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Connectionist computer simulation was employed to explore the
notion that, if attitudes guide approach and avoidance behav-
iors, false negative beliefs are likely to remain uncorrected for lon-
ger than false positive beliefs. In Study 1, the authors trained a
three-layer neural network to discriminate “good” and “bad”
inputs distributed across a two-dimensional space. “Full feed-
back” training, whereby connection weights were modified to
reduce error after every trial, resulted in perfect discrimination.
“Contingent feedback,” whereby connection weights were only
updated following outputs representing approach behavior, led
to several false negative errors (good inputs misclassified as
bad). In Study 2, the network was redesigned to distinguish a
system for learning evaluations from a mechanism for selecting
actions. Biasing action selection toward approach eliminated
the asymmetry between learning of good and bad inputs under
contingent feedback. Implications for various attitudinal phe-
nomena and biases in social cognition are discussed.
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A lthough the concept of attitude has remained cen-
tral to social psychology for as long as the discipline has
existed, there has been remarkably little research
directly concerned with how attitudes are acquired.
Despite Allport’s (1935) famous definition of attitude as
a “mental and neural state of readiness, organized
through experience” (p. 810), the role that experience
actually plays in attitude organization has remained
comparatively under-researched compared with other
topics, such as the influence of attitudes on behavior.

Despite this emphasis in the literature, several major
theoretical approaches contain explicit or implicit
assumptions about the kinds of learning processes that
may underlie the acquisition of attitudes. Several models
of attitude-behavior relations (e.g., Ajzen, 1991) view
behavior as guided by acquired expectancies (Edwards,
1954; Tolman, 1959). More recently, the concept of asso-
ciative memory is central to a number of models looking
at the cognitive and behavioral consequences of atti-
tudes (Fazio, 1990, 1995; Petty & Krosnick, 1995).
According to Fazio (1995), attitudes are “object-
evaluation associations,” specifically implying that atti-
tude formation depends on processes of associative
learning.

Attitude theorists, nonetheless, have tended to make
relatively little use of paradigms developed in other areas
of learning research. An early impetus had been pro-
vided by Hildum and Brown (1956) and Insko (1965)
using operant conditioning notions and by Staats and
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Staats (1958) within a classical conditioning paradigm.
This research, however, ran out of steam, partly because
of concerns over participants’ awareness of the rein-
forcement or associative contingencies (Page, 1974) and
possibly because, for many social psychologists at the
time, learning theory paradigms appeared redolent of
an outdated behaviorism and incompatible with the cur-
rent “cognitive” Zeitgeist. Recent social cognition
research, however, increasingly acknowledges the
importance of priming and other automatic processes
occurring below the level of conscious awareness
(Bargh, 1997; Fazio, 2001; Wegner, 1994). Likewise,
Betsch, Plessner, Schwieren, and Gütig (2001) propose
that encoding of value-charged stimuli can lead to
“implicit online formation of summary evaluations” (p.
242). Classical conditioning of attitudes without explicit
detection of covariation also has recently been demon-
strated by Olson and Fazio (2001). We therefore believe
that the time is ripe for a renewed analysis of the learning
processes underlying the acquisition of attitudes.

A priority for such an analysis is to specify the assump-
tions about learning implicit in more general notions.
The idea that we acquire attitudes through associating
objects with good and bad experiences is intuitively plau-
sible. For this idea to be the basis of a theory, however, we
need to be able to say more precisely how such associa-
tions may be formed under different conditions. In par-
ticular, we need to ask if there is anything that distin-
guishes attitude learning from associative learning in
general. In other words, is there anything special about
learning associations between objects and evaluations as
distinct from associations between objects and any other
kind of event?

Part of the difficulty with the concept of association is
that it can imply a process based merely on the co-
occurrence of events. Attitudes can be acquired through
passive exposure (see, e.g., Fazio & Zanna, 1981; Olson
& Fazio, 2001). However, we decided here to examine
the intuition that many of our attitudes may be devel-
oped through active exploration of our environment. In
such cases, we learn whether we like or dislike different
objects, activities, or individuals through interacting
directly with them. Through such learning, we will
choose to engage in activities we find enjoyable and
avoid unpleasant activities as far as possible. Our atti-
tudes are shaped by experience, but our attitudes can
guide our exploration and, hence, shape our experi-
ence. Attitude learning thus involves a dynamic interac-
tion with the environment, in which our attitudes both
guide approach and avoidance behaviors and are
updated by the feedback that such exploration provides.
In short, the process underlying the acquisition of such
object-evaluation associations may be better defined as a

form of reinforcement learning, whereby evaluations
are dependent on feedback from the environment but
no feedback is received unless the environment is
explored.

Much of this is implied in earlier perspectives on atti-
tude structure, psychological development, and group
processes by authors such as Lewin (1936) and Heider
(1946). Within Lewin’s scheme, goal-oriented behavior
is guided by individuals’ “psychological field” or “life
space” at a given time, including perceptions of social
relationships, whereas learning (including through
social interaction) can lead to restructuring, re-
evaluation, and differentiation of this life space over
time. In a similar vein, Heider’s theory of cognitive bal-
ance predicts reciprocal interdependence between per-
ceived social relationships and perceived agreement and
disagreement so that, according to the theory, mutual
liking increases mutual agreement and mutual agree-
ment increases mutual liking.

All this implies an asymmetry between how we acquire
positive and negative attitudes toward other people and
valued objects, at least within a noncoercive environ-
ment in which our approach and avoidance behaviors
are guided by our expectations of outcome contingen-
cies. In a simple application of the Law of Effect, we will
attempt to repeat pleasant experiences and avoid
unpleasant ones. Other things being equal, therefore,
we should have more experience of positively valued
than negatively valued objects (cf. Parducci, 1984). This
suggests, however, that most negative attitudes will be
more weakly grounded in direct experiential learning
than positive ones. Yet, at the same time, the evidence
from animal learning (Solomon & Wynne, 1954) is that
avoidance responses can be very resistant to extinction.
For example, a rat that has learned to move to a different
end of its cage when a tone sounds to avoid an electric
shock will continue to do so even if the schedule has
been changed and no more shocks are given. A cognitive
interpretation of this effect is that avoidance prevents
the rat from ever experiencing the absence of a shock
following a tone in that part of the cage. By contrast, if
the rat received a shock in a part of the cage previously
experienced as safe, its previous tendency to approach
this part would relatively quickly be inhibited. Extended
to the human context, this implies that we are more vul-
nerable to error in our negative attitudes than positive
ones. In other words, if we hold a positive attitude toward
an object, we will be more likely to approach it and hence
have our expectation confirmed or corrected by experi-
ence. However, if we hold a mistakenly negative attitude
toward an object and consistently avoid it, we will never,
except by chance, discover what we are missing.
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Aims of Computer Simulation

This article attempts to explore these ideas through
the methodology of connectionist computer simulation.
It is important to declare at the outset what the use of
such methodology can, and cannot, be expected to
achieve. First and foremost, simulation is a technique for
clarifying theoretical concepts and predictions. It allows
us to ask the question: If such-and-such assumptions are
correct, what would be predicted under such-and-such
conditions? All forms of theory-building and hypothesis-
generation in psychology do this but computer simula-
tion allows us to do so more precisely, especially when
dealing with complex situations and processes evolving
over time. Indeed, simulation not only allows us to be
more precise but demands it of us. In other words, we are
forced to define our theoretical assumptions in precise
and internally coherent terms or the program will simply
fail.

None of this, by itself, establishes that our theoretical
assumptions (or the way we have just specified them) are
correct. Simulation is not a substitute for empirical evi-
dence in that sense. However, it helps specify what our
assumptions imply, including for situations that would
be difficult and/or expensive to reproduce in the labora-
tory. An example of this is the simulation of social influ-
ence processes in groups consisting of many members;
the predictions of Heider’s (1946) balance theory have
been simulated by Eiser, Claessen, and Loose (1998) and
those of Latané’s (1981) social impact theory by Nowak,
Szamrej, and Latané (1990). Such simulations do not
prove, or even confirm, the respective theories. How-
ever, they help to clarify the theories and extend our
understanding of what the theories predict.

The second advantage of simulation is almost the mir-
ror image of the first. All computer simulation depends
on a number of inbuilt assumptions, procedural deci-
sions, and parameter settings. Many of these find their
way into programs as arbitrary or ad hoc fixes, but many
others are based on principled theoretical positions con-
cerning the kind of processes being simulated. Even to
talk about simulating processes is to take a subtly differ-
ent position from the view that modeling consists of con-
structing a rule-based or algorithmic system for finding
solutions to problems. Connectionism (e.g., Ellis &
Humphreys, 1999; Gurney, 1997; McLeod, Plunkett, &
Rolls, 1998) refers to a branch of cognitive science that
seeks to understand (and simulate) cognitive processes
on the basis of rather particular, but simple, assumptions
about how knowledge is acquired, organized, retained,
and recalled within complex systems crudely analogous
to a natural brain. Approached in this way, computer
simulation can offer process explanations beyond those
contained in more traditional theories.

Connectionist Principles

The basic idea of connectionism is that brains consist
of huge numbers of neurons that can receive informa-
tion (in the form of electrical activation of varying
strength) and then pass this information on to other
neurons. Each neuron, however, is a relatively simple
device—essentially a conductor or switch—but brains
achieve immense complexity at the system level through
the essentially infinite number of ways different sets of
neurons can become interconnected with each other.
The extent to which information or activation can pass
from one neuron to another is determined by the
strength of the (synaptic) connection between them.

To simulate such processes, connectionist modeling
employs systems of simple nodes or units, crudely analo-
gous to (sets of) neurons, that are interconnected to
form networks. Different network architectures con-
strain the way the units pass information to each other.
For instance, three-layer nets (as employed here) incor-
porate a layer set of input units, analogous to sensory
receptors, whose levels of activation directly encode the
stimuli presented. These input activations are then
transmitted to hidden units that form condensed repre-
sentations of the input patterns. These then pass activa-
tion on to output units, representing the response of the
system. The activation of each unit is a function of the
sum of the activations it received from other units,
weighted by the strengths of the connections to it from
each of these units. These connection weights can be
either of positive or negative sign, that is, facilitatory or
inhibitory. Simulations involve training the net by adjust-
ment of the connection weights, commonly so as to mini-
mize the discrepancy between the outputs and some des-
ignated target values.

Underlying these procedures is the assumption that
learning, that is, experience of covariation between events
and feedback from the environment about the goodness
of fit or mismatch between predictions and outcomes,
results in different patterns of interconnectivity.
Connectionist systems thus have no need of a distinct
“memory store.” All of the information acquired through
learning is stored in the connection weights. These same
weights control processes such as categorical perception
(Harnad, 1987), generalization, and recall of informa-
tion from partial cues (Hopfield, 1982). This can be
expressed by saying that there is no distinction between
memory and cognitive processing in connectionist sys-
tems (McLeod et al., 1998).

At least in the hands of many of its practitioners,
therefore, connectionism offers not simply a set of mod-
eling techniques but an unapologetically theoretical
perspective on cognition and learning (McLeod et al.,
1998; Seidenberg, 1993). This is potentially generalizable
to several topic areas, not least to social psychology

Eiser et al. / CONNECTIONIST ATTITUDE LEARNING 1223



(Eiser, 1994; Nowak, Vallacher, Tesser, & Borkowski,
2000; Read & Miller, 1998; Shultz & Lepper, 1996; Smith,
1996; Smith & DeCoster, 2000). Connectionist simula-
tions do not simply require us to be more precise in spec-
ifying our assumptions about the processes underlying,
say, balance or social impact theory. Instead, we face the
question of whether the core assumptions of our social
psychological theory can be translated into, and refor-
mulated within, the more general and often more parsi-
monious conceptual language of connectionist learning.
In this respect, a simulation can be viewed as an invita-
tion to consider principles of connectionist learning as a
plausible general theoretical account of the phenomena
in question.

Supervised Learning and Reinforcement Learning

There is an important distinction in connectionist
theory between supervised learning systems that receive
full feedback from the environment concerning the cor-
rect target values against which the outputs generated
for each and every input can be compared and reinforce-
ment learning systems that receive only partial feedback.
Reinforcement learning involves learning which actions
to take in which situations to maximize a reward or rein-
forcement signal. Unlike with supervised learning, “the
learner is not told which action to take . . . but instead
must discover which actions yield the highest reward by
trying them” (Sutton, 1992, p. 225). Hence, reinforce-
ment feedback is generally contingent on the learning
system’s outputs interpreted as actions in the environ-
ment. If a learning system needs to act in the world to
receive feedback, then it also needs to explore the alter-
native actions available in different contexts to observe
what consequences ensue. A crucial issue for reinforce-
ment learning, then, is the need to find an appropriate
balance between the exploration of alternative actions,
to make better future choices, and the exploitation of
existing knowledge about feedback contingencies to
achieve good immediate outcomes. This issue is often
termed the exploration/exploitation trade-off (Sutton
& Barto, 1998). We believe that this view of reinforce-
ment learning is potentially very relevant to the question
of how attitudes are acquired in that the evaluative asso-
ciations we form to attitude objects depend on explora-
tion and contingent feedback.

Aims of the Study

The aim of this article is therefore to examine possi-
ble asymmetries in the acquisition of positive and nega-
tive beliefs. We assume that asymmetries may arise from
the fact that positive attitudes lead to approach behav-
iors and, hence, to increased experience of the attitude
object, whereas negative attitudes lead to avoidance and,
hence, less direct experience of the true properties of

the object. For this reason, false negative errors (i.e.,
assuming a good object is bad) may remain uncorrected
for longer that false-positive ones. Because effective
learning requires exploration, we further hypothesize
that manipulating the willingness of the system to devi-
ate from its currently preferred action (its exploration
strategy) will directly affect its experience of negative
objects and consequently impact on the accuracy of
acquired attitudes, and on its overall effectiveness as a
learner.

To address the problem of choosing actions during
learning, it is useful to distinguish two elements of a sys-
tem that learns from contingent feedback: (a) the learn-
ing system, which encodes the currently preferred
actions of the system for any context, and (b) the action
selection mechanism, which chooses an action, at any
given time, based on both the currently preferred action
(for the current context) and the current exploration
strategy. In this article, we compare two classes of mod-
els. In Study 1, the action selected is determined com-
pletely by the learning system. In Study 2, the action
selection mechanism is separate from, and only
probabilistically guided by, the learning system. The per-
formance of the network is influenced by its cumulative
record of correct and incorrect responses (here termed
“energy”) but differently in the two studies. In Study 1,
energy is connected to the learning system, whereas in
Study 2 it only affects the action selection mechanism.

The simulations to be reported attempt to replicate a
paradigm developed by Fazio and Eiser (2000) with
human participants. In this paradigm, participants are
introduced to a computer game in which their task is to
survive in a virtual world consisting entirely of beans.
Some of these beans are good and provide energy,
whereas others are bad and eating them results in a loss
of energy. Participants are told that if they eat too many
bad beans rather than good beans (or go too long with-
out eating at all), they will “die.” To survive, they need to
learn to identify and eat enough good beans while avoid-
ing the bad beans. The game involves participants being
presented with different beans one at a time and having
to choose whether to eat them. The beans themselves
vary along two attribute dimensions—in terms of num-
ber of speckles and shape (circular to oblong). There are
10 potential levels on each of these dimensions. Hence,
the space of all possible objects comprises a 10 × 10
matrix. The beans actually presented fill 36 of the 100
possible attribute combinations. These are arranged in
six blocks or regions, three containing good beans and
three containing bad beans (see Figure 1). The main
finding from the human data is that participants are
much less accurate at identifying good than bad beans.
In other words, false negative errors predominate over
false positives (where positive means responding to a
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bean as good). We therefore examine whether an equiv-
alent asymmetry could be reproduced by a neural net-
work constrained to learn only through exploration.

Reproducing the human data, however, is not the sole
purpose of the simulations. In the human work, the
game is such that feedback is obtained only through
approach. But, unlike a net, human learning could be
affected by attentional and rehearsal mechanisms.
Recent reviews (Baumeister, Bratslavsky, Finkenauer, &
Vohs, 2001; Rozin & Royzman, 2001) illustrate various
senses in which “bad is stronger than good.” The contri-
bution of the connectionist simulations is that we can
examine learning through exploration in a much purer
fashion, that is, unconfounded by any other tendencies
that humans might bring to bear on this situation.

STUDY 1

Method

NETWORK ARCHITECTURE

The code for the simulations to be reported was writ-
ten specially using the programming software Matlab,
Version 5.3.

THE LEARNING SYSTEM

The learning system employed in Study 1 is a fully con-
nected, three-layer, feed-forward, neural network as
shown in Figure 2. The input layer of the network com-
prises 22 units, of which 11 are used to encode one
dimension (e.g., shape) and the remaining 11 the other
dimension (e.g., speckles). These input units take values
between 0 and 1, with each level of an attribute being
represented by a pattern of activation (> 0) across up to 6
of the 11 units. For example, 1 speckle would be
encoded by the vector [1,1,0.5,0.25,0,0,0,0,0,0,0], 4
speckles as [0,0.25,0.5,1,1,0.5,0.25,0,0,0,0], through to
10 speckles as [0,0,0,0,0,0,0,0.25,0.5,1,1]. The effect of
this is that any two adjacent levels of an attribute will
share one input unit in common where the activation
level is at its maximum (1). Because each attribute level
is encoded by more that one input unit, and the individ-
ual input units contribute to the encoding of more than
one attribute level, the network achieves a distributed
(rather than localist) representation of the different
stimuli. This enables the network to encode location in
the space in such a way as to also take account of proxim-
ity. Furthermore, because of the roughly Gaussian distri-
bution of lesser activations to either side of the maxima,
stimuli up to five steps away from each other on any
attribute would share at least one input unit with activa-
tion levels > 0. This was intended to facilitate the general-
ization of learning to untrained regions of the space.

The second layer of the network includes three hid-
den units, each of which receives activations from all 22
input units. The number of hidden units (reflecting the
computational capacity of the network) was determined
on the basis of preliminary modeling to be the minimum
sufficient for learning these sets of inputs. Also providing
input (in Study 1 only) to the three hidden units is a sin-
gle “state” unit, effectively a record of the level of energy
(i.e., the effects of eating different beans within the con-
text of the game) at a given point in time. The activation
of this energy unit varies between 0 and 1, starting the
simulation at 1. There is a steady decay in the activation
of the energy unit, at the rate of 0.0001 per bean presen-
tation. Eating a good bean increases the activation of the
energy unit by 0.001 and eating a bad bean decreases it
by 0.001 (whereas avoiding a bad bean produces only the
time-related decay of 0.0001).

Weighted activations from the three hidden units and
the energy unit are then fed through a logistic (“squash-
ing”) function, restricting the output activation to a
range between 0 and 1, and thence to a single output
unit. The input to the logistic function from the energy
unit is not modified by learning but determined by the
following “hunger function” selected on the basis of pre-
liminary modeling, the effect of which is to provide a
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maximum input of 1 to the logistic function when energy
is 0, declining to 0.33 when energy is 1. The effect of this
hunger function is that the network is more inclined to
eat when energy is low, even if it has not clearly catego-
rized a presented input as a good bean.

Hunger = 1/[γ(Energy2 + Energy + 1)], with γ = 1.

THE ACTION SELECTION MECHANISM

In Study 1, the output of the learning system com-
pletely determines the action selected. A threshold
parameter on the output unit is set at 0.5, at or above
which outputs are treated as equivalent to eating a bean
and below which outputs are treated as equivalent to
avoidance.

TRAINING PROCEDURE

The network was trained using variants of the stan-
dard backpropagation of error algorithm (Rumelhart,
Hinton, & Williams, 1986) to modify the connection
weights. (Parameter settings were 0.02 for the learning
rate and 0.06 for momentum.) This form of training
requires the target values of the stimuli, that is, their
actual valences, to be defined in advance by the
researcher. This allows an error value (or delta, ∆) to be

calculated. For this purpose, the output generated by the
net in response to a given input is subtracted from the
target value for that input. Where the input corre-
sponded to a good bean, the target value was set at 0.9,
where it corresponded to a bad bean, it was set at 0.1. A
positive ∆ thus represents an outcome better than the
net’s prediction, a negative ∆ represents an outcome
worse than predicted. This ∆ is used to modify the con-
nection weights of the hidden-to-output, energy state-to-
hidden, and input-to-hidden links. The effect of these
modifications is to increase the output activation pro-
duced in response to a given input if ∆ is positive and
reduce it if ∆ is negative.

SUPERVISED LEARNING WITH FULL FEEDBACK

Three variants of this training procedure were used.
In the simulations using full feedback, ∆ was calculated
and connection weights were modified both when the
net chose to eat (i.e., produced an output equal or
greater than 0.5) and when it did not. In other words, the
situation is conceptually equivalent to being asked to
predict whether a bean was good or bad and then being
simply told whether this prediction was right or wrong.
These simulations are an example of a standard discrimi-
nation learning problem of the kind that has been the
subject of extensive connectionist modeling using super-
vised learning (e.g., McClelland & Rumelhart, 1988)
and provide a benchmark to show how well the network
can learn the inputs with no restrictions.

REINFORCEMENT LEARNING

WITH CONTINGENT FEEDBACK

More interesting theoretically are the simulations
using contingent feedback. In these, connection weights
are only modified if the output activation is equal to, or
greater than, 0.5, that is, if the net has chosen to eat. If
the net produces an output of less than 0.5, this is con-
ceptually equivalent to avoiding a bean, and thus receiv-
ing no feedback about whether it would have been good
or bad. In other words, no learning (modification of
weights) takes place on any trial where the output is less
than threshold. When this occurs, the net just proceeds
to the next input pattern with no modification to the
weights. Because feedback is contingent on the action
performed, this constitutes a form of reinforcement
learning.

REINFORCEMENT LEARNING WITH CONTINGENT

FEEDBACK AND CONFIRMATION BIAS

A further variant of the learning procedure was based
on the observation, in the animal learning literature,
that avoidance responses appear more resistant to
extinction than would be predicted if the nonoccur-
rence of an expected shock following avoidance was pro-
cessed simply as a nonevent. One interpretation (Solo-
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mon & Wynne, 1954) is that avoidance is reinforced by a
reduction in fear consequential on performance of the
avoidance response.

To simulate this form of confirmation bias, we
adapted the contingent feedback procedure as follows:
On all trials where the network avoided (i.e., produced
an output < 0.5), regardless of the true target value for
the input, we calculated a ∆ as though the target value
was 0.1 (i.e., as though it was a bad bean). This ∆ was then
multiplied by an attenuation parameter arbitrarily set at
0.1, and the connection weights were then updated by
the backpropagation algorithm in the normal way. In
other words, regardless of whether the input in fact cor-
responded to a good or bad bean, avoidance was rein-
forced, the strength of the reinforcement (i.e., ∆) being
equivalent to one-tenth of that received for correct
avoidance under full feedback training for an output
activation at the same level. It was deemed necessary to
set the attenuation parameter relatively low, although we
had no particular theoretical grounds for choosing this
specific value, because otherwise incorrect avoidance
(in this condition) would have been reinforced as
strongly as correct approach (or as correct avoidance
under full feedback).

In both full and contingent feedback conditions, the
network was trained for 5,000 epochs with all 36 input
patterns (beans) being presented once in each epoch
and all weights being updated together (by batch train-
ing) at the end of each epoch. For each simulation,
the starting state of the network was defined by setting
all connections to random values within the range from
–0.3 to +0.3. (There were no restrictions on the values
taken by connection weights after training.) Ten inde-
pendent replications of each simulation were per-
formed with different sets of initial random weights,
analogous to running an experiment with 10 independ-
ent participants. At the end of training, the output activa-
tions corresponding to each of the 36 training input pat-
terns (beans) were recorded. In addition, following
training, the network was presented with novel inputs or
beans with attribute combinations not previously shown
and output activations were again recorded. The purpose
of these test phase trials was to see how the network’s rep-
resentation of the problem space (instantiated in the con-
nection weights) would produce generalization of learn-
ing, that is, allow input patterns not previously presented
to be categorized as good or bad. In this phase, the net-
work was presented with inputs corresponding to all
remaining 64 cells of the 10 × 10 matrix so as to provide
complete mappings of the problem space. No ∆ was cal-
culated on any of these test trials so there was no further
modification of the connection weights during the test
phase.

Results

We first inspected the output activations at the end of
5,000 epochs of training in which all 36 input patterns
(beans) were presented. For each of the 10 replications
within each of the three feedback conditions, we calcu-
lated (a) the number of correct choices out of 18 for the
good and bad beans separately (i.e., outputs of 0.5 or
more to good beans and less than 0.5 for bad beans) and
(b) the mean (absolute) error (∆) over the two sets of
beans separately (i.e., the differences, regardless of sign,
between the output activations achieved after training
and the correct target values, averaged over the beans
within the good and bad sets). Table 1 shows the means
over the 10 replications within each condition. In the full
feedback condition, 18 correct responses were obtained
to each set of inputs. This was expected from previous
connectionist simulations of two-category learning (e.g.,
McClelland & Rumelhart, 1988). In the other two condi-
tions, the bad beans were all correctly avoided apart
from within a single replication under contingent feed-
back (13 out of 18 avoided). However, 29% of the good
beans also were avoided, that is, categorized as bad.
Wilcoxon signed ranks tests indicated that the differ-
ence between number of correct choices for good and
bad beans was significant under both contingent
feedback (z = 2.94, p < .005) and confirmation bias (z =
2.85, p < .005).

The mean absolute error (∆) scores (i.e., discrepan-
cies from target values) provide more details of the level
of learning achieved. Under (unbiased) contingent
feedback, although bad beans are consistently avoided,
∆ remains quite high and only marginally (z = 1.89, p <
.06) below that for good beans. This indicates that once
the outputs to these patterns fell below threshold, they
then showed little further polarization toward the cor-
rect target value of 0.1. The reason for this is that no fur-
ther updating of weights then occurred on these trials
and any further improvement in discrimination could
only occur as a result of backpropagation of error on the
remaining inputs categorized as good. Under confirma-
tion bias, however, the difference between the mean
error scores to good and bad beans is more reliable (z =
2.20, p < .05), indicating that the output activations for
correctly avoided beans continued to decrease toward
their true target values. These data were submitted to a 3
× 2 (Feedback × Valence) analysis of variance, with
repeated measures on the second factor. This revealed a
significant effect for feedback, F(2, 27) = 122.45, p < .001,
with both the contingent feedback and confirmation
bias conditions differing significantly (p < .001) from full
feedback. The effect of valence, F(2, 27) = 10.02, p < .001,
and the interaction, F(2, 27) = 4.03, p < .05, were also
significant.
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We next tested generalization to input patterns not
presented during training. Table 1 also shows the aver-
age outputs over all 64 untrained test patterns. The three
feedback conditions also differed significantly, F(2, 27) =
5.32, p < .05, indicating that the untrained patterns were
evaluated more negatively under contingent feedback
and confirmation bias. In other words, in those condi-
tions where good beans were less well learned, the net-
work showed a generalization effect, so that novel beans
tended, on average, to be categorized as bad.

A more complete picture of how the networks gener-
alized from the presented inputs can be seen in Figure 3.
This shows the “landscapes” of mean output activations
produced by the network to all 100 possible input pat-
terns in the different conditions, using a monochrome
gradation with lighter shades representing higher activa-
tions, that is, more positive valence. For comparison pur-
poses, the top left panel shows the actual target values.
The full feedback condition produced a reasonably
accurate landscape with hills and valleys corresponding
respectively to the good and bad regions, the main dif-
ference from the actual target landscape being the
spreading (i.e., generalization) of higher and low out-
puts into the neutral untrained regions. Under contin-
gent feedback, however, the landscapes display incom-
plete recognition of good beans (particularly Region 5),
with confirmation bias leading to stronger rejection of
Regions 4 and 6.

STUDY 2

The simulations in the first study demonstrate impor-
tant differences between learning under full and contin-
gent feedback. Specifically, for the artificial system
described, objects that are in fact good (i.e., approach-
able) may continue to be categorized as bad, and hence
be avoided, under conditions where avoidance prevents
corrective learning from taking place. Furthermore, in
the confirmation bias condition, designed to simulate
the presumed reinforcing effect of avoiding an object
believed to be bad, negative evaluations of such objects

(wrongly) categorized as bad become even more
extreme.

In any simulation study, the effects observed can
depend on specific features of the procedure, including,
for example, the network architecture and the various
parameter settings. (Of course, experimental findings
can be just as dependent on procedural details, but this
dependency may be less transparent where the method-
ology is less familiar.) Although varying parameters arbi-
trarily is uninformative, two (related) features of our
original network appear particularly relevant to concep-
tual issues. The first is the relationship between the
learning system and the action selection mechanism. In
Study 1, the relationship was deterministic in that the
action selected depended entirely on whether the activa-
tion of the output of the learning system was above or
below threshold. Hence, there was no possibility of
exploration except in the context of a positive evalua-
tion. The inclusion of the energy unit, together with the
function that computed hunger from its activation, was
intended to encourage exploration when energy was
low. However, hunger was still located within the learn-
ing system in that it provided inputs to both the hidden
units and the threshold function on the output unit.

Arguably, a network architecture that distinguished
between evaluation (or attitude) and action would be
more appealing in terms of its intuitive resemblance to
human decision making. To address this issue, we modi-
fied the architecture for Study 2 to differentiate the
action selection mechanism explicitly from the learning
system and made the relationship between the two parts
of the network probabilistic by adding an element of ran-
dom noise to the action selection mechanism. The effect
of this is that the network had a non-zero probability of
approaching beans provisionally categorized as bad, as
well as a nonzero probability of avoiding beans provi-
sionally categorized as good.

The second important modification concerns the
role of energy or hunger. The energy unit was intro-
duced to allow for the intuition that individuals may be
more likely to approach objects about which they may be
uncertain, if their temporary need to do so is greater. In
short, one is more ready to eat if one is hungry. But here
we have an ambiguity. Does hunger make one think of a
particular food as more appetizing or merely more ready
to eat food that one would not normally regard as enjoy-
able or even edible? In Study 1, the linkage of the energy
unit to the learning system at least partly appears to simu-
late the first of these interpretations. In Study 2, the
energy unit was completely separated from the learning
system, being linked only to the action selection mecha-
nism. This also enabled us to vary how hunger was calcu-
lated from energy so as to investigate the impact of hun-
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TABLE 1: Mean Number of Correct Choices out of 18 and Mean Ab-
solute Error (∆) to Good and Bad Input Patterns, and
Mean Evaluation of Untrained Patterns as a Function of
Feedback (Study 1)

N Correct Mean
Choices Absolute Error

Good Bad Good Bad Untrained

Full feedback 18.0 18.0 0.02 0.01 0.53
Contingent feedback 12.6 17.5 0.29 0.25 0.42
Confirmation bias 13.1 18.0 0.26 0.09 0.41



ger on exploratory behavior without it having any effect
on evaluative learning (i.e., attitude).

Method

Our second study therefore employs an architecture
in which the (continuous) evaluation output from the
learning system produces a probability distribution from
which approach or avoidance behavior is chosen by the
action selection mechanism. The energy unit was now
treated as part of the action selection mechanism rather
than the learning system (see Figure 4). In addition, we
varied the specific function whereby the hunger input to
the action selection unit was computed from the energy
level at any given time. The basic function was as follows:

Hunger =((Baseline – 1) Energy + 1)γ, with γ = 5,

with the added constraint that the minimum level of
Hunger was 0.

Three functions were used as shown in Figure 5. In all
three, an energy level of 0 produces a hunger value of 1.
In the neutral condition (Baseline = 0), hunger
approaches an asymptote of 0 at energy = 1. In the cau-
tious condition (Baseline = –0.6), hunger falls more
quickly to 0, with the effect that hunger can only override
a negative expectancy when energy drops very low.
Finally, in the risky condition (Baseline = 0.6), the net-
work is prepared to take more risks (i.e., eat beans
expected to be somewhat bad) when its energy level is
high. The biases produced by these hunger functions
were added to the output from the learning system. The
resulting judgment (i.e., the evaluation plus hunger)
was transformed using a logistic function to produce a
probability of eating between 0 and 1. This means that as
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Figure 3 Target values (untrained patterns shown as 0.5) and mean output activations for all attribute combinations as a function of feedback
(Study 1).



the judgment of a bean moves further away from neutral
(0.5), the probability of approaching the bean rapidly
comes to be close to 0 or to be close to 1, depending on
the direction in which the judgment diverges from 0.5.
Beans with judgments of 0.5, such as might result early in
learning with no contribution from the hunger func-
tion, have a probability of 50% of being eaten.

Finally, a stochastic probability function was intro-
duced by comparing this result to a randomly generated
number between 0 and 1 (labeled noise in Figure 4). If
the output exceeded this random number, the action
selected would be “eat,” otherwise “avoid.” As a bean’s
evaluation falls it will, because of the stochastic nature of
the action selection process, still be eaten occasionally,
although with less and less frequency as the evaluation
moves closer to 0. Conversely, positively evaluated beans
may still be occasionally avoided, although less fre-
quently as their evaluation (plus hunger) approaches 1.
Hence, this additional random element weakens the
deterministic link between evaluation and action pres-
ent in Study 1 by allowing the network occasionally to
explore some beans toward which the provisional atti-
tude is negative.

In all other respects, the simulations were the same as
in Study 1, that is, the same set of input patterns was used,
the same form of input coding, and the same algorithm
to update the weights in the learning system, under the
same three feedback conditions (full, contingent, con-
firmation bias).

Results

Table 2 shows the mean scores for the number of cor-
rect choices, ∆s, and evaluations of untrained patterns.
Output plots (omitting full feedback conditions) are
shown in Figure 6. The results of Study 1 were broadly
replicated under the neutral and cautious hunger condi-
tions, with the bad beans being even better learned than
before (note the zero values for mean ∆s). In other
words, the full feedback condition resulted in perfect
learning of both good and bad beans, whereas good
beans (particularly, as in Study 1, those in Region 5) were
imperfectly learned under contingent feedback and
confirmation bias. Furthermore, in these latter two feed-
back conditions, the untrained beans were evaluated
somewhat negatively (and even more so than in Study 1).
However, a very different pattern emerges in the risky
condition. Here the asymmetry between the learning of
good and bad beans is effectively eliminated, and
untrained beans are evaluated relatively positively. Anal-
yses of variance (Feedback × Hunger × Valence for the
number of correct choices and ∆s; Feedback × Hunger
for the untrained patterns) indicated that all main
effects and interactions were highly significant (p <
.001).

These findings therefore demonstrate that the asym-
metry in the learning of good and bad objects found in
Study 1 could be replicated with a different network
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architecture. This asymmetry remained essentially
unchanged when the hunger function was defined so as
to have little or no effect except at low energy levels.
However, where the action selection mechanism
receives an extra boost of activation even when the net-
work’s energy level is high (risky condition), this appears
sufficient to get the network to eat more beans provision-
ally categorized as bad, and so receive the feedback
required to correct false negative beliefs.

These findings, however, disguise one important dif-
ference between the performances of the networks in
the two studies. The data shown in Table 2 are based on
10 replications per cell at the end of 5,000 epochs of
training. However, the Study 2 network occasionally
“died” early in training, that is, reached zero energy
before it had developed an adequate representation of
the input space (essentially so as to avoid eating too
many bad beans). In the neutral condition, the numbers
of “deaths” (i.e., extra runs required to produce 10 suc-
cessful replications per cell) were 0, 0, and 12, respec-
tively, under full, contingent, and confirmation bias
feedback, compared with 0, 0, and 8 in the cautious con-
dition and 4, 9, and 23 in the risky condition. In short,
the elimination of the learning asymmetry in the risky
condition comes at the price of several deaths caused by
indiscriminate eating. The combination of confirmation
bias and the separation of the action-selection mecha-
nism from the learning system architecture also seems to
leave the network vulnerable to an early death. By con-
trast, in Study 1, there were no deaths in any of the condi-
tions. A plausible explanation for the greater efficiency
of the original network is that its energy unit operates
almost as a part of the hidden layer with which it is con-
nected, thus increasing the power of the hidden layer to
discriminate between the different regions.

Discussion

Connectionist simulation has been employed effec-
tively to generate theoretical insights in many areas of
cognitive psychology. However, when extending this
technique to social psychology, a major issue to be faced
is that of how to represent the value individuals attach to
particular objects. Network simulators are essentially
programs for transforming particular abstract numeri-
cal patterns (vectors and matrices) into others. There is
nothing intrinsically good or bad, or better or worse,
about some numbers rather than others. We can, of
course, choose to define (as here) activations of positive
sign as standing for approval and activations of negative
sign as standing for disapproval (e.g., Eiser et al., 1998).
To do this, however, is just to adopt a mnemonic conven-
tion. There is nothing about these numbers as such that
implies that anything evaluative—or even symbolic—is
going on (and still less that computers can have
attitudes).

Our approach, therefore, was not simply to show (as
under full feedback) that connectionist networks can be
trained to differentiate patterns that we have defined as
standing for good and bad objects. Rather, we started by
asking whether there may be anything in the process of
learning itself that may distinguish how favorable and
unfavorable attitudes are acquired. Our simulations
were guided by the intuition that our attitudes are largely
acquired by interaction with our environment and also
that our attitudes guide such interaction. More specifi-
cally, we need to explore and approach objects to find
out about them, but at the same time we are more likely
to approach objects we expect to be good. Conversely, we
will tend to avoid objects we expect to be bad unless moti-
vated (here, by hunger) to engage in potentially risky
exploration. Because by avoiding such objects we learn
nothing that contradicts our initial aversion, our provi-
sionally unfavorable attitude toward them will persist,
and may even be strengthened. This corresponds to the
classic finding in animal learning of avoidance behavior
resisting extinction over time, and also may account for
many human phobic behaviors and cognitions.

Our first aim was therefore to reproduce, in a highly
restricted context, this asymmetry in the way we believe
favorable and unfavorable attitudes are acquired. In
Study 1, we modified the standard backpropagation of
error algorithm by making updating of connection
weights contingent on the network having produced an
output above a specified threshold (equivalent to
approach, or eating a bean). The effect of this was that
whereas the network still learned the location of the bad
beans, some good beans were never identified as such by
the network. Modifying the algorithm further by includ-
ing a confirmation bias for avoidance made this effect
slightly stronger and reduced the ∆ for the bad beans.

Eiser et al. / CONNECTIONIST ATTITUDE LEARNING 1231

TABLE 2: Mean Number of Correct Choices out of 18 and Mean Ab-
solute Error (∆) to Good and Bad Input Patterns, and
Mean Evaluation of Untrained Patterns in Relation to
Hunger Function and Feedback (Study 2)

N Correct Mean
Choices Absolute Error

Good Bad Good Bad Untrained

Neutral hunger
Full feedback 18.0 18.0 0.00 0.00 0.50
Contingent feedback 12.6 18.0 0.27 0.00 0.32
Confirmation bias 13.8 18.0 0.20 0.00 0.38

Cautious hunger
Full feedback 18.0 18.0 0.00 0.00 0.51
Contingent feedback 12.0 18.0 0.30 0.00 0.27
Confirmation bias 12.1 18.0 0.30 0.00 0.28

Risky hunger
Full feedback 18.0 18.0 0.00 0.00 0.50
Contingent feedback 18.0 18.0 0.00 0.00 0.51
Confirmation bias 18.0 17.4 0.00 0.01 0.54



The implication is that our ability to identify good
objects may be incomplete but that we are less likely to
hold false positive than false negative beliefs. We also

observed that the network in all conditions generalized
its learning to new input patterns not previously pre-
sented during training. This is a consequence of it hav-
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Figure 6 Mean evaluations for all attribute combinations as a function of hunger function and feedback (Study 2).



ing acquired connection weights to solve the problem
initially presented to it and then applying these connec-
tion weights to new inputs. As can be seen from the land-
scape plots in Figures 3 and 6, untrained beans tended to
be evaluated similarly to those in nearby regions that had
been presented during training. Note that our simula-
tions make no attempt to incorporate factors underlying
differences between gradients of excitatory and inhibi-
tory generalization, or of approach and avoidance
behaviors, observed in other areas such as animal learn-
ing (Mackintosh, 1974).

In Study 2, we employed a different computational
architecture incorporating a distinction between a system
for learning evaluations and a mechanism for selecting
actions based on such evaluations. Evidently, the distinc-
tion between evaluation and behavior is fundamental to
attitude theory. The network used in Study 2 makes this
distinction more transparent. Variations between energy
levels and response biases also were examined without
assuming that hunger directly influenced the network’s
expectations regarding the valence of specific beans.
Furthermore, the deterministic link between evaluation
and action was modified by a stochastic probability func-
tion (“noise”). This meant that exploratory behavior
could still occur occasionally even where beans where
expected to be bad. Despite this important modification,
the learning asymmetry observed in Study 1 was repli-
cated (and, if anything, strengthened) under two of the
three hunger function conditions. This suggests that it
may take more than an occasional contact with the truth
to correct false negative beliefs. Part of the reason for
this is that the network is not designed to learn the
valence of each bean one at a time but to form a distrib-
uted, that is, configurational, representation of the
input space as a whole. Put differently, the network asso-
ciates valence with general categories of objects, and
such categorical expectations appear robust enough to
withstand occasional contradiction. However, when a
risky hunger function was used (so that the network was
still motivated to sample beans even when it had maxi-
mum energy), this extra boost toward exploratory or
approach behavior was sufficient to eliminate the asym-
metry between the learning of good and bad beans.

The effects of different hunger functions could be
interpreted from the perspective of several theoretical
approaches, including sensation seeking (Zuckerman,
1994) and regulatory focus theory (Higgins, 1998). Our
present research, however, does not attempt to simulate
the processes underlying the development of individual
differences in risk acceptance-aversion or approach-
avoidance motivation (e.g., Elliot & Thrash, 2002).
Rather, these effects evoke the classic distinction in sig-
nal detection theory (Swets, 1973) between sensitivity
and response bias. Sensitivity refers to the ability of a sys-

tem to discriminate reliably between classes of objects, in
this case good and bad beans. Response bias refers to the
tendency to set a criterion or response threshold at a
level that involves acceptance of a higher number of
either false positive or false negative errors, often so as to
reflect the pay-off of potential benefits and costs. In
Study 2, response bias was manipulated through prede-
termined hunger functions. However, our approach
could be extended to consider how feedback from the
environment might reinforce different exploration
strategies (and hence lead to the acquisition of prefer-
ences for risk or caution) over and above its effects on
evaluative expectancies that have been the focus of our
present research. In any case, the findings from the
connectionist modeling suggest that human perfor-
mance in the learning situation would be improved by
inducing participants to adopt a riskier approach to
their exploratory behavior. That is, by more readily
approaching beans about whose outcomes they are
uncertain, participants should obtain more feedback
and, hence, the learning asymmetry would be reduced.
Effectively, such participants would be approximating a
full feedback learning environment.

The aim of our simulation was to explore the implica-
tions of particular assumptions about the processes
underlying the acquisition of attitudes. Our two studies
demonstrate that asymmetries between positive and neg-
ative attitudes follow directly from relatively simple
assumptions about the context in which people gain
experience of their world. The most fundamental of
these is that individuals make choices based on their
expectations of outcomes, that is, that they will approach
things they expect to be good and give pleasure and
avoid things they expect to be bad and give pain. So long
as these preconditions prevail, individuals who adopt an
exploration strategy resembling that simulated here will
tend to manage to identify sufficiently safe and rewarding
regions of their life-space, albeit at the price of leaving
some other potentially rewarding regions unexplored.
Hence, for such individuals, positive experiences will
tend to predominate over negative ones and, if we
believe Parducci (1984), this will lead to feelings of hap-
piness. Indeed, on average, people do seem to describe
themselves as above average in happiness (Klar & Giladi,
1999) and positive traits (Hoorens, 1995), as well as less
vulnerable to personal risks (Weinstein, 1989). Less
encouragingly, though, people may persist in negative
and prejudicial beliefs through a lack of any learning
experience to contradict such beliefs. Even quite weak
priming with negative beliefs can be self-reinforcing if
individuals do not need to put the truth of their negative
beliefs to the test. All this lends plausibility to the idea
that we acquire attitudes, not so much to provide our-
selves with a true and complete map of what is good and
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bad in our environment or life-space but rather so that
we can navigate through selected areas of that life-space
with reasonable safety and gain. Attitudes, in short, are
there to guide our behavior.

But of course, not all choices are that free. Even under
ordinary circumstances, not all desirable outcomes can
be attained and not all undesirable ones avoided. Very
many individuals are subject to abusive and oppressive
conditions where pain and punishment occur both fre-
quently and inescapably. Research on learned helpless-
ness (Abramson, Seligman, & Teasdale, 1978) testifies to
the damaging effects on individuals’ well-being, motiva-
tion, and self-esteem of uncontrollable negative events.
Although we are proposing a view of attitude learning
formulated at a high level of generality, we nonetheless
readily acknowledge that there will be many contexts in
which this assumption of free choice is less applicable. If
individuals consistently fail to avoid negative events, pos-
itive experiences are unlikely to predominate over nega-
tive ones in their learning history, as Parducci (1984)
assumes. If individuals lack the opportunity to achieve
desired goals, they may persist in false positive beliefs
that “the grass is greener” without ever being able
directly to put these to the test. Such constraints could be
modeled, but we have not done so here. The important
point is that learning experiences of any kind can shape
our evaluations of our environment and our own rela-
tion to it. Our simulations have focused on contexts
where such learning experiences are themselves a func-
tion of evaluative beliefs.
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