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• By compactifying to 4D, we obtain a multitude of 

scalar fields – moduli, parameterizing internal metric 

deformations, brane positions, etc.

• In String/M-theory all masses and couplings are 

functions of the moduli vevs

• Once the moduli are stabilized, all couplings are 

completely fixed and are computable in principle

• Can we stabilize all moduli so that we can make 

predictions?

Introduction and motivation



• Moduli masses must be large enough to be compatible 

with observations (BBN => Mmod > O(10)TeV )

• Addressing the strong CP problem

• CC should be tiny but positive (discrete fine tuning)

• SUSY must be broken such that new CP violating 

phases are compatible with current exp. limits

• FCNCs are suppressed, no rapid proton decay, etc. 
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Moduli fixing in Type IIB 

Calabi-Yau orientifolds

• Comlex structure moduli and the axio-dilaton can be 

stabilized at tree-level by turning on fluxes Dasgupta, Rajesh, 

Sethi; Giddings, Kachru, Polchinski; Larsen, O’Connell, Robbins

• Kahler moduli can be stabilized by including non-

perturbative effects (instantons, gaugino condensation) 
Kachru, Kallosh, Linde, Trivedi (KKLT)

• Can obtain de Sitter vacua once supersymmetry

breaking effects are included: alpha prime corrections 

(Balasubramanian, Berglund, Conlon, Quevedo), matter F-terms plus 

D-terms (Lebedev, Nilles, Ratz), anti D3-branes (KKLT)



• Here we concentrate on Kahler moduli
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• Common practice: assume as many divisors 

contributing to the superpotential as there are Kahler

moduli and go to a basis where

• For a k-th divisor D to contribute the instanton must 

possess precisely two fermionic zero modes:

Necessary condition:    +(D,OD)- (D,OD) 1

Sufficient: h02(D)=0,  h01(D)=0
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• Naively, one needs at least as many rigid divisors to 

contribute to the superpotential as there are Kahler

moduli. If h1,1
+(X)=O(100) this is a rather daunting task

• Furthermore, visible sector divisor Dvisible supports chiral

matter => extra zero modes Blumenhagen et. al. hep-th/0711:3389

• We already know that <Fi>0 in the visible sector

• Hence, despite the success of the KKLT approach the 

problem seems to comes back
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• Is it possible to stabilize all Kahler moduli with fewer 

than h1,1
+(X)?

• Consider an extreme case with a single divisor D

• A divisor D corresponds to a zero locus of a section of a 

holomorphic line bundle O(D). If D is ample, its Poincare 

dual [w] is inside the Kahler cone.
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• The Kahler cone is given by a set of linear inequalities 

in the two-cycle volumes ti. After a linear change of 

coordinates

• An ample divisor is transverse (has a positive 

intersection with) to all holomorphic curves

• Hence, if a single ample divisor contributes to the 

superpotential, the vevs of all moduli are automatically 

inside the Kahler cone
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• Recall:

• SUSY extremum (pick for definiteness Wflux< 0,  A > 0)

where

• All two- and four-cycle volumes as well as the volume 

of the Calabi-Yau are paremeterized by D!
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• Introduce anti D3-branes to break SUSY
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• A three-parameter example CICY:

Define the orientifold action:

Demand that the polynomials transform as

Kahler potential:

Ample divisor:
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• Recall the general expressions for the moduli vevs

• For the specific example we get: 

• All Kahler moduli are parameterized by a SINGLE 

parameter! This approach to Kahler moduli fixing is 

highly constraining and therefore potentially predictive
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• In fluxless G2 compactifications of M-theory we find a 

qualitatively similar result when the non-perturbative 

superpotential receives a contribution from a 

supersymmetric three-cycle Q, which is Poincare dual to 

the co-associative four-form *F

The four-form is dynamically fixed by the homology of Q
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• There may exist additional non-perturbative 

contributions. How robust are the vacua we found?

• Clearly, when N >>M , the extra contributions are 

exponentially suppressed.

• This is especially true if the leading term is due to a 

gaugino condensate with N~O(10), while the remaining 

terms come from instantons, i.e. M=1.
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Moduli masses:

one is heavy

N-1 are light

• moduli are probably heavy 

enough to decay before BBN 

• For the explicit toy example we numerically obtain                                  

the light moduli cannot decay into 

the gravitinos. Large entropy production at late times, 

but before BBN, helps to avoid the gravitino problem
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String Axiverse and Strong CP

• Until now we only discussed fixing the volumes i of 

four-cycles (and one linear combination of the axions). 

What about the remaining axions? Problem or virtue?

• Recall: 

• Axions (arising from PQ symmetry) – the most 

elegant dynamical solution to the strong CP problem 
(Peccei, Quinn; Weinberg, Wilczek)

• May provide a significant fraction of Dark Matter

• Typically very light, so could have important 

consequences for cosmology and astrophysics
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• Solving Strong CP via axions requires that the QCD 

axion acquires most of its mass from QCD instantons

• Typical moduli stabilization mechanisms give large 

masses to the axions, same as their saxion partners

• In Type IIB flux compactifications the dilaton and its 

axionic partner – the RR scalar are stabilized by fluxes 

near the string scale

• In a generic KKLT scenario as well as the LARGE 

volume scenario, the axionic partners of Kahler moduli

get masses    m ~ O(m3/2) >> mQCD (Conlon hep-th/0602233)
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• In the new scenario, a single non-perturbative term 

freezes the volumes i and a single linear combination 

of axions 

• To fix all axions we must include the truncated non-

perturbative contributions B. Acharya, KB, P. Kumar: hep-th/1004.5138

• Effective scalar potential after including the 

remaining non-perturbative terms and freezing all i
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• The axion mass spectrum before the QCD effects

where

• Consider  bi=2 ,  m3/2~10 TeV, VCY=1000,  fi=1016GeV

• In generic compactifications h1,1
+(X) ~ O(100-1000)

 String Axiverse with a multitude of light axions

Arvanitaki et. al hep-th/0905.4720, hep-th/1004.3558
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String Axiverse

Arvanitaki et. al hep-th/0905.4720, hep-th/1004.3558

• For masses below 10-33 eV, the axion mass is below the 

current Hubble scale, so they are essentially irrelevant 

although may contribute to dark energy

• Between 10-33 eV and 10-28 eV axions start oscillating 

between recombination and today. If they couple to E.B 

they can induce the rotation in the CMB polarization

• For m > 10-28 eV , axions can be a significant fraction 

of DM and can suppress power in small scale density 

perturbations

• Between 10-22 eV and 10-10 eV axions affect dynamics 

of rotating black holes. Superradiance.



• From QCD instantons

• The QCD instanton mass matrix is rank one =>

• QCD effects give mass to the lightest mass eigenstate

yk inside the linear combination representing QCD

• Can easily achieve | QCD |<<10-10, as long as at least 

one of the mass eigenstates inside QCD is lighter than 
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What about the QCD axion?



• Pre BBN cosmological history is non-thermal so the 

standard estimates on the axion relic density do not 

apply. The mass of the QCD axion is such that it starts 

coherent oscillations during moduli dominated era. For 

all axions whose masses are greater then

the relic abundance is independent of their mass!

• Modest fine tuning of the misalignment angle. The 

entropy dilution due to late time moduli decays allows 

decay constants  fk much closer to the GUT scale
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a) Non-thermal cosmology (Hinf > Mmoduli )        b) Standard cosmology (Hinf < Mmoduli )

• Consider one axion/e-folding between 10-33eV and 1 eV

• Constraints from the relic abundance require a much 

smaller fine tuning of <I> for case a) compared to case b)

• Isocurvature fluctuations can easily distinguish between 

the two scenarios



Falsifiable predictions

• Discovery of tensor modes in the near future would rule 

out the entire Axiverse (isocurvature fluctuations produced 

during inflation would be too large)

• Discovery  of isocurvature componenent of in the CMB 

would strongly favor the non-thermal scenario

• Expect O(1) fraction of DM to come from axions

• Couplings of axions with masses mi << mQCD ~ 2
QCD/f

to E.B are highly suppressed by a factor (mi/mQCD )2

essentially due to grand unification => axion decays to 

photons and the rotation of the CMB polarization are 

suppressed for light non-QCD axions



Conclusions

• Constructed a new class of compactifications  in Type 

IIB on CY orientifolds, completely analogous to the M-

theory models found earlier.

• All Kahler moduli can be stabilized inside the Kahler 

cone by a single non-perturbative contribution. Divisor 

supporting the visible sector is then fixed automatically

• SUSY CP violation is suppressed since the 

superpotential as well as the F-terms have the same 

overall phase.

• Strong CP problem can be solved with all the moduli 

stabilized. Moreover, obtain a multitude of light axions!


