice may also reduce contact. 

This suggests we are dealing with complementary processes that interact to form a 

common dynamical system (Eiser, 1994). 

To examine such processes, we reshape the research question in more abstract 

terms. Rather than consider real social groups, we use novel objects of arbitrary 

predefined valence, and rather than consider actual intergroup contact, we use a task 

in which attitude acquisition requires that these novel objects are sampled or 

‘approached’. The paradigm in question is a computer game, termed BeanFest, 

developed by Fazio, Eiser and Shook (2004), in which players have to survive in a 

virtual world consisting entirely of ‘beans’. Their task is to identify and eat good 

beans that provide energy while avoiding bad beans that are poisonous and lead to a 

loss of energy. In the critical conditions, the valence of these beans can only be 

discovered once they are ‘eaten’. Hence learning depends on approaching, or 

sampling, the novel objects. The central finding is a ‘learning asymmetry’ effect 

whereby bad beans tend to be better learnt than good beans, some of which tend to be 

misclassified, and hence avoided, as though they are bad.

In the standard version of BeanFest, players have no prior attitudes concerning 

any of the beans. However, in the final experiment reported by Fazio et al. (2004), 

participants received advice, supposedly from one previous player and corroborated 
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by a second, that one of the (six) subclasses of beans presented was either good, and 

to be eaten, or bad, and to be avoided. Orthogonally, this information was either 

correct or incorrect. The main finding was that, when participants were told to avoid 

beans that were actually good, they tended to follow this advice and so not receive 

feedback to show that these negative beliefs or ‘prejudices’ were false. Conversely, if 

participants were advised to eat beans that were actually bad, they discovered the 

error and corrected such false positive beliefs.  In other words, participants overcame 

invalid positive prejudices, but not invalid negative prejudices.

Applied to the issue of intergroup contact, these findings are consistent with 

an interpretation that contact may reduce prejudice through providing experiences that 

disconfirm negative attitudes or expectancies. But is the only part played by prejudice 

in this learning process one of inhibiting contact and hence exposure to disconfirming 

feedback? Research on expectancy-confirmation biases (e.g. Darley & Fazio, 1980; 

Darley & Gross, 1983), suggests that information is interpreted in the light of pre-

existing hypotheses or expectancies. Prejudices, to the extent that they imply 

(negative) expectancies, may resist change through influencing individuals’

interpretations of feedback through intergroup contact, and leading them to protect 

their prior beliefs by discounting the force of troublesome evidence (see e.g. Abelson, 

1959; Janis & Mann, 1977).

Hence, two potentially complementary processes may be involved. The first is 

that prior attitudes influence action selection, i.e. whether or not a novel object is 

approached. This is analogous to positive attitudes leading to more intergroup contact 

and negative prejudices leading to intergroup avoidance. Since avoidance means less 

feedback, false negative beliefs are less likely to be corrected and should therefore 

resist change more than false positives. The second possible process is that prior 
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attitudes, expectancies or prejudices influence how individuals interpret the feedback 

they receive from sampling novel objects. In other words, after feedback is received

(as a consequence of approach), its impact on the learner’s representations of the 

objects will be constrained by prior expectancies. This is analogous to prejudiced 

individuals, even when they experience intergroup contact, interpreting such 

experience differently from non-prejudiced individuals so as to leave their prejudice 

intact. 

The present paper seeks to examine these processes through connectionist 

computer simulation. This choice of methodology arises from two considerations. 

Firstly, the processes identified above may be difficult to distinguish in field or 

experimental studies, whereas they can be operationalised separately within an 

artificial learning system. Secondly, precisely because we are dealing with an 

artificial system, we are required to attempt to develop an account of the dynamics of 

prejudiced learning without a premature appeal to the involvement of higher mental 

processes or even conscious awareness. Hence, if an effect conceptually resembling 

prejudice can be simulated on a computer, i.e. an ‘automaton’, this adds weight to the 

idea that processes underlying prejudice in humans may operate to a great extent 

‘automatically’ (cf. Bargh & Ferguson, 2000, Fazio, 2001).

Method

Overview. The simulations to be described employ a form of connectionist neural 

network (Ellis & Humphreys, 1999; Smith, 1996; Van Overwalle& Siebler, 2005). A 

neural network, or net, consists of interconnected nodes or units. Activation spreads 

between the units as a function of the strength, or weight, of the connection between 

them. These connection weights are modified through training. Commonly this 

involves comparing the output produced by the net in response to some input with a 
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predefined target value or ‘correct answer’. The connection weights are then modified

so that, on the next presentation of the input, the discrepancy (Δ) between the output 

and target is reduced, by means of a defined learning algorithm, We here use an 

adaptation of the algorithm described in detail by Eiser, Fazio, Stafford and Prescott 

(2003) (see also, Eiser, Stafford & Fazio, in press), who achieved a successful 

simulation of the BeanFest game and its central finding of a ‘learning asymmetry’, 

whereby good objects (‘beans’) are less well learnt than bad objects. 

The main innovation introduced by Eiser et al. (2003) was to compare a ‘full 

feedback’ condition, where connection weights are modified on every trial, with a 

‘contingent feedback’ condition, where weight modification (analogous to learning in 

the human experiments) only occurs when the net selects an action representative of 

approach. Essentially this transforms the training procedure from one of ‘supervised’ 

to reinforcement learning (Sutton & Barto, 1998). We here report results obtained 

under contingent feedback only1, but extend this method by separately manipulating 

an action bias and a learning bias. The first of these refers to a bias toward 

approaching (‘eating’) or avoiding a specific subclass of objects, and is analogous to a 

bias toward greater or lesser intergroup contact. The second is analogous to 

individuals placing less reliance (and so exhibiting slower learning) when confronted 

with feedback that is inconsistent with their prior beliefs.

The inputs presented to the network comprised 36 different patterns forming 

six clusters in different regions of a two-dimensional array (see Figure 1). These are 

equivalent formally to the ‘beans’ presented to participants in Fazio et al. (2004), with 

one axis representing the bean’s shape (circular to oval) and the other, the number of 

speckles. Particularly relevant here are two regions: region 1, consisting of good 

beans, and region 6, consisting of bad beans. Our manipulation of (action selection 
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and/or learning) bias were designed so as either to make the net treat the beans in 

region 1, all of which are good, as though they were bad (negative bias), or the beans 

in region 6, all of which are bad, as though they were good (positive bias). We report 

the performance of the network with respect to identification of beans in these two 

regions2 at the end of 5000 epochs of training (one epoch involving a single 

presentation of each of the 36 input patterns). Three sets of simulations are described, 

involving combinations of full vs. contingent feedback and negative vs. positive bias, 

operationalised through action selection and/or learning (the rate of weight 

modification following feedback).

Figure 1 about here.

Network architecture. The network architecture is as described in Eiser et al. 

(2003; Study 2) and comprises a separate learning system and action selection 

mechanism. The learning system is a fully connected, three-layer, feed-forward 

network. The first layer comprises 22 input units, of which 11 are used to encode one 

dimension (e.g. shape) and the remaining 11 the other dimension (speckles). These 

input units take values between 0 and 1, with each level of an attribute being 

represented by activation (>0) on up to six of the 11 units. For example, one speckle 

would be encoded by the vector [1,1,0.5,0.25,0,0,0,0,0,0,0], four speckles as 

[0,0.25,0.5,1,1,0.5,0.25,0,0,0,0], through to ten speckles as 

[0,0,0,0,0,0,0,0.25,0.5,1,1]. This method of encoding was chosen so that adjacent 

(similar) levels of an attribute are represented by overlapping (similar) patterns of 

activation. As a result, the net not only identifies which stimuli are which, but also 

recognises how similar individual stimuli are to one other.

The second layer comprises three hidden units. Inclusion of a hidden layer is 

required because the categories of stimuli to be discriminated, as in Figure 1, are not 
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linearly separable: in other words, one cannot separate the good and bad regions by 

drawing a single straight line across the matrix. These hidden units produce 

condensed representations of the input patterns. The way this happens is that, 

whenever a stimulus is presented to the network, the activations of all the 22 input 

units are fed forward separately to each of the hidden units, after multiplication by the 

weights on the respective (66) connections. (This may be thought of as roughly

analogous to applying B-coefficients to predictor variables in a multiple regression, 

treating each input unit as a predictor and each hidden unit in turn as a dependent 

variable). The resulting activations of the three hidden units (analogous to the values 

of dependent variables after applying a regression equation to a set of predictors) are 

then fed forward, through weighted connections, to a third layer consisting of a single 

output unit. (Again, one can think of this as regressing a single dependent variable 

onto three predictors). The resulting activation of this output unit represents the 

learning system’s ‘evaluation’ of each stimulus, varying continuously between 0 (bad) 

and 1 (good).

This ‘evaluation’ is then fed forward to a separate action selection mechanism 

where a number of mathematical transformations are performed to decide whether the 

net will ‘eat’ (approach) or ‘avoid’ a given bean. The first of these is a logistic 

function that makes the evaluations more polarised as the move away from neutral 

(0.5). (This is a familiar feature of many connectionist simulations designed to make 

selected outputs more easily distinguished and hence more stable). The next 

transformation is a ‘hunger function’. The purpose of this is to make the net less risk-

averse, i.e. prepared to eat more beans even when doubtful of their valence, when it is 

‘hungry’, i.e. low on ‘energy’. (This happens if the net has eaten too many bad beans 

and/or failed to eat enough good beans). We here use throughout the version of the 
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function described by Eiser et al. (2003) as ‘neutral hunger’. Since we are not 

manipulating this function, we are not examining any specific hypotheses about how 

it might impact on prejudice. However, one might speculate that, if individuals are 

failing to achieve particular goals that depend on social interaction, they may be less 

risk-averse in engaging in contact or relationships with outgroup members. Finally, a 

stochastic (chance) aspect is introduced by comparing the resulting output with a 

randomly generated variable (‘noise’) between 0 and 1. If the output exceeds this 

random value, the net will select an action equivalent to ‘eating’ the bean, otherwise 

not. The effect of this is that, although positively evaluated beans will tend to be eaten 

most of the time, and negatively evaluated beans mostly avoided, this relationship is 

not deterministic. Occasionally. apparently good beans will be avoided and apparently 

bad beans will be eaten.

Training procedure. This follows the procedure described in Eiser et al. 

(2003), involving variations of the standard backpropagation of error (‘backprop’) 

algorithm (Rumelhart, Hinton & Williams, 1986) to modify the connection weights. 

(Parameter settings were 0.02 for the learning rate and 0.06 for momentum). Within 

each epoch, the network is presented, in a random order, with the 36 input patterns 

corresponding to the 18 good and 18 bad ‘beans’ shown in Figure 1.The learning 

system generates an evaluation between 0 and 1, with scores > 0.5 representing a 

positive evaluation and < 0.5, a negative evaluation of any given input pattern. This 

evaluation is then compared with a ‘training signal’ or ‘target value’ appropriate to 

that input pattern. This is here defined as 1 for a ‘good’ bean and 0 for a ‘bad’ bean. 

The discrepancy (target minus evaluation) defines the error (Δ), and the algorithm 

modifies the connection weights so as to reduce Δ on subsequent trials. (Extending 
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the previous analogy with regression analysis, this is like continuously updating a 

regression equation to improve prediction).

Contingent feedback. Under this procedure, Δ was calculated and connection 

weights were modified only when the net ‘chose to eat’ (i.e. when the action selection 

output equalled or exceeded the 0.5 threshold). No learning (modification of weights) 

took place on any trial where the output was below threshold. This represents a 

situation where someone has to eat a bean to discover whether it is good or bad. If a 

bean is avoided, no information is provided about its true value and so no learning 

takes place on that trial.

Biasing action selection. This was achieved by transforming the input received 

by the action selection mechanism from the learning system. To reflect a negative

action bias, all the evaluations (after conversion by the logistic function but before the 

addition of hunger and noise) of the beans in region 1 only (all of which are actually 

good) are multiplied by a scaling coefficient, S, where S < 1. This has the effect of 

reducing the probability of the selection of an 'eat' response at each level of judgment. 

In fact, scaled in this way, no judgment, no matter how positive, evokes a 100% 

chance of an 'eat' response. Conversely, a positive action bias is produced by 

multiplying the evaluations of the beans in region 6 only (all of which are actually 

bad) by the same scaling coefficient S but also adding a constant, 1-S. This means that 

no evaluation, no matter how negative, ensures a 100% chance of producing an 'avoid' 

response. Under neutral bias, no such scaling coefficient was applied. Following 

piloting, S was set at 0.5. The effect of this was that, under strong negative bias, even 

a maximally positive evaluation (1) of a good bean evokes only a 50% chance of an 

'eat' response. Conversely, under strong positive bias, even the most negative possible 

evaluation of a bad bean (0) will still tend to lead to ‘eating’ 50% of the time. 
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Following piloting, it was found appropriate to apply this bias at full strength for the 

first 300 epochs of training only. Thereafter the scaling coefficient was linearly 

attenuated through to epoch 900, after which time the standard (control) version of the 

action selection algorithm was applied. The sense of this attenuation is to allow for 

the fact that initial biases, possibly based on indirect experience such as information 

gained from others (as in Fazio et al., 2004, Experiment 5), may be more highly 

weighted in the early stages of learning, before individuals gain direct experience for 

themselves.

Biasing learning as a function of expectancies. The purpose of this 

manipulation was to simulate the situation where participants might put less credence 

in experience that contradicted prior ‘advice’ concerning the valence of particular 

beans in a specified region. Except in the control condition where no ‘advice’, any 

feedback received by the net from approaching a bean in the specified region would 

contradict expectancies. Thus, if the net approached a bean in region 1 (all of which 

are good), it would receive positive feedback that contradicted its negative 

‘expectancy’. Conversely, if it approached a bean in region 6 (all of which are bad), 

its positive expectancy would be contradicted. This was achieved by incorporating a 

‘learning bias’ parameter (G) into the operation of the backprop algorithm. Recall that 

learning in this kind of net is driven by Δ, or the discrepancy between the output 

generated by the net and the target value for each input pattern. Our approach 

involved dividing Δ by G (where G≥1) on all trials where feedback was received 

concerning the valence of the beans in the relevant targeted region (1 or 6). Under 

negative learning bias, this applied only if the net received feedback relating to any of 

the (good) beans in region 1. Under positive learning bias, this applied only following 

experience with any of the (bad) beans in region 6. This rescaling was not applied to 
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feedback relating to beans in the remaining five regions3. Following piloting, G was 

set at 1.5. The effect of this was to slow down the rate at which connections weights 

would be modified following feedback that contradicted expectancies. A neutral 

condition (G = 1) was also included, meaning that no rescaling was applied. 

Study 1: Action bias.

This first study was designed to compare how evaluations of the beans in the 

two critical regions (1 and 6) might be affected by biasing the action selection 

mechanism early in training so that the net would be either (a) less likely to approach 

good beans in region 1 under negative bias; or (b) more likely to approach bad beans 

in region 6 under positive bias. The design was a 3 X 2 (Action Selection Bias X 

Region: 1 vs. 6) factorial with repeated measures on the last factor. The learning bias 

parameter (G) was ignored, i.e. set to 1 (neutral) for all conditions. Note that the 

neutral conditions in this study are formally equivalent to all other neutral conditions 

in other studies reported in this paper, any differences in results being attributable to 

the randomised setting of initial weights and the stochastic element in the action 

selection mechanism. This study (like both subsequent ones) included 10 completed 

replications (i.e. runs with different randomly initialised weights) in each cell, with 

training continuing for 5000 epochs. In two replications (out of 102), the net ‘died’ –

i.e. failed to learn before running out of energy – so the runs were restarted with new 

random initial weights.

Results

The dependent variable of interest in the mean proportion of ‘beans’ in regions 1 and 

6 correctly identified within each condition by the end of training. The bad beans in 

region 6 are perfectly identified throughout, regardless of the bias. Since we are 

dealing with the net’s performance at the end of learning, any procedure that 
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encourages the net to explore a particular region of the input space should lead to 

improved knowledge of the actual valence of stimuli within that region. Thus, bad 

beans in region 6 will still be avoided even after training with the positive action 

selection bias, since the net will have learnt to recognise these as bad. By contrast, 

identification of the good beans in region 1 is significantly suppressed to just 32% 

correct under negative bias. Since negative bias reduces the chance of such beans 

being sampled during training, the net has less chance of receiving feedback to correct 

its inital ‘prejudice’. In the neutral bias (control) condition the figure in 90%, a 

significant difference (t = 3.22, p < .005). In the positive bias condition (i.e. where 

this bias is applied to presentations of bad beans in region 6 but not to any of the good 

beans from region 1), correct identification is again 90%. When the data for all 

conditions are submitted to a repeated measures analysis of variance, the predicted 

Action Bias X Region interaction was significant, F (2,27) = 7.93, p < .002. Thus, an 

action bias that encouraged contact eventually yielded an appreciation of the actual 

positive value of the beans in region 1, whereas an action bias that discouraged 

contact was more likely to promote the mistaken beliefs that these beans were 

negative.

Study 2: Learning bias.

The design of this study was again a 3 X 2 (Learning Bias X Region) factorial with 

repeated measures on the last factor, corresponding closely to that of study 1, except 

that the action selection bias was shut off and bias was manipulated instead via the 

learning bias parameter G. Since this bias only applies to beans where actual feedback 

disconfirms prior expectancies or ‘prejudices’, its effect is to slow down the rate at 

which the net modifies connection weights to reduce the discrepancy Δ between the 

judgment of a bean in the identified region and its correct ‘target’ or ‘training’ value. 
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This is because the prior expectancies are always inconsistent with the actual 

feedback relating to the targeted region. Thus, in the negative bias condition, if the net 

approaches a bean in region 1, it will experience positive feedback (that the bean is 

good) and this should lead to connection weight modification (‘learning’) so that 

subsequent evaluations of the same bean are somewhat more positive. However, 

because of the negative learning bias operating in this condition, less ‘reliance’ will be 

placed on this corrective feedback and the rate at which the connection weights are 

modified (to produce a more positive evaluation) will be slowed down. Likewise, in 

the positive bias condition, if the net approaches a bad bean in region 6, the feedback 

should lead to subsequent evaluations of the bean becoming somewhat more negative. 

However, the positive learning bias means that this change takes place at a slower 

rate, with the predicted consequence that bad beans should continue to be approached 

for somewhat longer than if the positive learning bias was inoperative.

Results.

The 100 runs of the simulation were completed without the need for any restarts due 

to the net prematurely running out of energy. Identification of bad beans in region 6 

was again perfect by the end of training under all conditions. Identification of the 

good beans in region 1 was suppressed to 50% under negative learning bias but was

perfect under neutral bias (t = 3.00, p < .01) and also when positive bias was applied 

to the opposite region of good beans. The critical Learning Bias X Region interaction 

is significant (F (2,27) = 5.56, p < .01. Thus, even if the net was (positively) biased so 

as to be slower to recognise region 6 as bad, it nonetheless came round to forming 

negative presentations of these beans on the basis of the feedback it received from 

approaching them. However, if the net was (negatively) biased so as to be slower to 

recognise region 1 as good, this was sufficient to inhibit approach (and hence 
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opportunity for corrective feedback) to the point that these good beans often 

continued to be misclassified as bad.

Study 3. Combined action and learning biases.

Although our first two studies were designed to consider two distinct biases 

(through differential contact and resistance to accepting disconfirming evidence), 

these processes could be complementary rather than mutually exclusive in real-world 

contexts such as intergroup contact. Our third study was therefore designed to look at 

what might happen if both sources of bias were combined, i.e. if both action and 

learning were biased in either the positive or negative direction, as compared with a 

neutral condition in which neither action nor learning was biased. To this end, the 

design was again a 3 X 2 (Bias X Region) factorial with repeated measures on the last 

factor, involving comparisons between negative, neutral and positive bias. Thus, S = 

0.5 and G = 1.5, except in the neutral conditions, where neither parameter was applied 

(i.e., S = G = 1). We anticipated that the combined effect of these two sources of bias 

would be at least as strong as that observed in either of the first two studies when the 

biases were manipulated separately.

Results.

Only one restart was required because of an early loss of energy by the net. 

Identification of bad beans in region 6 is near perfect (90% under positive bias, 100% 

in the other two conditions). As in studies 1 and 2, bad beans are still avoided under 

positive bias, since such bias, by increasing the chance of these beans being sampled 

during training, leads to the net learning that they are bad. More striking is the failure 

of the net to ‘unlearn’ the negative prejudice attached the good beans in region 1. 

Even after 5000 epochs of training, the hit-rate was only 10%., compared with 90% 

under neutral bias (t = 5.66, p < .001) and 100% when positive bias was applied to 
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region 6. The Bias X Region interaction was significant both at 5000 epochs, F (2,27) 

= 28.00, p < .001. 

To summarise these main findings, Figure 2 presents the means for bad beans 

(region 6) under positive bias and good beans (region 1) under negative bias in each 

of the above 3 studies, along with comparable human data from Fazio et al. (2004, 

Experiment 5) , i.e. the means for ‘told positive, actually negative’ vs. ‘told negative, 

actually positive). As can be seen, the combined bias conditions of Study 3 are 

stronger (with respect to the suppression of identification of good beans) than either 

the action or learning biases considered separately, and essentially produce a more 

exaggerated pattern of that found in the human data. 

Figure 2 about here.

Discussion 

These simulations were designed to help elucidate the processes by which 

false beliefs, expectancies and prejudices, may resist correction. Crucial to this 

enterprise is a principle that arises from the dynamic interaction between action and 

feedback in all forms of experiential learning, and lies at the heart of the BeanFest 

paradigm as well as many real-life social encounters. If expectancies about the 

valence of objects both guide whether such objects are approached or avoided and are 

shaped by feedback contingent on the learner’s own behaviour, this sets up a 

fundamental asymmetry between the acquisition and maintenance of positive as 

opposed to negative expectancies and attitudes. 

Taken as a group, these three studies strongly support our hypothesis that, 

under contingent feedback, false positive expectancies about the valence of a subset 

of objects would tend to be corrected by experience, but false negative expectancies 

would be much less likely to be corrected. In other words, if learners expect specific 
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objects to be good, and therefore approach them, but then discover they are bad, they 

will correct their expectancies. However, if they expect specific objects to be bad, 

they will tend to avoid them, and so receive less feedback that could correct such 

expectancies if the objects are actually good. We sought to distinguish between a bias 

toward approach or avoidance at the level of action selection from an expectancy-

confirmation bias at the level of how feedback was processed by the network. We 

stress that we made no assumption that the action and learning biases were 

manipulated at comparable strength (since there is no principled way of scaling this).

Because the chosen strength of the two parameters was arbitrary, it is misleading to 

draw inferences about their comparable effectiveness when considered singly. 

Likewise, not too much reliance should be placed on the visual similarity between the 

data from any one of the three studies and the human data from Fazio et al. (2004) 

illustrated in Figure 2, since, here too, the strength of any effect may reflect the 

strength of the experimental manipulation. Nonetheless, our data suggest that the 

combined effect of the two forms of bias (Study 3) is stronger than that of either 

considered individually. Hence the two forms of bias should be regarded as reflecting

complementary, rather than competing, processes.

Taking these findings as illustrative of processes underlying prejudice in 

humans, the negative action bias can be regarded as analogous to the situation where 

an individual avoids contact with members of a disliked group, and therefore never 

discovers their good qualities but continues to hold untested negative stereotypes 

about them. The process simulated by the learning bias is more subtle, and is best 

thought of as analogous to individuals discounting or distrusting information that 

contradicts their prior expectancies. There are reasons to suppose that this is a 

powerful process underlying the maintenance of prejudicial beliefs. Although 
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prejudices can be protected, up to a point, by avoidance of contact with members of 

an outgroup, contact may still happen for reasons beyond the individual’s personal 

choice or control. (In our simulations, this is operationalised through the stochastic 

element in the action selection mechanism). Without any other form of ‘protection’, if 

such contact provides evidence that contradicts the initial prejudice, that prejudice 

will have to be weakened or abandoned. 

Unfortunately, individuals who are strongly committed to their prior beliefs 

and prejudices are often not so easily swayed by evidence, but may employ a variety 

of cognitive devices to reinterpret such evidence in a way that leaves the central core 

of their belief system intact. For example, in their study of the authoritarian 

personality, Adorno, Frenkel-Brunswik, Levinson and Sanford (1950), report an 

interviewee whose brightest class-mate at school was an African-American girl, but 

this is attributed to an attempt to overcompensate for inherent inferiority. In their 

words (p. 616), 

“To the prejudiced, the Negro is ‘dull’; if he meets, however, one of 

outstanding achievement, it is supposed to be mere overcompensation, the exception 

that proves the rule. No matter what the individual is or does, he is condemned.”

In a similar vein, Billig (1985, p.94) discusses the difficulties faced by 

prejudiced individuals in maintaining inflexible stereotypes when confronted by 

disconfirming evidence, or ‘exceptions’ to their imagined ‘rule’:

“This implies that a certain inventiveness will be required to maintain 

categorical distinctions: it is precisely this sort of inventiveness that can lead the 

serious racist to formulate complex theories about hidden racial conspiracies and 

concealed qualities of blood, which ‘prove’ that under the skin all Aryans, blacks or 

whatever really do have ‘essential’ racial qualities.”
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In a similar vein, Macrae et al. (1999) have argued that social perceivers who 

encounter information inconsistent with their stereotypes of specific social groups 

may attempt to engage in ‘inconsistency resolution’ and ‘individuation’ – processes 

that, nonetheless, require executive cognitive operations (i.e. deliberative thought) and 

so may be impeded by particular manipulations of cognitive load. The full complexity 

of such rationalization processes and their consequences for intergroup behaviour lies 

well beyond the aims or pretensions of the simulations reported here. Furthermore, we 

were concerned more narrowly with the association of valence with specific objects, 

rather than with the content of stereotypes as such. Nonetheless, connectionist 

simulation can make an important contribution to the understanding of the processes 

underlying stereotype formation and change precisely because we are dealing with 

learning in a highly abstract and minimalist context. By definition, connectionist 

networks are not conscious, or motivated by concerns with protecting their self-

esteem or social identity. They are merely systems designed to form simplified 

representations of patterns of information and generate outputs appropriate to such 

inputs. The way they achieve this is through ‘automatic’ rules defining how 

associations are formed from experience with objects. In general terms, therefore, if 

patterns characteristic of human cognition and behaviour can be simulated in such 

artificial learning systems, this adds force to the argument that we may be dealing 

with very general, potentially ‘automatic’, processes of information-handling that do 

not necessarily require modulation or control by any higher-order conscious function.

Previous experimental (e.g. Johnston & Hewstone, 1992; Weber & Crocker, 

1983) and connectionist (Queller & Smith, 2002; Smith & DeCoster, 1998) research 

on stereotype change typically involves participants being presented with information 

about the attributes of specific target individuals belonging to particular social groups. 
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These attributes may be selected as consistent or inconsistent with some preformed 

stereotype, and are presented in such a way that participants are able to form 

associations among these attributes and/or between sets of attributes and a signifier of 

group membership. Issues considered by such researchers, but not addressed 

specifically in our present work, include the factors that can lead to moderation of 

beliefs about a group as a whole (‘bookkeeping’, Rothbart, 1981), as opposed to the 

‘subtyping’ of a group into more and less prototypical members (Brewer, Dull & Lui, 

1981; Taylor, 1981). Queller and Smith (2002) and Van Rooy et al. (2003) have 

persuasively argued that both ‘bookkeeping’ and ‘subtyping’ phenomena may fall out 

of connectionist learning processes without needing to invoke more complex 

attributional mechanisms (e.g. Ybarra, 2002), and stereotype change in response to 

disconfirming information should be seen merely as a continuation of the same 

learning processes that can account for the acquisition of stereotypes in the first place

(Deutsch & Fazio, in press).

The fact that feedback was contingent on approach constitutes the principal 

distinctive feature of the simulations reported here and the human experiments on 

which they are based. Applying Hertwig et al.’s (2004) terms, we are concerned with 

learning ‘from experience’ unlike much previous research involving learning ‘by 

instruction’. Under the contingent feedback conditions of our paradigm, learners have 

to do something to gain information about the valence of attitude objects. They need 

to make choices under conditions of uncertainty, and if they choose incorrectly, this 

will be costly (and even doing nothing can be somewhat costly). We suggest that this 

corresponds – perhaps more closely – to the situation faced in the real world by 

learners of many species who have to navigate between safety and danger, to 

distinguish prey from predator, or friend from foe. Once learning is constrained by its 
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dependence on the learner’s own behaviour, it becomes easier to account, not just for 

change in expectancies, but also for why some kinds of expectancies resist change

more than others. Because of this constraint, the resistance to change of negative 

prejudices can be explained in terms of learning processes that are at once simple and 

extremely general.
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Footnotes:

1. 

In fact, simulations were also run under full feedback. These yielded perfect or near 

perfect identification of both good and bad objects.

2. 

Data are not reported for identification of the ‘beans’ in the other four regions, since 

these were not the focus of the manipulations. However, these replicated the ‘learning 

asymmetry’ effect observed in human data by Fazio et al. (2004) and simulations by 

Eiser et al. (2003).

3. 

Eiser, Stafford and Fazio (in press) report simulations that vary the strength of the G 

parameter when applied to feedback relating to all 36 beans. The main finding is that 

learning of good beans is differentially impaired by negative expectancies about the 

valence of the set of beans as a whole. 
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Figure 1. The BeanFest matrix. Clear squares (regions 1, 3 and 5) represent ‘good 

beans’ and dark grey squares (regions 2, 4 and 6) represent ‘bad beans’. Region 1 was 

the target of negative bias, region 6 of positive bias.
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Figure 2. Mean proportions of targeted ‘bad beans’ correctly classified despite 

positive bias, and ‘good beans’ correctly classified despite negative bias, in Studies 1, 

2 and 3 (simulations) and in human data from Fazio et al. (2004), Experiment 5.




