

Timm Wrase

Flux compact BPS case

Localiz effect

Conclusio

Smeared versus localized sources in flux compactifications

Timm Wrase

Based on:

TW, Zagermann 1003.0029 Blåbäck, Danielsson, Junghans, Van Riet, TW, Zagermann 1009.1877

String Vacuum Project meeting Fall 2010

Timm Wrase

Flux compact.

BPS case

Classical type II flux compactifications

- Most constructions of dS vacua use non-perturbative effects for moduli stabilization
- dS after uplift which breaks explicitly SUSY

KKLT, Large Volume

Timm Wrase

Flux compact.

BPS case

Conclusion

Classical type II flux compactifications

- Most constructions of dS vacua use non-perturbative effects for moduli stabilization
- dS after uplift which breaks explicitly SUSY

KKLT, LARGE VOLUME

• It is in principle possible to stabilize all moduli classically

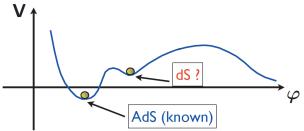
VILLADORO, ZWIRNER DEWOLFE, GIRYAVETS, KACHRU, TAYLOR CÁMARA, FONT, IBÁÑEZ

HEP-TH/0503169 HEP-TH/0505160 HEP-TH/0506066

Timm Wrase

BPS case
non-BPS case

Classical type II flux compactifications


- Most constructions of dS vacua use non-perturbative effects for moduli stabilization
- dS after uplift which breaks explicitly SUSY

KKLT, LARGE VOLUME

• It is in principle possible to stabilize all moduli classically

VILLADORO, ZWIRNER HEP-TH/0503169

DeWolfe, Giryavets, Kachru, Taylor hep-th/0505160 Cámara, Font, Ibáñez hep-th/0506066

Timm Wrase

Flux compact.

BPS case
non-BPS case

Classical type II flux compactifications

- Most constructions of dS vacua use non-perturbative effects for moduli stabilization
- dS after uplift which breaks explicitly SUSY

KKLT, LARGE VOLUME

• It is in principle possible to stabilize all moduli classically

VILLADORO, ZWIRNER DEWOLFE, GIRYAVETS, KACHRU, TAYLOR CÁMARA, FONT, IBÁÑEZ

 $\begin{array}{l} {\rm HEP\text{-}TH}/0503169 \\ {\rm HEP\text{-}TH}/0505160 \\ {\rm HEP\text{-}TH}/0506066 \end{array}$

Can we find classical dS vacua?

Hertzberg, Tegmark, Kachru, Shelton, Ozcan 0709.0002 [astro-ph]

Type II supergravity

Smeared vs. localized sources

Timm Wrase

Flux compac

riux compac

3PS cas

non-BPS case

ocaliz. effect

Conclusio

The classical ingredients for type II supergravity theories are

RR-fluxes $F_p,$ NSNS $H\text{-flux},\,R_6,\,Oq\text{-planes},\,\dots$

Timm Wrase

Flux compact.

Type II supergravity

The classical ingredients for type II supergravity theories are

RR-fluxes
$$F_p$$
, NSNS H -flux, R_6 , Oq -planes, ...

For smeared Oq-planes we find a 4D scalar potential

$$V(\rho, \phi, ...) = \sum_{p} V_{F_p} + V_H + V_{R_6} - V_{Oq},$$

where $\rho = (vol_6)^{1/3}$ and ϕ is the dilaton.

Timm Wrase

Flux compact.

BPS case non-BPS ca

Localiz. effects

Conclusion

Type II supergravity

The classical ingredients for type II supergravity theories are

RR-fluxes F_p , NSNS H-flux, R_6 , Oq-planes, ...

For smeared Oq-planes we find a 4D scalar potential

$$V(\rho, \phi, ...) = \sum_{p} V_{F_p} + V_H + V_{R_6} - V_{Oq},$$

where $\rho = (vol_6)^{1/3}$ and ϕ is the dilaton.

When is
$$\partial_{\rho}V = \partial_{\phi}V = 0$$
 and $V > 0$ possible?

Hertzberg, Kachru, Taylor, Tegmark 0711.2512 [hep-th]

Timm Wrase

Flux compact.

We can evade a no-go theorem involving ρ and ϕ with the following minimal ingredients

Curvature	IIA	IIB
$V_{R_6} \sim -R_6 \leq 0$	$O4, H, F_0$	$O3, H, F_1$
$V_{R_6} \sim -R_6 > 0$	$ \begin{array}{c} O4, F_0 \\ O4, F_2 \\ O6, F_0 \end{array} $	$ \begin{array}{c} O3, F_1 \\ O3, F_3 \\ O3, F_5 \\ O5, F_1 \end{array} $

```
HERTZBERG, KACHRU, TAYLOR, TEGMARK
                                                   0711.2512 [HEP-TH]
                                      SHVERSTEIN
                                                   0712.1196 [HEP-TH
               HAQUE, SHIU, UNDERWOOD, VAN RIET
                                                   0810.5328 [HEP-TH]
CAVIEZEL, KOERBER, KÖRS, LÜST, TW. M. ZAGERMANN
                                                   0812.3551 [HEP-TH
                     Flauger, Robbins, Paban, TW
                                                   0812.3886 [HEP-TH
                Danielsson, Haque, Shiu, Van Riet
                                                   0907.2041 НЕР-ТН
           DE CARLOS, GUARINO, MORENO 0907.5580, 0911.2876 [HEP-TH
                        CAVIEZEL, TW, ZAGERMANN
                                                   0912.3287
                                                             HEP-TH
                                 TW, ZAGERMANN
                                                   1003.0029 [HEP-TH]
                   Danielsson, Koerber, Van Riet
                                                   1003.3590 [HEP-TH]
```

Danielsson, Haque, Koerber, Shiu, Van Riet, TW

1011.XXXX [HEP-TH]

Smeared versus localized sources

Smeared vs. localized sources

Timm Wrase

Flux compac

DI 5 Casi

non-bra case

ocaliz. effects

Conclusio

• O-planes are localized objects

• Smearing was necessary to solve equations of motion

Smeared versus localized sources

• O-planes are localized objects

Smeared vs.

Timm Wrase

Flux compac

nna

non-BPS case

Localiz. effect

Conclusio

• Smearing was necessary to solve equations of motion

When is smearing $\delta(Oq) \approx 1$ a valid approximation?

Smeared versus localized sources

Smeared vs.

Timm Wrase

Flux compact.

BPS case non-BPS case Localiz. effects • O-planes are localized objects

• Smearing was necessary to solve equations of motion

When is smearing $\delta(Oq) \approx 1$ a valid approximation?

Negative curvature $R_6 < 0$ requires (in the localized case)

large warping or large stringy corrections

Douglas, Kallosh 1001.4008 [hep-th]

Timm Wrase

Flux compac

3PS cas

non-BPS case

ocaliz. effect

Conclusio

An example with BPS sources

Giddings, Kachru and Polchinski found localized no-scale Minkowski solutions with O3-planes

Giddings, Kachru, Polchinski hep-th/0105097

Timm Wrase

Flux compact

DDC ---

non-BPS case

Localiz. effect

Conclusio

An example with BPS sources

Giddings, Kachru and Polchinski found localized no-scale Minkowski solutions with O3-planes

GIDDINGS, KACHRU, POLCHINSKI HEP-TH/0105097

smeared case

$$H, F_3, O3$$

$$ds^2 = ds_4^2 + ds_6^2$$

$$0 = \mathrm{d}F_5 = H \wedge F_3 - \tilde{\mu}_3$$

Timm Wrase

Flux compac

Fiux compac

BPS case

non-BPS case

Localiz. effect

Conclusion

An example with BPS sources

Giddings, Kachru and Polchinski found localized no-scale Minkowski solutions with O3-planes

GIDDINGS, KACHRU, POLCHINSKI HEP-TH/0105097

smeared case

 $H, F_3, O3$

$$ds^2 = ds_4^2 + ds_6^2$$

$$0 = \mathrm{d}F_5 = H \wedge F_3 - \tilde{\mu}_3$$

localized case

$$H, F_3, O_3, F_5, A$$

$$ds^2 = e^{2A}ds_4^2 + e^{-2A}ds_6^2$$

$$dF_5 = H \wedge F_3 - \tilde{\mu}_3 \delta(O3)$$

Smeared vs. localized sources

Timm Wrase

Flux compac

DC anao

T 11 00 .

Jocaniz. Circo

Conclusion

- Can solve the 10D equations of motions in both cases
- Find no-scale Minkowski vacua
- Internal space is (conformally) Ricci-flat

Smeared vs.

Timm Wrase

Flux compac

BPS cas

non-BPS case

Localiz. effect

Conclusio

• Can solve the 10D equations of motions in both cases

- Find no-scale Minkowski vacua
- Internal space is (conformally) Ricci-flat

But localization effects are large

$$\nabla^2 \mathrm{e}^{-4A} = -\mathrm{e}^{-\phi} |H|^2 + \tilde{\mu}_3 \delta(O3)$$

Smeared vs. localized sources

Timm Wrase

BPS case

- Can solve the 10D equations of motions in both cases
- Find no-scale Minkowski vacua.
- Internal space is (conformally) Ricci-flat
- Complex structure moduli and ϕ are stabilized

smeared case

$$F_3 = -e^{-\phi} \star_6 H$$

localized case

$$F_3 = -\mathrm{e}^{-\phi} \star_6 H$$

Smeared vs. localized sources

Timm Wrase

El....

Flux compact

BPS cas

non-BPS case

caliz. effect

Conclusio

BUT

$$F_3 = -\mathrm{e}^{-\phi} \star_6 H = -\mathrm{e}^{-\phi} \star_6 H$$

since warp factor cancels: $\star_6 H \approx \sqrt{\det\left(\mathrm{e}^{2A} g_6\right)} \left(\mathrm{e}^{-2A} g_6^{-1}\right)^3 H$

Smeared vs.

Timm Wrase

Flux compost

DD0

.....

ocanz. emects

Conclusio

BUT

$$F_3 = -\mathrm{e}^{-\phi} \star_6 H = -\mathrm{e}^{-\phi} \star_6 H$$

since warp factor cancels: $\star_6 H \approx \sqrt{\det\left(\mathrm{e}^{2A} g_6\right)} \left(\mathrm{e}^{-2A} g_6^{-1}\right)^3 H$

Moduli values at minimum unchanged!

Approximation $\delta(O3) \approx 1$ is "ok"

BUT

$$F_3 = -\mathrm{e}^{-\phi} \star_6 H = -\mathrm{e}^{-\phi} \star_6 H$$

since warp factor cancels: $\star_6 H \approx \sqrt{\det\left(\mathrm{e}^{2A} g_6\right)} \left(\mathrm{e}^{-2A} g_6^{-1}\right)^3 H$

Moduli values at minimum unchanged!

Approximation $\delta(O3) \approx 1$ is "ok"

smeared: H and F_3 stabilize moduli

localized: $\tilde{\mu}_3\delta(O3), F_5, A$ give corrections of equal size

 \Rightarrow corrections from $\tilde{\mu}_3\delta(O3), F_5, A$ cancel each other

Smeared vs. localized sources

Timm Wrase

Flux compact.

BPS case

non-bra case

Localiz. effect

Conclusio

A T-dual example with BPS sources

T-duality along one H-flux direction \leftrightarrow Douglas, Kallosh

 $H \rightarrow R_6 < 0$

 $F_3 \rightarrow F_4$

 $O3 \rightarrow O4$

 $F_5 \rightarrow F_4$

 $A \rightarrow A$

Smeared vs. localized sources

Timm Wrase

Flux compact

BPS cas

Localiz. ellect:

Conclusio

A T-dual example with BPS sources

T-duality along one H-flux direction \leftrightarrow Douglas, Kallosh

$$H \rightarrow R_6 < 0$$

$$F_3 \rightarrow F_4$$

$$O3 \rightarrow O4$$

$$F_5 \rightarrow F_4$$

$$A \rightarrow A$$

Smeared vs. localized sources

Timm Wrase

Flux compact

BPS case

non-BPS case

Localiz. effect

Conclusio

Conclusions remain unchanged:

- Douglas, Kallosh ⇒ warping effects are large
- But again smeared moduli values are unaffected

Note:
$$\int \sqrt{g_{10}} R_6 < 0 \implies V_{R_6} > 0$$
 (no 'uplift' to dS, solutions are Minkowski)

Replace O3-plane by $\overline{D3}$ -brane:

Smeared vs. localized sources

Timm Wrase

Flux compact.

BPS case

non-BPS case

Localiz, effect

Conclusio

smeared case

 $H, F_3, \overline{D3}$

$$ds^2 = ds_4^2 + ds_6^2$$

$$0 = \mathrm{d}F_5 = H \wedge F_3 - \mu_3$$

localized case

$$H, F_3, \overline{D3}, F_5, A, \ldots$$

$$ds^2 = e^{2A} ds_4^2 + ds_6^2$$

$$dF_5 = H \wedge F_3 - \mu_3 \delta(O3)$$

Smeared vs. localized sources

Timm Wrase

Flux compact

BPS case

non-BPS case

Localiz, effec

Conclusio

smeared case

$$H, F_3, \overline{D3}$$

$$ds^2 = ds_4^2 + ds_6^2$$

$$0 = \mathrm{d}F_5 = H \wedge F_3 - \mu_3$$

• Can solve the 10D equations of motions

Smeared vs. localized sources

Timm Wrase

Flux compact

BPS case

non-BPS case

Localiz. effec

Conclusio

smeared case

$$H, F_3, \overline{D3}$$

$$ds^2 = ds_4^2 + ds_6^2$$

$$0 = \mathrm{d}F_5 = H \wedge F_3 - \mu_3$$

- Can solve the 10D equations of motions
- Find AdS solutions $V = V_{F_3} + V_H V_{R_6} + V_{\overline{D3}} < 0$
- Internal space is positively curved: e.g. $S^3 \times S^3$

Smeared vs. localized sources

Timm Wrase

Flux compact

DI 5 case

non-BPS case

Localiz. effe

Conclusio

smeared case

$$H, F_3, \overline{D3}$$

$$ds^2 = ds_4^2 + ds_6^2$$

$$0 = \mathrm{d}F_5 = H \wedge F_3 - \mu_3$$

- Can solve the 10D equations of motions
- Find AdS solutions $V = V_{F_3} + V_H V_{R_6} + V_{\overline{D3}} < 0$
- Internal space is positively curved: e.g. $S^3 \times S^3$
- Complex structure and ϕ stabilized $(F_3 = -e^{-\phi} \star_6 H)$
- volume moduli stabilized: e.g. $R_{ij}^{S^3} = \frac{1}{2} e^{-\phi} |H|^2 g_{ij}^{S^3}$

Smeared vs. localized sources

Timm Wrase

Flux compact BPS case

non-BPS case

Conclusion

smeared case $H = F_{-} = \overline{D3}$

$$H, F_3, \overline{D3}$$

$$ds^2 = ds_4^2 + ds_6^2$$

$$0 = \mathrm{d}F_5 = H \wedge F_3 - \mu_3$$

- Can solve the 10D equations of motions
- Find AdS solutions $V = V_{F_3} + V_H V_{R_6} + V_{\overline{D3}} < 0$
- \bullet Internal space is positively curved: e.g. $S^3\times S^3$
- Complex structure and ϕ stabilized $(F_3 = -e^{-\phi} \star_6 H)$
- volume moduli stabilized: e.g. $R_{ij}^{S^3} = \frac{1}{2} e^{-\phi} |H|^2 g_{ij}^{S^3}$
- no SUSY but volume and dilaton masses above BF bound

Smeared vs. localized sources

Timm Wrase

Flux compact

BPS case

non-BPS case

Localiz. effec

Conclusio

localized case

H,
$$F_3$$
, $\overline{D3}$, F_5 , A , ...
$$ds^2 = e^{2A}ds_4^2 + ds_6^2$$

$$dF_5 = H \wedge F_3 - \mu_3 \delta(O3)$$

- (Assume) $F_1 = 0$, $F_3 = -e^{-\phi} \star_6 H$ for arbitrary g_6
- Combine eoms for F_3 , H, F_5 and external Einstein:

$$e^{-2A}R_4 = -(1+1)\mu_3\delta(\overline{D3})$$

Smeared vs.

Timm Wrase

Flux compact

non-BPS case

Localiz effect

Conclusio

localized case

$$H, F_3, \overline{D3}, F_5, A, \ldots$$

$$ds^2 = e^{2A} ds_4^2 + ds_6^2$$

$$dF_5 = H \wedge F_3 - \mu_3 \delta(O3)$$

- (Assume) $F_1 = 0$, $F_3 = -e^{-\phi} \star_6 H$ for arbitrary g_6
- Combine eoms for F_3 , H, F_5 and external Einstein:

$$e^{-2A}R_4 = -(1+1)\mu_3\delta(\overline{D3})$$

The smeared solution cannot be localized?

BPS versus non-BPS sources

Smeared vs. localized sources

Timm Wrase

Flux compact BPS case

non-BPS case

Localiz. effects

BPS condition in GKP

$$\frac{1}{4}(T_m^m-T_\mu^\mu)^{\mathrm{loc}} \geq \mu_3 \rho_3^{\mathrm{loc}}$$

For O3, D3 and $\overline{D3}$ we have $T_m^m = 0$.

	O3	$\overline{D3}$	D3
$ ho_3^{ m loc}$	$-\frac{1}{4}$	-1	1
$-\frac{1}{4}T^{\mu}_{\mu}$	$\mu_3 ho_3^{ m loc}$	$-\mu_3 \rho_3^{\mathrm{loc}}$	$\mu_3 \rho_3^{ m loc}$
BPS	\checkmark	×	✓

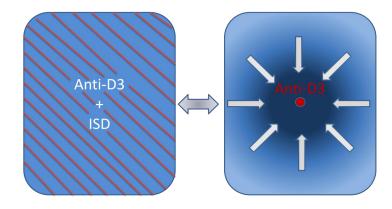
Force between $\overline{D3}$ and fluxes H, F_3

 \Rightarrow no static localized solution

non-BPS sources

Smeared vs. localized sources

Timm Wrase


Flux compact

BPS case

non-BPS case

Localiz. effects

Conclusio

smeared case

localized case

Smeared vs. localized sources

Timm Wrase

Flux compac

PS case

non Di b case

 ${\bf Localiz.\ effects}$

Conclusio

Localization effects are generically large in flux compactifications

$$\nabla^2 \mathbf{e}^A = |\mathrm{flux}|_p^2 - \delta(\mathrm{source})$$

Smeared vs. localized sources

Timm Wrase

Flux compact

BPS case

non Di b cab.

Localiz. effects

Conclusio

Localization effects are generically large in flux compactifications

$$\nabla^2 \mathbf{e}^A = |\mathrm{flux}|_p^2 - \delta(\mathrm{source})$$

Warping suppressed in the large volume limit $g_6 \to \lambda^2 g_6$?

Smeared vs. localized sources

Timm Wrase

Flux compact

3PS case

non Di b cao

Localiz. effects

Conclusio

Localization effects are generically large in flux compactifications

$$\nabla^2 \mathbf{e}^A = |\mathrm{flux}|_p^2 - \delta(\mathrm{source})$$

Warping suppressed in the large volume limit $g_6 \to \lambda^2 g_6$?

Yes!

$$\frac{1}{\lambda^2}\nabla^2\mathbf{e}^A=\frac{1}{\lambda^{2p}}|\mathrm{flux}|_p^2$$

Smeared vs. localized sources

Timm Wrase

Flux compact

3PS case

non Di b caba

Localiz. effects

Conclusio

Localization effects are generically large in flux compactifications

$$\nabla^2 \mathbf{e}^A = |\mathrm{flux}|_p^2 - \delta(\mathrm{source})$$

Warping suppressed in the large volume limit $g_6 \to \lambda^2 g_6$?

Yes! But so are the fluxes!

$$\frac{1}{\lambda^2}\nabla^2\mathbf{e}^A = \frac{1}{\lambda^{2p}}|\mathbf{flux}|_p^2$$

Smeared vs. localized sources

Timm Wrase

Flux compact

ora case

Localiz. effects

Conclusio

Localization effects are generically large in flux compactifications

$$\nabla^2 \mathbf{e}^A = |\mathbf{flux}|_p^2 - \delta(\mathbf{source})$$

Are there regions of small warping $e^A \approx 1$ and $(\nabla A)^2 \ll 1$?

Smeared vs. localized sources

Timm Wrase

Flux compact

non-BPS c

Localiz. effects

Conclusio

Localization effects are generically large in flux compactifications

$$\nabla^2 \mathbf{e}^A = |\mathrm{flux}|_p^2 - \delta(\mathrm{source})$$

Are there regions of small warping $e^A \approx 1$ and $(\nabla A)^2 \ll 1$?

Not really:

$$\nabla^2 \mathbf{e}^A = \mathbf{e}^A \nabla^2 A + \mathbf{e}^A (\nabla A)^2 \approx \nabla^2 A = |\mathrm{flux}|_p^2$$

Timm Wrase

Flux compact BPS case

T 1: CC /

Conclusion

Conclusion:

- Explicit examples:
 - smeared BPS sources are ok
 - non-BPS solutions problematic
- Localization effects comparable to fluxes

Timm Wrase

Flux compact. BPS case non-BPS case Localiz. effects

Conclusion

Conclusion:

- Explicit examples:
 - smeared BPS sources are ok
 - non-BPS solutions problematic
- Localization effects comparable to fluxes

Outlook:

- Study solutions close to BPS point
- Construct localized, non-BPS examples
- Generalize findings to intersecting branes

Timm Wrase

Flux compact. BPS case non-BPS case Localiz. effects

Conclusion

Conclusion:

- Explicit examples:
 - smeared BPS sources are ok
 - non-BPS solutions problematic
- Localization effects comparable to fluxes

Outlook:

- Study solutions close to BPS point
- Construct localized, non-BPS examples
- Generalize findings to intersecting branes

THANK YOU!