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Abstract

Connectionist computer simulation was employed to model how learners acquire attitudes towards novel objects under

conditions where (a) they are given prior expectancies that the objects as a whole are mostly good or mostly bad; and

(b) they can only discover the true valence of the objects by approaching them. Expectancy confirmation was

operationalized through modifying connection weights more after experiencing good than bad objects (positive bias),

or more after experiencing bad than good objects (negative bias). Negative bias led the network to misclassify more

good objects as bad, such negative attitudes resisting change because of the lack of corrective feedback relating to avoided

objects. Conversely, positive bias encouraged approach and hence feedback leading to more accurate discrimination of

good and bad objects, as well as to higher estimates of the valence of objects not presented during training. These findings

suggest that expectancy confirmation may emerge ‘‘automatically’’ from basic learning processes. Copyright # 2008

John Wiley & Sons, Ltd.

Compared with the large literature on the consequences of attitudes, especially for behavior and interpersonal relations,

the antecedents of attitudes have received surprisingly little attention. In particular, rather few studies have considered how

attitudes are shaped by learning experiences derived from direct interaction with objects in the environment. In simple

terms, we assume that, as individuals explore their environment, they will learn, among other things, which objects are

good and which are bad, and this feedback will lead them to form positive and negative attitudes toward these objects. At

the same time, however, the attitudes that individuals have formed will guide their exploration. In other words, they will be

more likely to choose to approach and engage with objects (or persons or activities) to which they have formed more

positive attitudes. Thus, we may have a positive attitude toward holidaying in a given country as a consequence of previous

good holidays there. Because of this positive attitude, we will also be keener to go there, and hence gain even more

experience on which to base our attitudes. Hence, the relationship between experience and attitude formation is essentially

dynamic: attitudes are formed on the basis of feedback experiences, while at the same time such feedback experiences

depend on behaviors that are guided by attitudes.

One consequence of this dynamic relationship is an asymmetry in the learning of good and bad objects. If learners

believe that a given object is good and attractive, they will be more like to seek out experiences with it, and hence obtain yet

more information about it. If they believe it to be bad and unattractive, they will be more likely to avoid it, but doing so will

limit the information they gain about the object’s true valence, and hence fail to learn whether their initial negative

evaluations were correct or incorrect. The implication is that learners are more likely to misclassify good objects as bad

than bad objects as good.
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1024 J. Richard Eiser et al.
Evidence of such ‘‘learning asymmetry’’ comes from experimental (Fazio, Eiser, & Shook, 2004; Shook, Fazio, &

Eiser, 2007) and simulation (Eiser, Fazio, Stafford, & Prescott, 2003) studies, in which participants (or neural networks) have

to learn to distinguish good from bad novel objects. The experimental task involves participants playing a computer game

(‘‘BeanFest’’) in which their success depends on finding ‘‘good beans’’ that provide energy while avoiding ‘‘bad beans’’

that cost energy. The beans differ in terms of two visual dimensions (shape and speckledness), such that there are three

separate clusters of good beans and three of bad beans, that together fill 36 of the possible 100 cells of the two-dimensional

matrix shown in Figure 1. Each time an object is presented, learners must choose whether to approach (‘‘eat’’) or avoid it.

If they approach a good object, they are rewarded. If they approach a bad object, they are punished. In the crucial

(‘‘contingent feedback’’) conditions, learners only discover the valence of objects they approach, whereas avoidance

provides no information. Hence, learning depends on approach, but approaching unfamiliar objects involves risk.

One strategy for reducing risk is to avoid objects of uncertain valence (like never trying a new destination for a holiday)

but this also reduces the possibility of novel rewards. In real life, however, we can reduce the risk of exploration through

accepting advice from others. If we are planning a holiday, a guide-book could be useful. Such socially communicated

information, or indirect experience, provides us with evaluative expectancies to guide our behavior even before we have

any direct experience of our own. Indirect experience has been demonstrated to influence attitude learning. In Experiment

5 of Fazio et al. (2004), participants received written ‘‘advice,’’ supposedly from previous players, that a specific subclass

of objects was good or bad. The main finding was that incorrect negative beliefs or ‘‘prejudice’’ tended to be maintained

through to the end of the game. This was because incorrect negative advice misled participants to avoid, and so never

discover the true valence of, beans that were actually good.

Adopting a similar procedure, Eiser, Shook, and Fazio (2007) had participants play the BeanFest game after advice

either that ‘‘most beans are good’’ (positive advice) or that ‘‘most beans are bad’’ (negative advice). (In fact, half the beans

were good and half, bad.) Participants who avoided more beans following negative advice were more likely to misclassify

good beans as bad (‘‘learning asymmetry’’). At the end of the game, when asked to estimate the valence of beans not

previously presented, these same participants were particularly likely to assume that these new beans were bad rather than

good (‘‘generalization asymmetry’’). These findings imply that the advice influenced participants’ prior expectancies.

However, since such advice related to the objects as a whole (rather than a specific subset, as in Fazio et al., 2004,

Experiment 5), it did not help participants choose which objects to approach and which to avoid. Hence, even when

the advice was negative, participants still had to approach sufficient objects to survive and so receive some positive

experiences that were inconsistent with their negative expectancies. Likewise, participants who followed positive advice

and approached more beans also received expectancy-inconsistent feedback whenever they encountered a bad bean. This
Figure 1. The BeanFest matrix. Clear squares (regions 1, 3, and 5) represent ‘‘good beans’’ and dark gray squares (regions 2, 4, and 6)
represent ‘‘bad beans’’

Copyright # 2008 John Wiley & Sons, Ltd. Eur. J. Soc. Psychol. 38, 1023–1032 (2008)

DOI: 10.1002/ejsp



Attitudes and expectancies 1025
raises the question of whether feedback influences attitude learning differently depending on its consistency with

participants’ expectancies.

There is general evidence that our interpretation of ambiguous information can be influenced by expectancy-

confirmation biases (e.g., Darley & Fazio, 1980; Darley & Gross, 1983). In other words, information is interpreted in the

light of pre-existing hypotheses or expectancies and is more likely to be accepted as true if it confirms prior assumptions.

This raises questions about how the impact of expectancies should be conceptualized within the learning process. The

effects of direct feedback may arguably be viewed in terms of familiar principles of reinforcement (Sutton & Barto, 1998).

However, the use of phrases such as ‘‘interpreted in the light of’’ and ‘‘accepted as true’’ to explain the effects of

expectancy confirmation, this implies that a form of more deliberative, presumably conscious, reasoning is involved. Is

this implication correct? Evidently, human beings are capable of deliberative, expectancy-based reasoning (and of

expressing prejudice symbolically), but do expectancy-confirmation biases actually require the involvement of such

higher-order mental processes, or can they ‘‘fall out,’’ more or less automatically, from the processing of learning

experiences at a more basic level?

One way of addressing this question (without debating broader issues surrounding the notion of automaticity, e.g.,

Bargh & Ferguson, 2000, Fazio, 2001) is to investigate whether expectancy confirmation can be produced

‘‘automatically’’ within an artificial learning system by definition incapable of conscious reasoning, if we make some

minimal assumptions about the relative weighing of particular kinds of information. In other words, if an ‘‘automaton’’ can

show conceptually similar biases, this supports the argument that expectancy confirmation may become automaticized in

humans. The present study therefore employs the methodology of connectionist computer simulation to examine how

expectancies and experience might combine within a single learning system designed to model the acquisition of attitudes

or evaluative judgments. Since this technique has hitherto been mainly used to consider the effect of direct experience only

(but see Van Overwalle & Heylighen, 2006), additional assumptions are needed to incorporate the influence of

expectancies or indirect experience. By definition, connectionist learning systems cannot be ‘‘aware’’ of another’s mental

state, but this does not entail that minds (whether real or artificial) are tabulae rasae that process all inputs equally, rather

than being selectively attentive to, and affected by, certain kinds of stimuli. Hence, remembering connectionism’s

aspirations to ‘‘biological plausibility,’’ and broader arguments that we may inherit predispositions to derive particular

beliefs or ‘‘memes’’ from our experience (Dawkins, 1976; Dennett, 1991), we see no principled objection to particular

learning outcomes having different prior probabilities. Moreover, granted the evolutionary advantages of imitation, even

primitive learning systems may exhibit biases towards reproducing the action tendencies or ‘‘preferences’’ of conspecifics.

A straightforward way of simulating biased processing of this kind is through controlling the rate at which a learning

system updates its representations depending on the particular kinds of information presented to it. In human terms, stated

informally, the assumption is that the learner places greater reliance or trust in information or feedback that is consistent

with socially communicated expectancies than with information that is inconsistent. Stated more formally, feedback that is

consistent with expectancies should influence learning more strongly than feedback inconsistent with expectancies.1
Connectionist Simulation: Basic Principles

Our simulations employ a form of connectionist neural network. A neural network, or net, consists of interconnected nodes

or units. Each unit has a level of activation that depends on external stimuli and/or information received from other units.

Input units receive activations from presented stimuli. These activations are then fed forward through a layer of ‘‘hidden

units’’ to an output layer, reflecting the decisions or predictions made by the net. How much activation spreads from one

unit to another depends on the strength, or weight, of the connection between them. Crucially, such connection weights

are modified through training. For example, when the net receives feedback on the correctness of any decision it makes on

the basis of some input, a learning algorithm is applied in order to modify the connection weights so as to improve the net’s

performance on subsequent trials. Commonly used learning algorithms involve calculating the error or discrepancy (D)
1Note that this view of expectancy confirmation is entirely compatible with the well-known finding that expectancy-incongruent information attracts more
attention and tends to be better remembered than expectancy-congruent information (Stangor & McMillan, 1992). The fact that incongruent information
is better remembered does not entail that it will have more impact on learning, rather that more ‘cognitive work’ will be needed to reconcile it with prior
beliefs. In this sense, expectancy-confirmation biases are one of a number of devices that might be used to protect prior beliefs by discounting the force of
troublesome evidence (see e.g., Abelson, 1959; Janis & Mann, 1977).
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between the net’s prediction and the ‘‘correct’’ target value for a given input, and adjusting the connection weight so that D

is reduced on subsequent presentation of that input. To control the extent of modification to the weights made on any given

trial, D is typically multiplied by a constant (<1) termed the ‘‘learning rate’’ parameter. This parameter is usually set so

that learning improves in very small increments over hundreds or thousands of trials or ‘‘epochs.’’ However, the choice of

any given learning rate is typically a pragmatic rather than theoretically inspired one. A novel feature of the simulations to

be reported here is that we effectively re-scaled the learning rate so that learning (connection weight adjustment) was

accelerated or decelerated, conditional on the type of feedback received by the net and its consistency with pre-defined

expectancies.
METHOD
Network Architecture

We employed the neural network architecture as shown in Figure 2, and described in more detail in Eiser et al. (2003;

Study 2). This comprises a separate learning system and action selection mechanism. The learning system is a fully

connected, three-layer, feed-forward network with an input layer to encode the stimulus attributes, a hidden layer that

produces a condensed representation of this input information, and a single output unit that represents an ‘‘evaluation’’ of

each input pattern (bean) on a continuum from ‘‘bad’’ (0) to ‘‘good’’ (1). The input layer has 22 units, of which 11 are used

to encode one dimension (representing shape) and the remaining 11 the other dimension (representing speckles). The

encoding is arranged (see Eiser et al., 2003) so that (‘‘distributed’’) patterns of activation for stimuli that are more similar

to each other in terms of their ‘‘visual’’ attributes (i.e., closer to each other within the matrix) overlap. This allows the

network to form more generalized representations of good and bad ‘‘areas,’’ in other words, to assign similar valence to

objects that are ‘‘visually’’ similar.
Figure 2. Network architecture. Solid lines indicate connections modified by training
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The purpose of the action selection mechanism is to produce a ‘‘choice.’’ A logistic function is first applied to the

evaluation generated by the learning system, meaning that, as an evaluation moves away from neutral (0.5), it is rapidly

converted into a quite polarized value (i.e., close to 0 or 1). This converted evaluation, or ‘‘judgment’’ is then fed into the

action selection mechanism along with additional activation from a state unit (‘‘energy’’) that essentially provides a

running count of the impact of previous gains or losses in energy as a result of ‘‘eating’’ good or bad beans, and losses due

to time. The initial value of this ‘‘energy unit’’ was set at 1 and varied between 0 and 1. There is a steady decay in

the activation of the energy unit, at the rate of 0.0001 per bean presentation. Eating a good bean increases the activation

of the energy unit by 0.001 and eating a bad bean decreases it by 0.001 (whereas avoiding a bad bean produces only the

time-related decay of 0.0001). The input to the action selection mechanism from this energy unit is determined by a

‘‘hunger function’’ (i.e., the ‘‘neutral hunger’’ function in Eiser et al., 2003, Study 2, p. 1230), so that hunger increases to

an asymptote of 1 as energy drops to 0, but takes a minimum value of 0 when energy is at its maximum 1.

Finally, a stochastic probability function (‘‘noise’’) is introduced. This effectively produces a random variation in the

threshold value (above or below 0.5) against which the final outcome activation is compared, so as to determine whether

the network will ‘‘eat’’ (activation above threshold) or not. The effect of this stochastic element is that the network will

occasionally ‘‘eat’’ beans it has categorized as ‘‘bad’’ (i.e., evaluated as <0.5), and avoid beans categorized as ‘‘good.’’

The purpose of this is to introduce an element of chance into the net’s decision-making and hence feedback experience,

rather than making its approach and avoidance behaviors entirely determined by prior attitudes.
Training Procedure

This was based on the standard back propagation of error (‘‘backprop’’) algorithm (Rumelhart, Hinton, & Williams, 1986)

for modifying the connection weights. Within each epoch, the network is presented, in a random order, with the 36 input

patterns corresponding to the 18 good and 18 bad ‘‘beans’’ shown in Figure 1. The learning system of the network then

generates a judgment (between 0 and 1) representing its assessment of how bad or good each bean is. This judgment is then

compared with a ‘‘training signal’’ or ‘‘target value,’’ defined as 1 for a ‘‘good’’ bean and 0 for a ‘‘bad’’ bean and the error

or D (target minus judgment) is then calculated. This is used to modify the connections within the network so as to reduce

the discrepancy between judgments and target values on subsequent trials. In all simulations to be described, training

proceeded for 5000 epochs, although most modification of the weights occurred during the first few hundred epochs. The

following variations of this procedure were compared.
Full versus Contingent Feedback

Under ‘‘full feedback’’ (essentially a control condition), D was calculated and connection weights were modified both

when the net ‘‘chose to eat’’ (i.e., when the action selection mechanism produced an output equal to or greater than

threshold) and when it did not. This represents a situation where someone makes a prediction about a bean’s value and then

is always told whether the bean is good or bad. Under ‘‘contingent feedback,’’ connection weights were only modified if

the selected action was equal to, or greater than, threshold–i.e., if the net had ‘‘chosen to eat.’’ No learning (modification of

weights) took place on any trial where the output was below threshold. This represents a situation where someone has to

eat a bean to discover whether it is good or bad. If a bean is avoided, no information is provided about its true value and so

no learning takes place on that trial.
Simulating Expectancy Confirmation

This was achieved by incorporating a ‘‘bias’’ parameter (G). Along with the learning parameter (set at 0.02), this had the

effect of re-scaling D before adjustment of the connection weights. Our approach involved multiplying D by G (where

G� 1), thereby accelerating learning, on all ‘‘consistent’’ trials (i.e., where feedback was consistent with prior

expectancies) and dividing D by G, thereby decelerating learning, on all ‘‘inconsistent’’ trials. Using this approach, we

produced a negative bias condition, in which D was multiplied by G following experience with a bad bean and by 1/G
Copyright # 2008 John Wiley & Sons, Ltd. Eur. J. Soc. Psychol. 38, 1023–1032 (2008)
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following experience with a good bean. Under positive bias, D was multiplied by G following experience with a good bean

and by 1/G following experience with a bad bean. A neutral condition is included in all simulations to be described, in

which D is not multiplied by G.

We set G either to a ‘‘strong’’ level of 1.5 or a ‘‘mild’’ level of 1.2 for both positive and negative bias. Together with a

neutral condition, this yielded a 2� 5� 2 (Feedback�Bias�Valence) factorial with repeated measures on the last factor.

Valence refers simply to whether the presented input patterns (beans) were good or bad. Feedback was either full

(connection weights modified by back propagation of error on every trial regardless of selected action) or contingent

(connection weights modified only if the selected action corresponded to approach, i.e., ‘‘eating’’ a bean).

Analyses were based on 10 completed replications (i.e., runs with different randomly initialized weights) in each cell,

with training continuing for 5000 epochs. The term ‘‘completed’’ signifies the fact that some networks might ‘‘die’’—i.e.,

run out of energy—before learning how to discriminate the good and bad beans adequately. There were three such

‘‘deaths’’ (all under contingent feedback, mild negative bias) for which replacement simulations were run with new

random settings. The data to be reported describe network performance both early in training, i.e., at 200 epochs, and at the

conclusion of training at 5000 epochs. Discrimination is measured by considering the outputs of the learning system, i.e.,

the raw ‘‘evaluations’’ of the 36 beans presented during training (recall that these could range between 0 and 1) before their

transformation by the action selection mechanism. These are treated as follows. A judgment of 0.5 or above is defined as

representing a positive evaluation or attitude toward a specific bean, and a judgment below 0.5 is defined as a negative

evaluation. We then counted the number of bad beans out of 18 that were evaluated negatively and converted this to a

proportion score between 0 and 1, termed P bad correct. We then calculated a similar proportion score for the number of

good beans evaluated positively, termed P good correct. In addition, to see how the network generalized from its learning

of the presented input patterns to the combination of attributes in the remaining 64 cells of the matrix, the network was

presented with these 64 untrained patterns as inputs and the outputs of the learning system were recorded (without any

subsequent modification of the weights). The mean outputs of the learning system were then averaged over all these

64 novel stimuli and recoded from �1 (bad) to þ1 (good) so as to be directly comparable with the human data reported by

Fazio et al. (2004).

With respect to discrimination we anticipated that the bias would affect the learning asymmetry through influencing the

rate at which the net’s evaluations of the objects are modified by feedback. Positive bias leads to a faster acquisition of

positive evaluations following positive feedback, but slower acquisition of negative evaluations following negative

feedback. This increases the likelihood of objects being sampled and so the likelihood of the net receiving feedback to

rectify false-negative evaluations. Hence, the learning asymmetry effect should be reduced. Negative bias leads to a faster

acquisition of negative evaluations following negative feedback, but slower acquisition of positive evaluations following

positive feedback. This should lead to fewer objects being sampled, and hence a maintenance or strengthening of the

learning asymmetry effect. With respect to generalization, we anticipated that (except in the full feedback conditions,

where more complete learning could eliminate the effects of the bias manipulation), the estimates made by the net

concerning the 64 untrained patterns would be lowest in the negative bias conditions, and highest in the positive bias

conditions. Furthermore, we anticipated that, under contingent but not full feedback, generalization scores would tend,

overall, to be negative. This ‘‘generalization asymmetry’’ has been found in previous simulations (Eiser et al., 2003),

reflecting the fact that contingent feedback typically leads to lower exposure to positive test stimuli. It has also been found

with human participants (Fazio et al., 2004), where the data indicate that negative information may be more highly

weighted than positive.
RESULTS
Discrimination

Table 1 shows the proportion of correct evaluations of good and bad stimuli within each condition early in, and after,

training. Once again, full feedback leads to perfect or near-perfect identification of both bad and good stimuli, though with

two interesting exceptions. First, under strong negative bias, identification of good stimuli is close to chance at 200 epochs

(though perfect by 5000 epochs). Second, under strong positive bias, the identification of bad stimuli is only 76% correct at
Copyright # 2008 John Wiley & Sons, Ltd. Eur. J. Soc. Psychol. 38, 1023–1032 (2008)
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Table 1. Mean proportions of correct responses to bad and good stimuli and generalization index at 200 and 5000 epochs, as a function
of feedback and bias

Feedback Bias

200 epochs 5000 epochs

P bad
correct

P good
correct Generalization

P bad
correct

P good
correct Generalization

Full Strong Negative .98 .56 �.23 1 1 .02
Mild Negative .97 .97 �.02 1 1 .02
Neutral .98 .97 .02 1 1 .05
Mild Positive 1 1 .03 1 1 �.02
Strong Positive .76 1 .26 .90 1 .19

Contingent Strong Negative .99 .13 �.40 1 .70 �.39
Mild Negative .96 .61 �.33 1 .67 �.45
Neutral .98 .67 �.31 1 .67 �.44
Mild Positive .91 .97 .21 1 1 .15
Strong Positive .61 .98 .35 1 1 .33
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200 epochs (90% at 5000 epochs). This suggests that the bias manipulation (at least when ‘‘strong’’) influences early

training even under full feedback. Eventually, however, the full feedback enables the network to overcome this initial bias.

However, when feedback is contingent on the network selecting an approach response, the pattern of results is

unambiguous. Already by 200 epochs, there is a strong main effect for Valence, F (1,45)¼ 100.51, p< .001, confirming an

overall learning asymmetry effect; a Bias�Valence interaction, F (4,45)¼ 91.76, p< .001, reflecting near-perfect

responses to bad beans under negative bias and to good beans under positive bias; and a Bias main effect, F (1,45)¼ 28.02,

p< .001. (Once again, note the very low mean for good beans under strong negative bias, and the relatively low mean for

bad beans under strong positive bias). By the end of training, identification of bad beans is perfect, whereas errors occur

relatively frequently to good beans (Valence: F (1,45)¼ 841.00, p< .001) unless the network is trained under a positive

bias (Bias�Valence: F (4,45)¼ 141.00, p< .001). Hence, learning asymmetry is reduced by a positive bias, that is, by the

network modifying the connection weights at a higher rate following positive than negative feedback.
Generalization

Next, we considered the generalization scores derived for the network’s responses to the 64 untrained input patterns (see

Table 1). Considering just the contingent feedback conditions, the effect of bias is highly significant both at 200 epochs,

F (4,45)¼ 274.23, p< .001, and at 5000 epochs, F (4,45)¼ 133.33, p< .001. However, the main differences are between

the two positive bias and the three remaining conditions. (The means for the strong negative and neutral conditions differ

significantly, p¼ .003, at 200 but not 5000 epochs). The overall generalization asymmetry is highly significant both at 200

epochs, F (1,45)¼ 107.22, p< .001, and 5000 epochs, F (1,45)¼ 123.15, p< .001. In order to see whether this

generalization asymmetry was a by-product of the learning asymmetry, we performed a hierarchical regression analysis to

predict the generalization score at 5000 epochs from Bias at step 1 and learning asymmetry at step 2 (contingent feedback

conditions only). This showed that, the effect of Bias on generalization was greatly reduced (from t (48)¼ 10.15, p< .001

at step 1 to t (47)¼ 2.88, p< .01 at step 2) when controlling for learning asymmetry, indicating a partial but highly

significant mediation effect as assessed by a Sobel test (z¼ 7.51, p< .001).
Correspondence to Human Data

The closest human parallel to the situation simulated here is the Eiser et al. (2007) experiment, where participants were

advised either that most beans were bad, or that most were good. This manipulation was set deliberately weak, so that

many participants in fact disregarded this advice. Nonetheless, if the data are re-analyzed just for those participants who

most closely followed the advice given to them (i.e., those with ‘‘adherence’’ scores at least 0.5 SDs above the mean, as
Copyright # 2008 John Wiley & Sons, Ltd. Eur. J. Soc. Psychol. 38, 1023–1032 (2008)
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Figure 3. Comparison of mean learning asymmetry (LA) and generalization (GEN) scores from high-adherence participants in the
Eiser et al. (2007) experiment (-Hum) and the present simulations (-Sim) under mild bias at 200 epochs
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defined in the original paper), the relative differences between conditions broadly resemble those observed in our

simulations. Figure 3 compares the mean learning generalization asymmetry scores from these human data with those

from the mild negative and positive conditions at 200 epochs.
DISCUSSION
Our purpose in these simulations was not to produce an exact replication of a specific human experiment, but to offer a

‘‘proof of concept’’ that expectancy confirmation can occur in a learning system incapable of conscious reasoning. Our

findings are congruent with other evidence that apparent biases can emerge from the operation of ‘‘basic’’ processes such

as reinforcement learning. For example, risk aversion (preferring high-probability moderate rewards over low-probability

high rewards) has been demonstrated in simulations of organizational decision-making (March, 1996) and bees’ foraging

(Ziv, Joel, Meilijson, & Ruppin, 2002).

Expectancy confirmation was operationalized by adjusting the learning rate differentially for good or bad outcomes,

depending on the condition. Thus, a positive bias meant that the network updated its representation of the input space (i.e.,

the beans) more emphatically (or ‘‘confidently’’) whenever it experienced good beans rather than bad outcomes, whereas

the opposite was true under a negative bias. The familiar learning asymmetry effect under contingent feedback, already

discernible at 200 epochs, was weaker or eliminated by positive bias but stronger under negative bias. Continuing training

to 5000 epochs improved recognition of bad beans even further, but errors still persisted in the recognition of good beans

under neutral and negative bias conditions.

Turning to the generalization data, by the end of training novel beans were rated on average more positively under

positive than neutral bias. However, the neutral and negative bias conditions did not differ. This is readily explained by

reference to the learning asymmetry effect, which persisted under neutral bias to the same extent as under negative bias,

but was eliminated under positive bias. In other words, the network’s more negative judgment of novel beans except under

positive bias reflects its underestimation of the proportion of good beans among the 36 presented during the training phase,

This does not apply under full feedback, since the whole point of full feedback (if allowed to continue throughout training)

is that it eliminates the selectivity of experience of good and bad beans on which the learning asymmetry effect depends.

In interpreting these data, it is important to remember that connectionist networks are merely formal systems for

identifying abstract relationships between symbols or patterns of data. There is nothing in the formal systems themselves

that entails a correspondence between such abstract symbols and relationships and any concrete objects or phenomena.

Within our simulations, we chose target values of 0 to represent ‘‘bad’’ and 1 to represent ‘‘good,’’ but by themselves these

numbers, and the direction of the difference between them, are completely arbitrary. It is only under contingent feedback

that this distinction becomes meaningful. This is because, firstly, ‘‘good’’ is effectively defined operationally as ‘‘more

likely to be approached’’ and, secondly, feedback depends on approach. Valence is thus defined within our paradigm in

terms of its relationship to approach-avoidance, and in terms of the asymmetrical relationship between

approach-avoidance and feedback. The theoretical contribution of simulations therefore depends less on whether
Copyright # 2008 John Wiley & Sons, Ltd. Eur. J. Soc. Psychol. 38, 1023–1032 (2008)
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(human) experimental findings can be reproduced than on how. The single most important message is that supposedly

complex phenomena may emerge from the iteration of extremely simple underlying processes.

Whereas connectionist methods are being used to simulate an increasingly wide range of social psychological

phenomena (e.g., Read & Miller, 1998; Smith, 1996; Van Overwalle & Siebler, 2005), our own approach is distinctive in

terms of its focus on the dependence of attitude formation on actions taken by the learner. Introducing a bias on the

learning system illustrates one way in which we may protect our existing attitudes from the effects of contradictory

experience. In more standard applications of the backprop algorithm, as noted earlier, no particular theoretical meaning is

attached to the learning rate parameter used to control how quickly the network learns. A novel feature of our simulation

was effectively to treat the learning rate as reflective of a ‘‘readiness to learn’’ that controlled the speed of learning,

conditional on the kind of reward received, effectively accelerating learning following feedback that confirmed

expectancies, and decelerating it following feedback that did not.2

Note that all nets started from similarly randomized settings of the connection weights, so that there is no implication

that the net was ‘‘reading across’’ representations from another’s mental states. As operationalized here, ‘‘expectancies’’

consisted merely in a differential readiness to learn from specific stimulus-outcome combinations. Likewise, expectancies

do not simply over-ride direct experience. Although the positive bias slows down the rate at which false-positive

evaluations will be corrected, so long as the net continues to approach bad beans, it will receive corrective feedback that

will eventually turn such evaluations negative. Conversely, the negative bias slows down the rate of true-positive

identification of good beans while speeding up the true-negative identification (and hence, subsequent avoidance) of

encountered bad beans. At the same time, direct experience does not eliminate the effect of earlier advice. In other words,

when the net receives feedback contrary to expectancies derived from ‘‘advice,’’ it (somewhat) discounts the feedback, but

does not lose ‘‘trust’’ in the advice as such; on the next trial where feedback is received, the bias operates at full strength.3

This emphasis on how direct and indirect experience interacts may have more general implications for the role of social

influence in attitude formation. Perhaps because of the experimental paradigms within which such processes are typically

studied, advice from others or persuasive messages tend to be treated as ‘‘one-off’’ social impacts. To the extent that the

source of the message is liked and/or trusted, the recipient is predicted (by several theorists from e.g., Osgood and

Tannenbaum, 1955, onwards) to shift his or her position to become closer to that advocated by the source. But what

happens afterwards, when individuals act upon the advice they have received or gain further information from other

sources? Is the initial advice merely averaged in with later inputs (e.g., Anderson, 1981), or does it influence the

interpretation of subsequent information and experience, as implied by the broader literature on expectancy-confirmation

processes (e.g., Darley & Fazio, 1980; Darley & Gross, 1983)? The present study supports this latter possibility, through

helping identify how the consistency of feedback with prior expectancies may shape how individual acquire attitudes

through exploration of their environment.
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