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Abstract. The Standard Model is the theory describing all observational data from

the highest energies to the largest distances. [There is however one caveat; additional

forms of energy, not part of the Standard Model, known as dark matter and dark

energy must be included in order to describe the universe at galactic scales and larger.]

High energies refers to physics at the highest energy particle accelerators, including

CERN’s LEP II (which ceased operation in 2000 to begin construction of the LHC

or Large Hadron Collider now operating) and Fermilab’s Tevatron, as well as to the

energies obtained in particle jets created in so-called active gallactic nuclei scattered

throughout the visible universe. Some of these extra-galactic particles bombard our

own earth in the form of cosmic rays, or super-energetic protons which scatter off nucei

in the upper atmosphere.

String theory is, on the other hand, an unfinished theoretical construct which

attempts to describe all matter and their interactions in terms of the harmonic

oscillations of open and/or closed strings. It is regarded as unfinished since at the

present it is a collection of ideas, tied together by powerful consistency conditions,

called dualities, with the ultimate goal of finding the completed String Theory. At the

moment we only have descriptions which are valid in different mutually exclusive limits

with names like, Type I, IIA, IIB, heterotic, M and F theory. The string landscape has

been described in the pages of many scholarly and popular works. It is perhaps best

understood as the collection of possible solutions to the string equations. Albeit these

solutions look totally different in the different limiting descriptions. What do we know

about the String Landscape? We know that there are such a large number of possible

solutions that the only way to represent this number is as 10500 or a one followed by

500 zeros. Note this isn’t a precise value since the uncertainty is given by a number

just as large. Moreover, we know that most of these string states look nothing like the

Standard Model. They have the wrong matter and wrong forces. Moreover they are

not off by a small amount, they are totally wrong.

So the question becomes, does string theory really describe our observable world?

In order to address this question, one must find at least one string state that resembles

it. One possibility is that our observable world is in fact a unique string state. If this is

the case, then the problem becomes one of finding the proverbial needle in the largest

possible haystack! On the other hand, there may be many states which are sufficiently

close to the observable world, and we need only to understand why we are in this

finite subspace of the string landscape. And perhaps there are good reasons, why this

subspace is preferred over 99.999999999...% of the myriad of non-Standard-Model-like

string states. Perhaps, just by confining our attention to this subspace we can learn

something about our observable world which we can not learn otherwise. Thus the
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goal of the present essay is to understand what it takes to find the Standard Model in

the string landscape.
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1. Introduction

1.1. Prologue

In this article I will discuss several recent attempts to find the Standard Model in

the string landscape. I will argue that the most efficient path is paved with two new

proposed symmetries of Nature, called grand unification and supersymmetry. Together

they make the journey exciting and inspiring. In order to bring this adventure to you,

the reader, I should first define what I mean when I talk of the Standard Model, then

describe these two new symmetries and finally discuss how to find the Standard Model

in the string landscape. This is the goal of the present article.

1.2. The Standard Model

The Standard Model is defined by the collection of four fundamental forces - strong,

weak, electromagnetic and gravitation and the matter particles which interact via these

forces. The last ingredient of the Standard Model, yet to be observed directly in an

experiment, is a fifth force, described by the Higgs interaction. The name the Standard

Model is archaic and no longer appropriate. It was coined in the early 1970s when the

Standard Model was the best proposal for a new theory describing all known phenomena

and thus THE THEORY to be tested in every possible way. After some 30 odd years

and millions of experimental tests later, the Standard Model is now the accepted Theory

of all observed properties of Nature. This is not to say, that the original proposal was

found to be without any unacceptable blemishes. In fact, a major discovery in the last

ten years has been the realization that neutrinos, which were believed to be massless

in the simplest version of the SM, are in fact massive. More about this later. However

with this major correction the SM is truly an accepted theory.∥
The Standard Model includes three families of quarks and leptons. The quarks

come in six different flavors, up, down, charm, strange, top, and bottom, with each flavor

coming in three colors. Quarks feel the strong force, exchanging gluons which themselves

come in 8 colors. Leptons are however color singlets. The three-fold symmetry of the

strong interactions is described by the mathematical group called SU(3)color. Prior to

obtaining mass via the Higgs VEV, massless quarks separate into left-handed and right-

handed components. So what is handedness? Quarks and leptons are spin 1/2 particles,

called Fermions. If a fermion’s spin points in the direction opposite to its motion, it is

called left-handed and if its spin points in the same direction as its motion, it is called

right-handed. This may seem like a trivial distinction, but in fact the weak doublets are

only left-handed. So it is necessary to distinguish left-handed and right-handed Fermion

fields, because Nature does. To describe an up quark we then need two fields, u and ū.

The first up field annihilates a left-handed up quark and creates a right-handed anti-up

∥ That said, the SM has two major deficiencies with regards to cosmology and astrophysics. It lacks an

explanation for the observed dark matter and dark energy of the universe. These topics are typically

reserved for a discussion of the physics beyond the Standard Model.
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quark. The second annihilates a left-handed anti-up quark (hence the bar) and creates

a right-handed up quark. Then the weak boson W+ takes d into u, and W− does the

reverse. We describe this doublet (under the weak SU(2)L group) as a single field q

with two pieces, i.e. q =

(
u

d

)
.

Note, in the Standard Model, all particles are described by relativistic quantum

fields.¶ It is a property of relativity that each particle has an anti-particle with identical

mass but opposite charges under all three forces. Moreover, when a particle and it’s own

anti-particle meet, they annihilate into anything which can be produced while conserving

energy. This may sound like an esoteric, Star Wars like, concept; it is reality. In fact,

a PET scan that you may have seen in your local hospital is a manifestation of this

fact. PET scan or Positron Emission Tomography is a process whereby a radioactive

isotope is administered to the patient. This radioactive isotope emits positrons (or anti-

electrons). The isotope travels to a part of your body (through the blood stream) and

sticks to a spot depending on the chemical properties of the isotope. For example, 58Ga

may be used for a PET scan of the brain. When the positrons are emitted they quickly

annihilate with local electrons. Two photons are created which travel to the detector

moving out in opposite directions. Each photon, sometimes called a gamma ray, γ, has

energy equal to the mass of the electron which disappeared. The energy of the photon

satisfies the famous Einstein relation, Eγ = mec
2.

So the first family of quarks and leptons is obtained from the Fermion fields -

{q =

(
u

d

)
, ū, d̄, l =

(
ν

e

)
, ē, ν̄}. (1)

Note, the quark fields u, d are color triplets, ū, d̄ are anti-triplets and leptons are color

singlets, i.e. they do not have color charge. The fields q, l are weak SU(2)L doublets

and under weak hypercharge, U(1)Y , these fields have charge -

Y = {1/3, −4/3, 2/3, −1, 2, 0}. (2)

Note, electric charge, Q, of these fields is given by the simple formula -

Q = T3 +
Y

2
. (3)

For example, in the lepton doublet we have T3 = +1/2 for the neutrino, ν, and

T3 = −1/2 for the electron, e. Hence the neutrino (electron) have electric charge 0

(-1), respectively. The anti-electron field, ē, has T3 = 0, since it is not part of a weak

doublet (we say it is a weak singlet) and thus has electric charge +1. It is then a simple

exercise to work out the electric charge of all the fields in one family. We find that

quarks have fractional charge, 2/3 for u and -1/3 for d. Finally, ν̄ is neutral under all

¶ Again, one caveat with respect to gravity and the rest of the Standard Model. A self-consistent

quantum mechanical treatment of gravity is problematic. This concerns the description of black holes

and the so-called “information loss paradox.” It is this paradox which calls for a better description of

gravity and the Standard Model.
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three SM symmetries, SU(3)color × SU(2)L × U(1)Y . It is a so-called “sterile” neutrino

whose sole purpose, as we shall discuss later, is to give neutrinos mass. Note, there are

inequivalent ways of introducing neutrino masses in the literature. In the later discussion

of neutrino masses, I will only consider the simplest possibility known as the Type I

See-Saw mechanism. In this case only SM singlet states, such as the “sterile” neutrinos

or SM singlet scalars are added to the original version of the SM, where neutrinos were,

in fact, massless.

Yet the only particles we observe in nature have integral charge. This is because

a proton is a bound state of two up quarks and one down quark, while a neutron is a

bound state of one up quark and two down quarks. Protons and neutrons have electric

charge +1 and 0, respectively. The strong force is extremely strong and is so strong that

an isolated free quark cannot exist. Only color singlet combinations of a red up, a blue

up and green down is allowed. However the residual strong force between color singlet

combinations of quarks in protons and neutrons hold these particles tightly bound in

the nuclei of atoms. The electromagnetic force is not as strong but then binds electrons

and protons together to form electrically neutral atoms.

In fact, the electromagnetic force is many times stronger than gravity. Gravity

holds us to the earth, but the electromagnetic force between atoms in matter keep

us from falling through the floor! The electromagnetic force is so very strong, that no

person on earth is strong enough to hold two electrons together, assuming these were the

only two charged particles around. So if atoms made of electrons and protons were not

electrically neutral, we could not possibly have structure in the universe. Tables, chairs,

stars and galaxies would be pulled apart by the strong electromagnetic repulsion. So it

is a wonderful fact that charge is quantized and protons and electrons have equal and

opposite charges, so when they are put together they make electrically neutral atoms.

This property of the Standard Model is known as charge quantization.

There are three families of quarks and leptons. All the states of the first family, with

all their charges under the strong and electroweak forces, are duplicated with a second

family and then a third family. The only difference is that the second family particles

are heavier than the first and the third family is even heavier than the second family.

It is a complete mystery why Nature would require three almost identical families of

quarks and leptons.

The Standard Model describes all known phenomena both on experiments

performed on earth as well as a description of cosmology and astrophysics starting as

way back in time as the first 3 minutes of the universe. All of this can be described with

just 28 fundamental parameters (see Table 1). These are the three low energy gauge

coupling constants, 9 parameters associated with quark and charged lepton masses, 4

quark weak mixing angles contained in the CKM matrix and 9 parameters associated

with neutrino masses and mixing.
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Sector # Parameters

gauge 3 α1, α2, α3,

quark masses 6 mu, md, mc, ms, mt, mb,

quark weak mixing angles 4 Vus, Vcb, Vub, δ,

charged lepton masses 3 me, mµ, mτ ,

neutrino masses 3 mν1 , mν2 , mν3 ,

lepton weak mixing angles 6 θsol, θatm, θ13, δi, i = 1, 2, 3,

electroweak scales 2 MZ , mHiggs

strong CP angle 1 θ̄

Table 1. The 28 parameters of the Standard Model. The values for all of these

parameters are set by experiment. Note, the charges of the quarks and leptons

under SU(3)color × SU(2)L × U(1)Y are typically not included in this list. They

are nevertheless important ingredients of the theory, whose origin is a great mystery.

1.3. Supersymmetric grand unified theories [SUSY GUTs]

SUSY GUTs provide a framework for solving many of the problems of the Standard

Model. But let us first describe these two symmetries one-by-one.

1.3.1. Grand unification Grand unified theories unify the three fundamental

interactions of the Standard Model. These are the strong forces represented by a three-

fold symmetry called color; the weak forces are responsible for one form of radioactive

nuclear decay which powers the engine for stellar burning, including our own sun, and

the electromagnetic force, associated with the first relativistic field theory unifying

the theories of electric and magnetic phenomenon into one. The latter two forces are

themselves intertwined in what is called the electroweak theory, represented by a two-

fold symmetry called weak isospin and and a phase symmetry called weak hypercharge.

It is an amazing fact of nature that the electroweak symmetry is a symmetry of equations

of motion of the theory, but not a symmetry of the vacuum. In fact, this very symmetry

breaking is due to the vacuum expectation value of the Higgs field. And this non-zero

expectation value is responsible for the mass of the weak bosons, W± and Z0, and all

quarks and leptons.

Grand unified theories provide an explanation of these amazing facts. By unifying

the three symmetries, SU(3)color, SU(2)L, U(1)Y , one also unifies the fermions of the

Standard Model into multiplets transforming under the new grand unified symmetry

group. In fact the simplest extension of the Standard Model, the symmetry group

SO(10) [1], puts all the fermions of one family into one single representation, see Table

2. This is a phenomenal fact and a significant point in favor of grand unification.

SO(10) contains the SM as subgroup. Note, the spinor representation of SO(10)

is represented as a direct product of 5 spin 1/2 states with spin in the 3rd direction

labelled ±(1/2). SU(3) acts on the first 3 spin states by raising (or lowering) one spin
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Grand Unification − SO(10)

State Y Color Weak

= 2
3
Σ(C)− Σ(W) C spins W spins

ν̄ 0 + + + ++

ē 2 + + + −−
ur − + + +−
dr − + + −+

ub
1
3

+ − + +−
db + − + −+

uy + + − +−
dy + + − −+

ūr + − − ++

ūb −4
3

− + − ++

ūy − − + ++

d̄r + − − −−
d̄b

2
3

− + − −−
d̄y − − + −−
ν −1 − − − +−
e − − − −+

Table 2. Spinor representation of SO(10) where this table explicitly represents the

Cartan-Weyl weights for the states of one family of quarks and leptons. The double

lines separate irreducible representations of SU(5).

and lowering (or raising) another. Hence the states represented by −++;+−+;+ +−
are an SU(3) triplet and + + +, − − − are singlets. SU(2) acts on the last two spin

states, with −+;+− representing an SU(2) doublet and ++, −− are singlets. Finally,

electroweak hypercharge Y is given by Y = 2
3

∑3
i=1 Si −

∑5
i=4 Si with Si = ±1

2
.

SO(10) also has two very interesting subroups, Pati-Salam [2] (SO(6) ⊗ SO(4) ≡
SU(4)C ⊗SU(2)L⊗SU(2)R) and Georgi-Glashow [3] (SU(5)). SU(5) multiplets can be

gotten by raising one spin and lowering another spin out of the full tensor product state.

As such, one sees that the spinor representation of SO(10) breaks up into 3 irreducible

representations of SU(5) given by the multiplets with zero, two or four spin down states,

corresponding to an SU(5) 1, 10 or 5̄. In particular, note that the 10 = {ū, q, ē},
5̄ = {d̄, l} and 1 = ν̄. The full SO(10) operations then allow for simultaneously

raising or lowering two different spins. Similarly, SU(4)C is an extension of SU(3)C
with the additional operations of raising or lowering two different color spins. Hence the

spinor representation of SO(10) decomposes to two irreducible multiplets of Pati-Salam,

with Q = {q, l} = (4, 2, 1) and Q̄ = {q̄, l̄} = (4̄, 1, 2̄) with SU(2)R represented by the

operation of raising or lowering two different weak indices.

The three fundamental forces, defined by the symmetries SU(3)color, SU(2)L, U(1)Y
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Figure 1. Gauge coupling unification in non-SUSY GUTs on the left vs. SUSY
GUTs on the right using the LEP data as of 1991. Note, the difference in the
running for SUSY is the inclusion of supersymmetric partners of standard model
particles at scales of order a TeV. Given the present accurate measurements of the

three low energy couplings, in particular αs(MZ), GUT scale threshold corrections are

now needed to precisely fit the low energy data. The dark blob in the plot on the right

represents these model dependent corrections.

couple to matter proportional to the three fine-structure constants, α3(µ), α2(µ), α1(µ)

defined at some energy scale µ. A grand unified gauge theory, such as SO(10), on the

other hand has only one coupling constant, αGUT . Note, the values of the observed

coupling constants depend on the energy scale at which they are measured. Indeed

we are able to calculate the energy dependence of the fine-structure constants, IF one

knows the mass spectrum of particles which carry strong and electroweak charge. If

one assumes that only particles observed to date and the theoretically predicted Higgs

boson contribute to the so-called renormalization group running of the Standard Model

couplings one finds the result given in Fig. 1 (left). Although the three fine-structure

constants approach to a common value, they do NOT actually meet. This is a significant

problem with gauge coupling unification. However, this calculation explicitly assumes

no new particle states above the weak scale, since only particle states with mass less

than the relevant energy scale affect the running of the coupling. This assumption will

shortly be challenged.

Assuming grand unification at a scale,MGUT ∼ 1015 GeV, introduces a fundamental

problem. Why is the weak scale, Mweak ∼ 100 GeV, so much smaller than the GUT

scale. This is particularly problematic since the weak scale is set by the Higgs boson

mass. Note boson masses are sensitive to physics at the highest scales. This is because

quantum mechanical corrections to any boson mass are proportional to some effective

coupling α times the largest scale in the theory. In this case we would expect the Higgs
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mass to be given at leading order by m2
H ≈ m2

0 + αM2
GUT + · · · where m0 is the Higgs

mass prior to quantum corrections. Why the ratio mH/MGUT ∼ 10−13 is known as the

“gauge hierarchy problem.” One possible solution to the gauge hierarchy problem is to

postulate a new symmetry of nature, so-called “supersymmetry.” Supersymmetry is,

as it sounds, a pretty amazing symmetry.

1.3.2. Supersymmetry Supersymmetry is the largest possible symmetry of space-time,

i.e. it is an extension of Einstein’s special theory of relativity and ordinary space-time

translation invariance which adds a new quantum direction of space. This quantum

direction of space, θ, is, in fact, infinitesimal since θ2 = 0. Moreover, there is at

least two such directions, θ1, θ2 with the property that θ1θ2 = −θ2θ1. Ordinary

coordinates of space and time are pure numbers, where given two different directions x

and y, we have xy = yx. One obtains the same number no matter which order these

two numbers are multiplied. The difference in these multiplication rules is identical

to the difference between the quantum statistics of identical fermions and identical

bosons. Supersymmetry is a rotation of ordinary space into superspace where the θ-like

coordinates rotate into the ordinary space-time coordinates.

Let’s take a small digression which we will quickly relate to the above discussion.

Matter particles, such as electrons, protons and neutrons, are spin 1/2 particles, known

as Fermions. They satisfy the Pauli exclusion principle. This is the property postulated

by Wolfgang Pauli which says that no two identical fermions can be put in the same

position at the same time. It is mathematically expressed by the form of the quantum

mechanical wave function for two identical fermions. The square of the wave function

gives the probability for finding the fermions at points x1 and x2 in space, at the

same time (see Fig. 2). According to the Pauli exclusion principle, this wave function

must be anti-symmetric under interchanging the two fermion positions. As a result the

probability for finding two identical fermions at the same point in space, at the same

time, vanishes. This property is in agreement with the intuitive property of matter.

All the force particles of nature have integral spin. Photons, the weak particles,

W±, Z0, and strong interaction gluons are all spin 1. Gravitons are spin 2 and the

postulated Higgs particle has spin 0. According to the physicists Bose and Einstein,

all identical integral spin particles, called Bosons, satisfy Bose-Einstein statistics. The

quantum mechanical wave function describing two identical Bosons must be symmetric

under interchange (see Fig. 3). Hence it is most probable to find two identical Bosons at

the same position in space at the same time. Moreover, it is more probable to have any

number of Bosons sitting right on top of each other. In fact, with millions and millions

of photons sitting in the same quantum state one obtains a macroscopic electric and

magnetic field. It is no wonder that all force particles are Bosons.

The bosonic wave function behaves as ordinary spatial coordinates. We say that

they commute with each other. On the other hand, interchanging two fermions changes

the sign of the wave function. We say that they anti-commute, just like the new

anti-commuting coordinates of supersymmetry. In fact, supersymmetry is a symmetry
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Figure 2. This figure represents the anti-symmetric wave function for two
identical fermions at positions x1, x2. Note, due to the anti-symmetry of the
wave function, it is NOT possible to have two fermions at the same position in
space, at the same time.

Figure 3. This figure represents the symmetric wave function for two identical
bosons at positions x1, x2. Note, due to the symmetry of the wave function,
two identical bosons prefer to be at the same position in space, at the same
time.

which rotates bosonic particles into fermionic ones and vice versa. Supersymmetric

rotations change the spin and statistics of the particles, BUT NOT their other properties.

For example, if supersymmetry were an exact symmetry, then for every spin 1/2 electron

there would necessarily exist a spin 0 bosonic electron, a scalar electron or (selectron).

For every spin 1 photon, there would necessarily exist a spin 1/2 fermionic photon

or (photino). In the minimal supersymmetric extension of the Standard Model or

[MSSM], every particle has its supersymmetric partner. So why would we want to

postulate doubling the entire particle spectrum? Besides the fact that supersymmetry

is the unique extension of special relativity, i.e. the largest possible symmetry of nature

in four dimensions; supersymmetric theories, as developed by Wess and Zumino, and

Salam and Strathdee, are much better behaved than ordinary relativistic field theories.

As a result supersymmetry can solve the gauge hierarchy problem [4]. Although an
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ordinary boson gets quantum mass corrections which scale like the largest mass in the

theory, fermions on the other hand are protected from such large corrections. In fact it

was shown long ago that due to the handedness (or chiral) symmetry of fermions their

mass terms receive quantum corrections which are only logarithmically sensitive to the

highest mass scale in the theory. For example the electron mass at leading order receives

a quantum correction of the form, me ≈ m0(1 + logMGUT/m0). In supersymmetric

theories bosons are protected by the chiral symmetry of their fermionic partners. In

the MSSM all quarks and leptons have scalar partners, called squarks and sleptons and

all gauge bosons have fermionic partners, called gauginos. Moreover the Higgs doublets

have fermionic partners, called Higgsinos. As long as supersymmetry is unbroken, then

the SM particles and their superpartners are degenerate. Hence the Higgs scalars are

protected from large radiative corrections. However, once SUSY is spontaneously broken

then scalars will naturally obtain mass of order the SUSY breaking scale, due to radiative

corrections. However, for gauginos to obtain mass, SUSY as well as the chiral symmetry

for gauginos, known as R symmetry, must be broken.

Including the supersymmetric particle spectrum (at a scale of order 1 TeV, as

required to solve the gauge hierarchy problem) in the renormalization group running

of the three low energy fine structure constants results in the graph of Fig. 1 (right).

Miraculously the three gauge couplings constants now unify at a GUT scale of order

3×1016 GeV [5]. As we shall argue there are three experimental pillars of SUSY GUTs:

(i) Gauge coupling unification,

(ii) Low energy supersymmetry,

(iii) Proton decay.

Hence the first experimental pillar of SUSY GUTs stands firm due to the LEP data from

1991. The CDF and DZero experiments at the Tevatron accelerator at Fermi National

Accelerator Laboratory in Batavia, Illinois are searching for the SUSY particles. AND

NOW the LHC at CERN will begin the search for supersymmetry. The discovery of

super particles at the Fermilab Tevatron or by the CMS or ATLAS detectors at the

LHC will verify the second pillar of SUSY GUTs. Supersymmetry is clearly the New

Standard Model of the new millenium. It is a new symmetry of Nature which most

elementary particle theorists would expect to show up at the TeV energies accessible

to the LHC. The third pillar, which may take some time, is the observation of proton

decay! Experiments searching for proton decay are on-going at SUPER-KAMIOKANDE

in Kamioka, Japan. However, we may have to wait for the next generation of proton

decay experiments, such as the large water čerenkov detector at the planned Deep

Underground Science and Engineering Laboratory [DUSEL] in South Dakota.

1.4. Virtues of SUSY GUTs

The framework provided by SUSY GUTs can be used to address the following open

problems of the Standard Model. In particular,
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(i) it can “naturally” explain why the weak scale MZ << MGUT ;

(ii) it explains charge quantization, and

(iii) predicts gauge coupling unification!

(iv) It predicts SUSY particles at the LHC, and

(v) it predicts proton decay.

In addition, it is a natural framework for understanding quark and lepton masses and

it has non-trivial consequences for astrophysics and cosmology.

(i) It predicts Yukawa coupling unification,

(ii) and with Family symmetry can explain the family mass hierarchy.

(iii) It can accomodate neutrino masses and mixing via the See-Saw mechanism, and

(iv) it can generate a cosmological asymmetry in the number of baryons minus anti-

baryons, i.e. baryogenesis via leptogenesis, via the decay of the heavy right-handed

neutrinos.

(v) In the minimal supersymmetric standard model with R parity, the lightest

supersymmetric particle [LSP] is a Dark Matter candidate.

For all of these reasons we might suspect that SUSY GUTs are a fundamental component

of any realistic string vacuum. And thus if one is searching for the MSSM in the mostly

barren string landscape, one should incorporate SUSY GUTs at the first step. So what

do string theories have to offer?

1.5. String Theory

As I explained earlier, the term the Standard Model is a severe understatement and

misnomer, since the Standard Model has now been verified in millions of ways at

multiple laboratories on earth and in the heavens. Similarly the term string theory is

a misnomer and a major overstatement, since there is no overall theoretical construct

which describes in one formalism all the properties attributed to the many faces of

string theory. String theory evolves by studying the several different limiting forms

of the theory, called Type I, Type IIA, Type IIB, E8 ⊗E8 and SO(32) heterotic, M and

F theory. These limiting forms can all be studied in their respective perturbative limits.

Then they are all tied together via so-called duality transformations which relate the

solutions of the different theories.

That said, perturbative string theory starts by studying the oscillations of a one

dimensional vibrating string moving along some trajectory in space with time. Type I

describes open and closed strings, while Type II/F and heterotic theories describe the

motion of closed strings. The space time in which they move is 10 dimensional. Finally,

M theory is an 11 dimensional supersymmetric field theory whose topological excitations

can be related to all the other pure string theories via specific duality transformations.

The normal oscillation modes of the string are set by the string tension (or string

scale - MS) which is typically taken to be a scale of order the four dimensional
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Planck scale - MPl. At energies below MS only massless string modes can be excited.

String theories also have the amazing property that they are finite theories, i.e. all

field theoretic divergences are naturally cut-off at MS. The effective theory of the

massless excitations of the string is typically described by supergravity field theory

(supersymmetric field theory, plus the supersymmetric version of Einstein gravity)

including all the gauge interactions and matter multiplets described by the massless

modes of the string. In fact, the amazing property of strings is that a massless spin 2

graviton (the particle of Einstein gravity) naturally appears in the spectrum. This is

why Scherk and Schwarz first proposed that the string scale should satisfy MS ∼ MPl,

since MS sets the scale for the graviton to couple to matter (recall Newton’s constant of

gravity GN =M−2
Pl ). String theory excitations also naturally contain massless spin one

excitations with properties like the Standard Model gauge particles, such as the photon,

and even matter multiplets. However the particular massless spectrum of the string

depends in detail on the choice of a string vacuum. The problem is that there does not

appear to be a unique choice of string vacuum. Moreover, in the supersymmetric limit,

there are a continuous infinity of possible string vacua. And even after supersymmetry

is spontaneously broken, there are still estimated to be of order 10500 string vacua.

So how would one ever expect to be able to find the Standard Model in this huge

landscape of string vacua. The analog of finding the Standard Model in the string

landscape may be like finding a golf ball on the surface of the earth. The surface of

the earth is huge with many mountains, valleys, deserts and oceans and any random

search over this huge landscape will have almost zero probability of finding a golf ball.

However if the search was not random and one first found all the golf courses on the

earth, then the probability of finding a golf ball would increase dramatically! I propose

that the analog of the golf course for our problem is SUSY GUTs. When one first looks

for SUSY GUTs in the string landscape, the probability of finding the Standard Model

jumps by many, many orders of magnitude.

1.6. Preview

In the introduction I have tried to provide the basic motivation and phenomena

associated with supersymmetric grand unified theories and super strings. In the rest of

this article I will discuss more details associated with SUSY GUTs in four dimensions.

I will then introduce the concept of GUTs in extra dimensions, so-called orbifold GUTs,

which will then take us to the goal of String GUTs. Or finding the MSSM in the string

landscape. The bottom line of this discussion is the assertion that in order to find the

MSSM one must first find regions of the string landscape containing SUSY GUTs. In

these regions the MSSM becomes natural.
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2. Four dimensional SUSY GUTs and Gauge coupling unification

Now that we have identified the states of one family in SU(5), let us exhibit the fermion

Lagrangian (with gauge interactions). We have

Lfermion = 5̄†αi(σ̄µ D
µ)α

β 5̄β + 10αβ
†
i(σ̄µ D

µ)αβγδ 10γδ (4)

where

Dµ = ∂µ + ig5TA Aµ
A (5)

and TA is in the 5̄ or 10 representation. We see that since there is only one gauge

coupling constant at the GUT scale we have

g3 = g2 = g1 ≡ g5 (6)

where, after weak scale threshold corrections are included, we have

g3 → gs, g2 → g, g1 →
√

5

3
g′. (7)

At the GUT scale we have the relation

sin2 θW =
(g′)2

g2 + (g′)2
= 3/8. (8)

But these are tree level relations which do not take into account threshold

corrections at either the GUT or the weak scales nor renormalization group [RG] running

from the GUT scale to the weak scale. Consider first RG running. The one loop RG

equations are given by

dαi

dt
= − bi

2π
α2
i (9)

where αi =
g2i
4π
, i = 1, 2, 3 and

bi =
11

3
C2(Gi)−

2

3
TR NF − 1

3
TR NS. (10)

Note, t = − ln(MG

µ
),
∑

A(T
2
A) = C2(Gi)I with TA in the adjoint representation defines

the quadratic Casimir for the group Gi with C2(SU(N)) = N and C2(U(1)) = 0.

Tr(TATB) = TR δAB for TA in the representation R (for U(1)Y , TR ≡ 3
5
Tr(Y

2

4
)) and

NF (NS) is the number of Weyl fermions (complex scalars) in representation R. For N

= 1 supersymmetric theories, Equation 10 can be made more compact. We have

bi = 3C2(Gi)− TR Nχ (11)

where the first term takes into account the vector multiplets and Nχ is the number of

left-handed chiral multiplets in the representation R [5,6]. The solution to the one loop

RG equations is given by

αi(MZ)
−1 = α−1

G − bi
2π

ln(
MG

MZ

). (12)

For the SM we find

bSM ≡ (b1, b2, b3) = (−4

3
Nfam−

1

10
NH ,

22

3
−4

3
Nfam−

1

6
NH , 11−

4

3
Nfam)(13)
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where Nfam(NH) is the number of families (Higgs doublets). For SUSY we have

bSUSY = (−2Nfam − 3

5
N(Hu+Hd), 6− 2Nfam −N(Hu+Hd), 9− 2Nfam) (14)

where N(Hu+Hd) is the number of pairs of Higgs doublets. Thus for the MSSM we have

bMSSM = (−33/5,−1, 3). (15)

The one loop equations can be solved for the value of the GUT scale MG and αG

in terms of the values of αEM(MZ) and sin2 θW (MZ). We have (without including weak

scale threshold corrections)

α2(MZ) =
αEM(MZ)

sin2 θW (MZ)
, α1(MZ) =

5
3
αEM(MZ)

cos2 θW (MZ)
(16)

and we find

(
3

5
− 8

5
sin2 θW (MZ))αEM(MZ)

−1 = (
bMSSM
2 − bMSSM

1

2π
) ln(

MG

MZ

) (17)

which we use to solve for MG. Then we use

α−1
G = sin2 θW (MZ) αEM(MZ)

−1 +
bMSSM
2

2π
ln(

MG

MZ

) (18)

to solve for αG. We can then predict the value for the strong coupling using

α3(MZ)
−1 = α−1

G − bMSSM
3

2π
ln(

MG

MZ

). (19)

Given the experimental values sin2 θW (MZ) ≈ .23 and αEM(MZ)
−1 ≈ 128 we find

MG ≈ 1.3×1013 GeV with NH = 1 and α−1
G ≈ 42 for the SM with the one loop prediction

for α3(MZ) ≈ 0.07. On the other hand, for SUSY we findMG ≈ 2.7×1016 GeV, α−1
G ≈ 24

and the predicted strong coupling α3(MZ) ≈ 0.12. How well does this agree with the

data? According to the PDG the average value of αs(MZ) = 0.1176 ± 0.002 [7]. So at

one loop the MSSM is quite good, while non-SUSY GUTs are clearly excluded.

At the present date, the MSSM is compared to the data using 2 loop RG running

from the weak to the GUT scale with one loop threshold corrections included at the

weak scale. These latter corrections have small contributions from integrating out the

W, Z, and top quark. But the major contribution comes from integrating out the

presumed SUSY spectrum. With a “typical” SUSY spectrum and assuming no threshold

corrections at the GUT scale, one finds a value for αs(MZ) ≥ 0.127 which is too large [8].

It is easy to see where this comes from using the approximate analytic formula

α−1
i (MZ) = α−1

G − bMSSM
i

2π
ln(

MG

MZ

) + δi (20)

where

δi = δhi + δ2i + δli. (21)

The constants δ2i , δ
l
i, δ

h
i represent the 2 loop running effects [6], the weak scale threshold

corrections and the GUT scale threshold corrections, respectively. We have

δ2i ≈ − 1

π

3∑
j=1

bMSSM
ij

bMSSM
j

log

[
1− bMSSM

j

(
3− 8 sin2 θW
36 sin2 θW − 3

)]
(22)
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where the matrix bMSSM
ij is given by [6]

bMSSM
ij =

 199
100

27
20

22
5

9
20

25
4

6
11
20

9
4

7
2

 . (23)

The light thresholds are given by

δli =
1

π

∑
j

bli(j) log(
mj

MZ

) (24)

where the sum runs over all states at the weak scale including the top, W , Higgs and

the supersymmetric spectrum. Finally the GUT scale threshold correction is given by

δhi = − 1

2π

∑
ζ

bζi log(
Mζ

MG

). (25)

In general the prediction for α3(MZ) is given by

α−1
3 (MZ) = (

b3 − b1
b2 − b1

)α−1
2 (MZ)− (

b3 − b2
b2 − b1

)α−1
1 (MZ)

+ (
b3 − b2
b2 − b1

)δ1 − (
b3 − b1
b2 − b1

)δ2 + δ3

=
12

7
α−1
2 (MZ)−

5

7
α−1
1 (MZ) +

1

7
(5δ1 − 12δ2 + 7δ3)

≡ (αLO
3 )−1 + δs (26)

where bi ≡ bMSSM
i , αLO

3 (MZ) is the leading order one-loop result and δs ≡ 1
7
(5δ1−12δ2+

7δ3). We find δ2s ≈ −0.82 (Ref. [9]) and δls = −0.04 + 19
28π

ln(TSUSY

MZ
) where the first term

takes into account the contribution of the W , top and the correction from switching

from the MS to DR RG schemes and (following Ref. [10])

TSUSY = mH̃(
mW̃

mg̃

)28/19
[
(
ml̃

mq̃

)3/19(
mH

mH̃

)3/19(
mW̃

mH̃

)4/19
]
. (27)

For a Higgsino mass mH̃ = 400 GeV, a Wino mass mW̃ = 300 GeV, a gluino mass

mg̃ = 900 GeV and all other mass ratios of order one, we find δls ≈ −0.12. If we

assume δhs = 0, we find the predicted value of α3(MZ) = 0.135. In order to obtain

a reasonable value of α3(MZ) with only weak scale threshold corrections, we need

δ2s + δls ≈ 0 corresponding to a value of TSUSY ∼ 5 TeV. But this is very difficult

considering the weak dependence TSUSY (Eqn. 27) has on squark and slepton masses.

Thus in order to have δs ≈ 0 we need a GUT scale threshold correction

δhs ≈ +0.94. (28)

At the GUT scale we have

α−1
i (MG) = α−1

G + δhi . (29)

Define

α̃−1
G =

1

7
[12α−1

2 (MG)− 5α−1
1 (MG)] (30)
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(or if the GUT scale is defined at the point where α1 and α2 intersect, then α̃G ≡
α1(MG) = α2(MG). Hence, in order to fit the data, we need a GUT threshold correction

ϵ3 ≡
α3(MG)− α̃G

α̃G

= −α̃G δhs ≈ −4%. (31)

Note, this result depends implicitly on the assumption of universal soft SUSY breaking

masses at the GUT scale, which directly affect the spectrum of SUSY particles at the

weak scale. For example, if gaugino masses were not unified at MG and, in particular,

gluinos were lighter than winos at the weak scale, then it is possible that, due to weak

scale threshold corrections, a much smaller or even slightly positive threshold correction

at the GUT scale would be consistent with gauge coupling unification [11].

2.1. Nucleon Decay

Baryon number is necessarily violated in any GUT [12]. In SU(5) nucleons decay via

the exchange of gauge bosons with GUT scale masses, resulting in dimension 6 baryon

number violating operators suppressed by (1/M2
G). The nucleon lifetime is calculable and

given by τN ∝M4
G/(α

2
G m

5
p). The dominant decay mode of the proton (and the baryon

violating decay mode of the neutron), via gauge exchange, is p → e+ π0 (n → e+ π−).

In any simple gauge symmetry, with one universal GUT coupling and scale (αG, MG),

the nucleon lifetime from gauge exchange is calculable. Hence, the GUT scale may be

directly observed via the extremely rare decay of the nucleon. In SUSY GUTs, the GUT

scale is of order 3×1016 GeV, as compared to the GUT scale in non-SUSY GUTs which

is of order 1015 GeV. Hence the dimension 6 baryon violating operators are significantly

suppressed in SUSY GUTs [5] with τp ∼ 1034−38 yrs.

However, in SUSY GUTs there are additional sources for baryon number violation

– dimension 4 and 5 operators [13]. Although our notation does not change, when

discussing SUSY GUTs all fields are implicitly bosonic superfields and the operators

considered are the so-called F terms which contain two fermionic components and the

rest scalars or products of scalars. Within the context of SU(5) the dimension 4 and 5

operators have the form (10 5̄ 5̄) ⊃ (Ū D̄ D̄) + (Q L D̄) + (Ē L L) and (10 10 10 5̄)

⊃ (Q Q Q L)+ (Ū Ū D̄ Ē) + B and L conserving terms, respectively. The dimension 4

operators are renormalizable with dimensionless couplings; similar to Yukawa couplings.

On the other hand, the dimension 5 operators have a dimensionful coupling of order

(1/MG).

The dimension 4 operators violate baryon number or lepton number, respectively,

but not both. The nucleon lifetime is extremely short if both types of dimension 4

operators are present in the low energy theory. However both types can be eliminated

by requiring R parity. In SU(5) the Higgs doublets reside in a 5H, 5̄H and R parity

distinguishes the 5̄ (quarks and leptons) from 5̄H (Higgs). R parity [14] (or its

cousin, family reflection symmetry (see Dimopoulos and Georgi [5]and DRW [15])

takes F → −F, H → H with F = {10, 5̄}, H = {5̄H, 5H}. This forbids the

dimension 4 operator (10 5̄ 5̄), but allows the Yukawa couplings of the form (10 5̄ 5̄H)
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and (10 10 5H). It also forbids the dimension 3, lepton number violating, operator

(5̄ 5H) ⊃ (L Hu) with a coefficient with dimensions of mass which, like the µ parameter,

could be of order the weak scale and the dimension 5, baryon number violating, operator

(10 10 10 5̄H) ⊃ (Q Q Q Hd) + · · ·.
Note, in the MSSM it is possible to retain R parity violating operators at low energy

as long as they violate either baryon number or lepton number only but not both. Such

schemes are natural if one assumes a low energy symmetry, such as lepton number,

baryon number or a baryon parity [16]. However these symmetries cannot be embedded

in a GUT. Thus, in a SUSY GUT, only R parity can prevent unwanted dimension

four operators. Hence, by naturalness arguments, R parity must be a symmetry in

the effective low energy theory of any SUSY GUT. This does not mean to say that R

parity is guaranteed to be satisfied in any GUT. A possible exception to this rule using

constrained matter content which generates the effective R parity violating operators

in a GUT can be found in [17, 18] or for a review on R parity violating interactions,

see [19]. For example, in Ref. [18], the authors show how to obtain the effective R

parity violating operator Oijk = (5̄j · 5̄k)15 · (10i ·Σ)15 where Σ is an SU(5) adjoint field

and the subscripts 15, 15 indicate that the product of fields in parentheses have been

projected into these SU(5) directions. As a consequence the operator Oijk is symmetric

under interchange of the two 5̄ states, Oijk = Oikj, and out of 10 5̄ 5̄ only the lepton

number/R parity violating operator QLD̄ survives.

R parity also distinguishes Higgs multiplets from ordinary families. In SU(5), Higgs

and quark/lepton multiplets have identical quantum numbers; while in E(6), Higgs and

families are unified within the fundamental 27 representation. Only in SO(10) are Higgs

and ordinary families distinguished by their gauge quantum numbers. Moreover the Z4

center of SO(10) distinguishes 10s from 16s and can be associated with R parity [20].

Dimension 5 baryon number violating operators may be forbidden at tree level by

symmetries in an SU(5) model, etc. These symmetries are typically broken however

by the VEVs responsible for the color triplet Higgs masses. Consequently these

dimension 5 operators are generically generated via color triplet Higgsino exchange

(Fig. 4). Hence, the color triplet partners of Higgs doublets must necessarily obtain

mass of order the GUT scale. [It is also important to note that Planck or string scale

physics may independently generate dimension 5 operators, even without a GUT. These

contributions must be suppressed by some underlying symmetry. See the discussion in

Section 4.4.8.]

The dominant decay modes from dimension 5 operators are p→ K+ ν̄ (n→ K0 ν̄).

This is due to a simple symmetry argument; the operators (Qi Qj Qk Ll), (Ūi Ūj D̄k Ēl)

(where i, j, k, l = 1, 2, 3 are family indices and color and weak indices are implicit)

must be invariant under SU(3)C and SU(2)L. As a result their color and weak doublet

indices must be anti-symmetrized. However since these operators are given by bosonic

superfields, they must be totally symmetric under interchange of all indices. Thus the

first operator vanishes for i = j = k and the second vanishes for i = j. Hence a second

or third generation particle must appear in the final state [15].
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Figure 4. The effective dimension 5 operator for proton decay.
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Figure 5. The effective four fermi operator for proton decay obtained by integrating

out sparticles at the weak scale.

The dimension 5 operator contribution to proton decay requires a sparticle loop

at the SUSY scale to reproduce an effective dimension 6 four fermi operator for proton

decay (see Fig. 5). The loop factor is of the form

(LF ) ∝ λt λτ
16π2

√
µ2 +M2

1/2

m2
16

(32)

leading to a decay amplitude

A(p→ K+ν̄) ∝ c c

M eff
T

(LF), (33)

where M eff
T is the effective Higgs color triplet mass (see Fig. 4), M1/2 is a universal

gaugino mass and m16 is a universal mass for squarks and sleptons. In any predictive

SUSY GUT, the coefficients c are 3 × 3 matrices related to (but not identical to)

Yukawa matrices. Thus these tend to suppress the proton decay amplitude. However

this is typically not sufficient to be consistent with the experimental bounds on the

proton lifetime. Thus it is also necessary to minimize the loop factor, (LF). This can be

accomplished by taking µ,M1/2 small and m16 large. Finally the effective Higgs color

triplet mass M eff
T must be MAXIMIZED. With these caveats, it is possible to obtain

rough theoretical bounds on the proton lifetime given by [21–23]

τp→K+ν̄ ≤ (
1

3
− 3)× 1034 yrs.. (34)

2.1.1. Gauge Coupling Unification and Proton Decay The dimension 5 operator (see

Fig. 4) is given in terms of the matrices c and an effective Higgs triplet mass by

1

M eff
T

[
Q

1

2
cqqQ Q cqlL+ U cudD U cueE

]
. (35)
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Table 3. Contribution to ϵ3 in three different GUT models.

Model Minimal SU5 Minimal

SU5 “Natural”D/T [22] SO(10) [23]

ϵGUTbreaking
3 0 −7.7% −10%

ϵHiggs
3 −4% +3.7% +6%

M eff
T [GeV] 2× 1014 3× 1018 6× 1019

Note, M eff
T can be much greater than MG without fine-tuning and without having any

particle with mass greater than the GUT scale. Consider a theory with two pairs of

Higgs 5i and 5̄i with i = 1, 2 at the GUT scale with only 51, 5̄1 coupling to quarks and

leptons. Then we have

1

M eff
T

= (M−1
T )11. (36)

If the Higgs color triplet mass matrix is given by

MT =

(
0 MG

MG X

)
(37)

then we have

1

M eff
T

≡ X

M2
G

. (38)

Thus for X << MG we obtain M eff
T >> MG.

We assume that the Higgs doublet mass matrix, on the other hand, is of the form

MD =

(
0 0

0 X

)
(39)

with two light Higgs doublets. Note this mechanism is natural in S0(10) [24,25] with a

superpotential of the form

W ⊃ 10 45 10′ +X (10′)2 (40)

with only 10 coupling to quarks and leptons, X is a gauge singlet and ⟨45⟩ = (B−L)MG.

Recall ϵ3 ≡ (α3(MG)−α̃G)
α̃G

∼ −4%. At one loop we find

ϵ3 = ϵHiggs
3 + ϵGUT breaking

3 + · · · . (41)

Moreover

ϵHiggs
3 =

3αG

5π
ln(

M eff
T

MG

). (42)

See Table 3 for the contribution to ϵ3 in Minimal SUSY SU(5), and in an SU(5) and

SO(10) model with natural Higgs doublet-triplet splitting.

Recent Super-Kamiokande bounds on the proton lifetime severely constrain these

dimension 6 and 5 operators with τ(p→e+π0) > 1.0×1034 yrs (172.8 ktyr) at (90% CL) [26],
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and τ(p→K+ν̄) > 2.3× 1033 yrs (92 ktyr) at (90% CL) based on the listed exposures [27].

These constraints are now sufficient to rule out minimal SUSY SU(5) [28].+ The

upper bound on the proton lifetime from these theories (particularly from dimension 5

operators) is approximately a factor of 5 above the experimental bounds. These theories

are also being pushed to their theoretical limits. Hence if SUSY GUTs are correct, then

nucleon decay must be seen soon.

2.2. Yukawa coupling unification

2.2.1. 3rd generation, b−τ or t−b−τ unification In SU(5), there are two independent

renormalizable Yukawa interactions given by λt (10 10 5H) + λ (10 5̄ 5̄H). These

contain the SM interactions λt (Q ū Hu) + λ (Q d̄ Hd + ē L Hd). Hence, at the GUT

scale we have the tree level relation, λb = λτ ≡ λ [30]. In SO(10) (or Pati-Salam) there

is only one independent renormalizable Yukawa interaction given by λ (16 16 10H)

which gives the tree level relation, λt = λb = λτ ≡ λ [31–33]. Note, in the discussion

above we assume the minimal Higgs content with Higgs in 5, 5̄ for SU(5) and 10 for

SO(10). With Higgs in higher dimensional representations there are more possible

Yukawa couplings [34–36].

In order to make contact with the data, one now renormalizes the top, bottom

and τ Yukawa couplings, using two loop RG equations, from MG to MZ . One then

obtains the running quark masses mt(MZ) = λt(MZ) vu, mb(MZ) = λb(MZ) vd and

mτ (MZ) = λτ (MZ) vd where < H0
u >≡ vu = sin β v/

√
2, < H0

d >≡ vd = cos β v/
√
2,

vu/vd ≡ tan β and v ∼ 246 GeV is fixed by the Fermi constant, Gµ.

Including one loop threshold corrections at MZ and additional RG running, one

finds the top, bottom and τ pole masses. In SUSY, b − τ unification has two possible

solutions with tan β ∼ 1 or 40− 50. The small tanβ solution is now disfavored by the

LEP limit, tan β > 2.4 [37]. However, this bound disappears if one takes MSUSY = 2

TeV and mt = 180 GeV [38]. The large tanβ limit overlaps the SO(10) symmetry

relation.

When tan β is large there are significant weak scale threshold corrections to down

quark and charged lepton masses from either gluino and/or chargino loops [39]. Yukawa

unification (consistent with low energy data) is only possible in a restricted region of

SUSY parameter space with important consequences for SUSY searches [40].

Consider a minimal SO(10) SUSY model [MSO10SM] [40]. Quarks and leptons of

one family reside in the 16 dimensional representation, while the two Higgs doublets

of the MSSM reside in one 10 dimensional representation. For the third generation we

assume the minimal Yukawa coupling term given by λ 16 10 16. On the other hand, for

the first two generations and for their mixing with the third, we assume a hierarchical

+ Note, I have implicitly assumed a hierarchical structure for Yukawa matrices in this analysis. It is

however possible to fine-tune a hierarchical structure for quarks and leptons which baffles the family

structure. In this case it is possible to avoid the present constraints on minimal SUSY SU(5), for

example see [29]. It is also possible to ameliorate the conflict if one forgoes universal gaugino masses

at the GUT scale and gluinos are lighter than winos at the weak scale [11].
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mass matrix structure due to effective higher dimensional operators. Hence the third

generation Yukawa couplings satisfy λt = λb = λτ = λντ = λ. Note, that these relations

are only approximate once the off-diagonal elements of the Yukawa matrices are taken

into account. If the Yukawa matrices are hierarchical then the corrections are typically

≤ 10%.

Soft SUSY breaking parameters are also consistent with SO(10) with (1) a universal

gaugino mass M1/2, (2) a universal squark and slepton mass m16, [SO(10) does not

require all sfermions to have the same mass. This however may be enforced by non–

abelian family symmetries or possibly by the SUSY breaking mechanism.] (3) a universal

scalar Higgs mass m10, and (4) a universal A parameter A0. In addition we have the

supersymmetric (soft SUSY breaking) Higgs mass parameters µ (Bµ). Bµ may, as in

the CMSSM, be exchanged for tan β. Note, not all of these parameters are independent.

Indeed, in order to fit the low energy electroweak data, including the third generation

fermion masses, it has been shown that A0, m10, m16 must satisfy the constraints [40]

A0 ≈ −2 m16; m10 ≈
√
2 m16 (43)

m16 > 1.2 TeV;µ, M1/2 ≪ m16 (44)

with

tan β ≈ 50. (45)

This result has been confirmed by several independent analyses [41–43]. Note, different

regions of parameter space consistent with Yukawa unification have also been discussed

in [41,42,44]. Although the conditions (Eqns. 43, 44) are not obvious, it is however easy

to see that (Eqn. (45)) is simply a consequence of third generation Yukawa unification,

since mt(mt)/mb(mt) ∼ tan β.

Finally, as a bonus, these same values of soft SUSY breaking parameters, with

m16 ≫ TeV, result in two very interesting consequences. Firstly, it “naturally” produces

an inverted scalar mass hierarchy [ISMH] [45]. With an ISMH, squarks and sleptons of

the first two generations obtain mass of order m16 at MZ . The stop, sbottom, and stau,

on the other hand, have mass less than (or of order) a TeV. An ISMH has two virtues.

(1) It preserves “naturalness” (for values of m16 which are not too large), since only the

third generation squarks and sleptons couple strongly to the Higgs. (2) It ameliorates

the SUSY CP and flavor problems, since these constraints on CP violating angles or

flavor violating squark and slepton masses are strongest for the first two generations, yet

they are suppressed as 1/m2
16. Form16 > a few TeV, these constraints are weakened [46].

Secondly, Super–Kamiokande bounds on τ(p → K+ν̄) > 2.3 × 1033 yrs [27] constrain

the contribution of dimension 5 baryon and lepton number violating operators. These

are however minimized with µ, M1/2 ≪ m16 [23].

2.2.2. Three families Simple Yukawa unification is not possible for the first two

generations of quarks and leptons. Consider the SU(5) GUT scale relation λb = λτ .

If extended to the first two generations one would have λs = λµ, λd = λe which gives
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Table 4. Patterns of Masses and Mixing

λt = λb = λτ = λντ SO(10)@MG

λs ∼ 1
3
λµ, λd ∼ 3λe @MG [32, 47]

ms ≈ 4 · 1
3
mµ, md ≈ 4 · 3me @MZ

λdλsλb ≈ λeλµλτ SU(5)@MG

Det(md) ≈ Det(me) @MG

Vus ≈ (
√
md/ms − i

√
mu/mc) [49,50]

Vub/Vcb ≈
√
mu/mc [51]

Vcb ∼ ms/mb ∼
√
mc/mt [32]

λs/λd = λµ/λe. The last relation is a renormalization group invariant and is thus

satisfied at any scale. In particular, at the weak scale one obtains ms/md = mµ/me

which is in serious disagreement with the data with ms/md ∼ 20 and mµ/me ∼ 200.

An elegant solution to this problem was given by Georgi and Jarlskog [47]. Of course, a

three family model must also give the observed CKM mixing in the quark sector. Note,

although there are typically many more parameters in the GUT theory above MG, it

is possible to obtain effective low energy theories with many fewer parameters making

strong predictions for quark and lepton masses.

It is important to note that grand unification alone is not sufficient to obtain

predictive theories of fermion masses and mixing angles. Other ingredients are needed.

In one approach additional global family symmetries are introduced (non-abelian family

symmetries can significantly reduce the number of arbitrary parameters in the Yukawa

matrices). These family symmetries constrain the set of effective higher dimensional

fermion mass operators. In addition, sequential breaking of the family symmetry is

correlated with the hierarchy of fermion masses. Three-family models exist which fit all

the data, including neutrino masses and mixing [48]. In a completely separate approach

for SO(10) models, the Standard Model Higgs bosons are contained in the higher

dimensional Higgs representations including the 10, 126 and/or 120. Such theories

have been shown to make predictions for neutrino masses and mixing angles [34–36].

Some simple patterns of fermion masses (see Table 4) must be incorporated into any

successful model.

2.3. Neutrino Masses

Atmospheric and solar neutrino oscillations require neutrino masses. Using the three

“sterile” neutrinos ν̄ with the Yukawa coupling λν (ν̄ L Hu), one easily obtains three

massive Dirac neutrinos with mass mν = λν vu. Note, these “sterile” neutrinos are quite

naturally identified with the right-handed neutrinos necessarily contained in complete

families of SO(10) or Pati-Salam. However in order to obtain a tau neutrino with

mass of order 0.1 eV, one needs λντ/λτ ≤ 10−10. The see-saw mechanism, on the

other hand, can naturally explain such small neutrino masses [52, 53]. Since ν̄ has no
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SU(3)color×SU(2)L×U(1)Y quantum numbers, there is no symmetry (other than global

lepton number) which prevents the mass term 1
2
ν̄ M ν̄. Moreover one might expect

M ∼ MG. Heavy “sterile” neutrinos can be integrated out of the theory, defining an

effective low energy theory with only light active Majorana neutrinos with the effective

dimension 5 operator 1
2
(L Hu) λ

T
ν M

−1 λν (L Hu). This then leads to a 3×3 Majorana

neutrino mass matrix m = mT
ν M

−1 mν .

Atmospheric neutrino oscillations require neutrino masses with ∆m2
ν ∼ 3 × 10−3

eV2 with maximal mixing, in the simplest two neutrino scenario. With hierarchical

neutrino masses mντ =
√

∆m2
ν ∼ 0.055 eV. Moreover via the “see-saw” mechanism

mντ = mt(mt)
2/(3M). Hence one finds M ∼ 2 × 1014 GeV; remarkably close to the

GUT scale. Note we have related the neutrino Yukawa coupling to the top quark

Yukawa coupling λντ = λt at MG as given in SO(10) or SU(4) × SU(2)L × SU(2)R.

However at low energies they are no longer equal and we have estimated this RG effect

by λντ (MZ) ≈ λt(MZ)/
√
3.

2.4. SO(10) GUT with [D3 × U(1)] Family Symmetry

A complete model for fermion masses was given in Refs. [54, 55]. Using a global χ2

analysis, it has been shown that the model fits all fermion masses and mixing angles,

including neutrinos, and a minimal set of precision electroweak observables. The model

is consistent with lepton flavor violation and lepton electric dipole moment bounds. In

two papers, Ref. [56, 57], the model was also tested by flavor violating processes in the

B system.

The model is an SO(10) SUSY GUT with an additional D3×[U(1)×Z2×Z3] family

symmetry. The symmetry group fixes the following structure for the superpotential

W =Wf +Wν , (46)

with

Wf = 163 10163 + 16a 10χa

+ χ̄a(Mχ χa + 45
ϕa

M̂
163 + 45

ϕ̃a

M̂
16a + A16a) , (47)

Wν = 16(λ2Na 16a + λ3N3 163) +
1

2
(SaNaNa + S3N3N3) . (48)

The first two families of quarks and leptons are contained in the superfield 16a, a = 1, 2,

which transforms under SO(10)×D3 as (16, 2A), whereas the third family in 163

transforms as (16, 1B). The two MSSM Higgs doublets Hu and Hd are contained in a

10. As can be seen from the first term on the right-hand side of (47), Yukawa unification

λt = λb = λτ = λντ at MG is obtained only for the third generation, which is directly

coupled to the Higgs 10 representation. This immediately implies large tanβ ≈ 50 at

low energies and constrains soft SUSY breaking parameters.

The effective Yukawa couplings of the first and second generation fermions are

generated hierarchically via the Froggatt-Nielsen mechanism [58] as follows. Additional
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Sector # Parameters

gauge 3 αG, MG, ϵ3,

SUSY (GUT scale) 5 m16, M1/2, A0, mHu , mHd
,

textures 11 ϵ, ϵ′, λ, ρ, σ, ϵ̃, ξ,

neutrino 3 MR1 , MR2 , MR3 ,

SUSY (EW scale) 2 tan β, µ

Table 5. The 24 parameters defined at the GUT scale which are used to minimize χ2.

fields are introduced, i.e. the 45 which is an adjoint of SO(10), the SO(10) singlet flavon

fields ϕa, ϕ̃a, A and the Froggatt-Nielsen states χa, χ̄a. The latter transform as a (16, 2A)

and a (16, 2A), respectively, and receive masses of O(MG) as Mχ acquires an SO(10)

breaking VEV. Once they are integrated out, they give rise to effective mass operators

which, together with the VEVs of the flavon fields, create the Yukawa couplings for the

first two generations. This mechanism breaks systematically the full flavor symmetry

and produces the right mass hierarchies among the fermions.

Upon integrating out the FN states one obtains Yukawa matrices for up-quarks,

down-quarks, charged leptons and neutrinos given by

Yu =

 0 ε′ ρ −ε ξ
−ε′ ρ ε̃ ρ −ε
ε ξ ε 1

 λ , Yd =

 0 ε′ −ε ξ σ
−ε′ ε̃ −ε σ
ε ξ ε 1

 λ ,

Ye =

 0 −ε′ 3 ε ξ

ε′ 3 ε̃ 3 ε

−3 ε ξ σ −3 ε σ 1

 λ , Yν =

 0 −ε′ ω 3
2
ε ξ ω

ε′ ω 3 ε̃ ω 3
2
ε ω

−3 ε ξ σ −3 ε σ 1

 λ .(49)

From eqs. (49) one can see that the flavor hierarchies in the Yukawa couplings are

encoded in terms of the four complex parameters ρ, σ, ε̃, ξ and the additional real ones

ε, ε′, λ.

For neutrino masses one invokes the See-Saw mechanism [52, 53]. In particular,

three SO(10) singlet Majorana fermion fields Na, N3 (a = 1, 2) are introduced via the

contribution of 1
2
(SaNaNa + S3N3N3) to the superpotential (Eqn. 48). The mass

term 1
2
N MN N is produced when the flavon fields acquire VEVs ⟨Sa⟩ = MNa and

⟨S3⟩ =MN3 . Together with a 16 Higgs one is allowed to introduce the interaction terms

16 (λ2Na 16a + λ3N3 163) (Eqn. 48). This then generates a mixing matrix V between

the right-handed neutrinos and the additional singlets (νc V N), when the 16 acquires

an SO(10) breaking VEV ⟨16⟩νc = v16. The resulting effective right-handed neutrino

mass terms are given by

WN = ν̄ V N +
1

2
N MN N , (50)
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Observable Value(σexp) Observable Value(σexp)

MW 80.403(29) Mτ 1.777(0)

MZ 91.1876(21) Mµ 0.10566(0)

105Gµ 1.16637(1) 103Me 0.511(0)

1/αem 137.036 |Vus| 0.2258(14)

αs(MZ) 0.1176(20) 103|Vub| 4.1(0.4)

Mt 170.9(1.8) 102|Vcb| 4.16(7)

mb(mb) 4.20(7) sin 2β 0.675(26)

mc(mc) 1.25(9) 103∆m2
31 [eV2] 2.6(0.2)

ms(2 GeV) 0.095(25) 105∆m2
21 [eV2] 7.90(0.28)

md(2 GeV) 0.005(2) sin2 2θ12 0.852(32)

mu(2 GeV) 0.00225(75) sin2 2θ23 0.996(18)

Table 6. Flavor conserving observables used in the fit. Dimensionful quantities are

expressed in GeV, unless otherwise specified [56].

V = v16

 0 λ2 0

λ2 0 0

0 0 λ3

 , MN = diag(MN1 ,MN2 ,MN3) . (51)

Diagonalization leads to the effective right-handed neutrino Majorana mass

MR = −V M−1
N V T ≡ −diag(MR1 ,MR2 ,MR3) . (52)

By integrating out the EW singlets νc and N , which both receive GUT scale masses,

one ends up with the light neutrino mass matrix at the EW scale given by the usual

see-saw formula

M = mν M
−1
R mT

ν . (53)

Observable Value(σexp)(σtheo)

103ϵK 2.229(10)(252)

∆Ms/∆Md 35.0(0.4)(3.6)

104 BR(B → Xsγ) 3.55(26)(46)

106 BR(B → Xsℓ
+ℓ−) 1.60(51)(40)

104 BR(B+ → τ+ν) 1.31(48)(9)

BR(Bs → µ+µ−) < 1.0× 10−7

Table 7. FC observables used in the fit [56].

The model has a total of 24 arbitrary parameters, with all except tanβ defined

at the GUT scale (see Table 5). Using a two loop RG analysis the theory is redefined

at the weak scale. Then a χ2 function is constructed with low energy observables.

In Ref. [55] fermion masses and mixing angles, a minimal set of precision electroweak
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observables and the branching ratio BR(b→ sγ) were included in the χ2 function. Then

predictions for lepton flavor violation, lepton electric dipole moments, Higgs mass and

sparticle masses were obtained. The χ2 fit was quite good. The light Higgs mass was

always around 120 GeV. In the recent paper, Ref. [56], precision B physics observables

were added. See Tables 6, 7 for the 28 low energy observables and Table 8 for the 4

experimental bounds included in their analysis. The fits were not as good as before with

a minimum χ2 ∼ 25 obtained for large values of m16 = 10 TeV.

The dominant problem was due to constraints from the processes B → Xsγ, B →
Xsℓ

+ℓ−. The former process constrains the magnitude of the Wilson coefficient C7 for

the operator

O7 = mb s̄LΣµνbR F µν (54)

with C7 ∼ |CSM
7 |, while the latter process is also sensitive to the sign of C7. Note,

the charged and neutral Higgs contributions to BR(B → Xsγ) are strictly positive.

While the sign of the chargino contribution, relative to the SM, is ruled by the following

relation

C χ̃+

7 ∝ +µAt tan β × sign(CSM
7 ) , (55)

with a positive proportionality factor, so it is opposite to that of the SM one for µ > 0

and At < 0. Hence it is possible for C7 ≈ ±|CSM
7 |. Note the experimental result for

B → Xsℓ
+ℓ− seems to favor the sign of C7 to be the same as in the Standard Model,

however the results are inconclusive. Another problem was Vub which was significantly

smaller than present CKM fits.

In the recent analysis, Ref. [57], it was shown that better χ2 can be obtained by

allowing for a 20% correction to Yukawa unification. Note, this analysis only included

Yukawa couplings for the third family. For a good fit, see Tables 9 and 10. We find

tan β still large, tan β = 46 and a light Higgs mass mh = 121 GeV. See Table 9 for the

sparticle spectrum which should be observable at the LHC.

Finally, an analysis of dark matter for this model has been performed with good fits

to WMAP data [59]. The authors of Ref. [43] also analyze dark matter in the context

of the minimal SO(10) model with Yukawa unification. They have difficulty fitting

WMAP data. We believe this is because they do not adjust the CP odd Higgs mass to

allow for dark matter annihilation on the resonance.

2.5. Problems of 4D GUTs

There are two aesthetic (perhaps more fundamental) problems concerning 4d GUTs.

They have to do with the complicated sectors necessary for GUT symmetry breaking

and Higgs doublet-triplet splitting. These sectors are sufficiently complicated that it is

difficult to imagine that they may be derived from a more fundamental theory, such as

string theory. In order to resolve these difficulties, it becomes natural to discuss grand

unified theories in higher spatial dimensions. These are the so-called orbifold GUT

theories discussed in the next section.
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Consider, for example, one of the simplest constructions in SO(10) which

accomplishes both tasks of GUT symmetry breaking and Higgs doublet-triplet splitting

[60]. Let there be a single adjoint field, A, and two pairs of spinors, C +C and C ′ +C
′
.

The complete Higgs superpotential is assumed to have the form

W =WA +WC +WACC′ + (T1AT2 + ST 2
2 ). (56)

The precise forms ofWA andWC do not matter, as long asWA gives ⟨A⟩ the Dimopoulos-

Wilczek form, andWC makes the VEVs of C and C point in the SU(5)-singlet direction.

For specificity we will take WA = 1
4M

trA4 + 1
2
PA(trA

2 +M2
A) + f(PA), where PA is a

singlet, f is an arbitrary polynomial, and M ∼MG. (It would be possible, also, to have

simplym TrA2, instead of the two terms containing PA. However, explicit mass terms for

adjoint fields may be difficult to obtain in string theory.) We take WC = X(CC − P 2
C),

where X and PC are singlets, and ⟨PC⟩ ∼MG.

The crucial term that couples the spinor and adjoint sectors together has the form

WACC′ = C
′
((

P

MP

)
A+ Z

)
C + C

((
P

MP

)
A+ Z

)
C ′, (57)

where Z, Z, P , and P are singlets. ⟨P ⟩ and ⟨P ⟩ are assumed to be of order MG. The

critical point is that the VEVs of the primed spinor fields will vanish, and therefore the

terms in Eq. (3) will not make a destabilizing contribution to −F ∗
A = ∂W/∂A. This is

the essence of the mechanism.

W contains several singlets (PC , P , P , and S) that are supposed to acquire VEVs

of order MG, but which are left undetermined at tree-level by the terms so far written

down. These VEVs may arise radiatively when SUSY breaks, or may be fixed at tree

level by additional terms in W .

In SU(5) the construction which gives natural Higgs doublet-triplet splitting

requires the SU(5) representations 75, 50, 50 and a superpotential of the form [22,61]

W ⊃ 753 +M752 + 5H 75 50 + 5̄H 75 50 + 50 50 X. (58)

The 50, 50 contain Higgs triplets but no Higgs doublets. Thus when the 75 obtains

an SU(5) breaking VEV, the color triplets obtain mass but the Higgs doublets remain

massless.

3. Orbifold GUTs

3.1. GUTs on a Circle

As the first example of an orbifold GUT consider a pure SO(3) gauge theory in 5

dimensions [62]. The gauge field is

AM ≡ Aa
M T a, a = 1, 2, 3; M,N = {0, 1, 2, 3, 5}. (59)

The gauge field strength is given by

FMN ≡ F a
MN T a = ∂MAN − ∂NAM + i[AM , AN ] (60)
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where T a are SO(3) generators. The Lagrangian is

L5 = − 1

4g25k
Tr(FMNF

MN) (61)

and we have Tr(T a T b) ≡ kδab. The inverse gauge coupling squared has mass dimensions

one.

Let us first compactify the theory on M4 × S1 with coordinates {xµ, y} and

y = [0, 2πR). The theory is invariant under the local gauge transformation

AM(xµ, y) → U AM(xµ, y) U
† − iU ∂M U †, U = exp(iθa(xµ, y) T

a). (62)

Consider the possibility ∂5Aµ ≡ 0. We have

Fµ5 = ∂µA5 + i[Aµ, A5] ≡ Dµ A5. (63)

We can then define

Φ̃ ≡ A5

√
2πR

g5
≡ A5/g (64)

where g5 ≡
√
2πR g and g is the dimensionless 4d gauge coupling. The 5d Lagrangian

reduces to the Lagrangian for a 4d SO(3) gauge theory with massless scalar matter in

the adjoint representation, i.e.

L5 =
1

2πR
[− 1

4g2k
Tr(FµνF

µν) +
1

2k
Tr(DµΦ̃ DµΦ̃)]. (65)

In general we have the mode expansion

AM(xµ, y) =
∑
n

[anM cosn
y

R
+ bnM sinn

y

R
] (66)

where only the cosine modes with n = 0 have zero mass. Otherwise the 5d Laplacian

∂M∂
M = ∂µ∂

µ + ∂y∂
y leads to Kaluza-Klein [KK] modes with effective 4d mass

m2
n =

n2

R2
. (67)

3.2. Fermions in 5d

The Dirac algebra in 5d is given in terms of the 4 × 4 gamma matrices γM , M =

0, 1, 2, 3, 5 satisfying {γM , γN} = 2gMN . A four component massless Dirac spinor

Ψ(xµ, y) satisfies the Dirac equation

iγM∂
MΨ = 0 = i(γµ∂

µ − γ5∂y)Ψ (68)

with γ5 = i

(
−1 0

0 1

)
. In 4d the four component Dirac spinor decomposes into two

Weyl spinors with

Ψ =

(
ψ1

iσ2ψ
∗
2

)
=

(
ψL

ψR

)
(69)
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Figure 6. The real line modded out by the space group of translations, T , and a Z2

parity, P.

where ψ1,2 are two left-handed Weyl spinors. In general, we obtain the normal mode

expansion for the fifth direction given by

ψL,R =
∑

(an(x) cosn
y

R
+ bn(x) sinn

y

R
). (70)

If we couple this 5d fermion to a local gauge theory, the theory is necessarily vector-like;

coupling identically to both ψL,R.

We can obtain a chiral theory in 4d with the following parity operation

P : Ψ(xµ, y) → Ψ(xµ,−y) = PΨ(xµ, y) (71)

with P = iγ5. We then have

ΨL ∼ cosn
y

R

ΨR ∼ sinn
y

R
. (72)

3.3. GUTs on an Orbi-Circle

Let us briefly review the geometric picture of orbifold GUT models compactified on an

orbi-circle S1/Z2. The circle S1 ≡ R1/T where T is the action of translations by 2πR.

All fields Φ are thus periodic functions of y (up to a finite gauge transformation), i.e.

T : Φ(xµ, y) → Φ(xµ, y + 2πR) = T Φ(xµ, y) (73)

where T ∈ SO(3) satisfies T 2 = 1. This corresponds to the translation T being realized

non-trivially by a degree-2 Wilson line (i.e., background gauge field - ⟨A5⟩ ≠ 0 with

T ≡ exp(i
∮
⟨A5⟩dy)). Hence the space group of S1/Z2 is composed of two actions, a

translation, T : y → y + 2πR, and a space reversal, P : y → −y. There are two

(conjugacy) classes of fixed points, y = (2n)πR and (2n+ 1)πR, where n ∈ Z.
The space group multiplication rules imply T PT = P , so we can replace the

translation by a composite Z2 action P ′ = PT : y → −y + 2πR. The orbicircle S1/Z2

is equivalent to an R/(Z2 × Z′
2) orbifold, whose fundamental domain is the interval

[0, πR], and the two ends y = 0 and y = πR are fixed points of the Z2 and Z′
2 actions

respectively.

A generic 5d field Φ has the following transformation properties under the Z2 and

Z′
2 orbifoldings (the 4d space-time coordinates are suppressed),

P : Φ(y) → Φ(−y) = PΦ(y) , P ′ : Φ(y) → Φ(−y+2πR) = P ′Φ(y) ,(74)

where P, P ′ ≡ PT = ± are orbifold parities acting on the field Φ in the appropriate

group representation. Where it is assumed that [P, T ] = 0. The four combinations of
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orbifold parities give four types of states, with wavefunctions

ζm(++) ∼ cos(my/R),

ζm(+−) ∼ cos[(2m+ 1)y/2R],

ζm(−+) ∼ sin[(2m+ 1)y/2R],

ζm(−−) ∼ sin[(m+ 1)y/R], (75)

where m ∈ Z. The corresponding KK towers have mass

MKK =


m/R for (PP ′) = (++) ,

(2m+ 1)/2R for (PP ′) = (+−) and (−+) ,

(m+ 1)/R for (PP ′) = (−−) .

(76)

Note that only the Φ++ field possesses a massless zero mode.

For example, consider the Wilson line T = exp(iπT 3) = diag(−1,−1, 1). Let

Aµ(y) (A5(y)) have parities P = +(−), respectively. Then only A3
µ has orbifold parity

(++) and A3
5 has orbifold parity (−−). Note, A3

5(−y) = −A3
5(y) +

1
R
. Define the fields

W± =
1√
2
(A1 ∓ iA2) (77)

with T± = 1√
2
(T 1 ± iT 2) and [T 3, T±] = ±T±. Then W±

µ [W±
5 ] have orbifold parity

(+−) [(−+)], respectively. Thus the SO(3) gauge group is broken to SO(2) ≈ U(1) in

4d. The local gauge parameters preserve the (P, T ) parity/holonomy, i.e.

θ3(xµ, y) = θ3m(xµ)ζm(++)

θ1,2(xµ, y) = θ1,2m (xµ)ζm(+−). (78)

Therefore SO(3) is not the symmetry at y = πR.

3.4. A Supersymmetric SU(5) orbifold GUT

Consider the 5d orbifold GUT model of ref. [63]. The model has an SU(5) symmetry

broken by orbifold parities to the SM gauge group in 4d. The compactification scale

Mc = R−1 is assumed to be much less than the cutoff scale.

The gauge field is a 5d vector multiplet V = (AM , λ, λ
′, σ), where AM , σ (and their

fermionic partners λ, λ′) are in the adjoint representation (24) of SU(5) . This multiplet

consists of one 4d N = 1 supersymmetric vector multiplet V = (Aµ, λ) and one 4d chiral

multiplet Σ = ((σ + iA5)/
√
2, λ′). We also add two 5d hypermultiplets containing the

Higgs doublets, H = (H5, H5
c), H = (H̄5̄, H̄

c
5̄). The 5d gravitino ΨM = (ψ1

M , ψ
2
M)

decomposes into two 4d gravitini ψ1
µ, ψ

2
µ and two dilatini ψ1

5, ψ
2
5. To be consistent

with the 5d supersymmetry transformations one can assign positive parities to ψ1
µ+ψ

2
µ,

ψ1
5 − ψ2

5 and negative parities to ψ1
µ − ψ2

µ, ψ
1
5 + ψ2

5; this assignment partially breaks

N = 2 to N = 1 in 4d.

The orbifold parities for various states in the vector and hyper multiplets are

chosen as follows [63] (where we have decomposed all the fields into SM irreducible
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representations and under SU(5) we have taken P = (+++++), P ′ = (−−−++))

States P P ′ States P P ′

V (8,1,0) + + Σ(8,1,0) − −
V (1,3,0) + + Σ(1,3,0) − −
V (1,1,0) + + Σ(1,1,0) − −
V (3̄,2,5/3) + − Σ(3,2,−5/3) − +

V (3,2,−5/3) + − Σ(3̄,2,5/3) − +

T (3,1,−2/3) + − T c(3̄,1,2/3) − +

H(1,2,+1) + + Hc(1̄,2,−1) − −
T̄ (3̄,1,+2/3) + − T̄ c(3,1,−2/3) − +

H̄(1,2,−1) + + H̄c(1,2,+1) − −

(79)

We see the fields supported at the orbifold fixed points y = 0 and πR have parities

P = + and P ′ = + respectively. They form complete representations under the SU(5)

and SM groups; the corresponding fixed points are called SU(5) and SM “branes.” In a

4d effective theory one would integrate out all the massive states, leaving only massless

modes of the P = P ′ = + states. With the above choices of orbifold parities, the SM

gauge fields and the H and H̄ chiral multiplet are the only surviving states in 4d. We

thus have an N = 1 SUSY in 4d. In addition, the T + T̄ and T c+ T̄ c color-triplet states

are projected out, solving the doublet-triplet splitting problem that plagues conventional

4d GUTs.

3.5. Gauge Coupling Unification

We follow the field theoretical analysis in ref. [64] (see also [65,66]). It has been shown

there the correction to a generic gauge coupling due to a tower of KK states with masses

MKK = m/R is

α−1(Λ) = α−1(µ0) +
b

4π

∫ rµ−2
0

rΛ−2

dt

t
θ3

(
it

πR2

)
, (80)

where the integration is over the Schwinger parameter t, µ0 and Λ are the IR and

UV cut-offs, and r = π/4 is a numerical factor. θ3 is the Jacobi theta function,

θ3(t) =
∑∞

m=−∞ eiπm
2t, representing the summation over KK states.

For our S1/Z2 orbifold there is one modification in the calculation. There are

four sets of KK towers, with mass MKK = m/R (for P = P ′ = +), (m + 1)/R (for

P = P ′ = −) and (m+1/2)/R (for P = +, P ′ = − and P = −, P ′ = +), where m ≥ 0.

The summations over KK states give respectively 1
2
(θ3(it/πR

2)− 1) for the first two

cases and 1
2
θ2(it/πR

2) for the last two (where θ2(t) =
∑∞

m=−∞ eiπ(m+1/2)2t), and we have

separated out the zero modes in the P = P ′ = + case.

Tracing the renormalization group evolution from low energy scales, we are first in

the realm of the MSSM, and the beta function coefficients are bMSSM = (−33
5
,−1, 3).

The next energy threshold is the compactification scale Mc. From this scale to the

cut-off scale, M∗, we have the four sets of KK states.
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Collecting these facts, and using θ2(it/πR
2) ≃ θ3(it/πR

2) ≃
√

π
t
R for t/R2 ≪ 1,

we find the RG equations,

α−1
i (MZ) = α−1

∗ − bMSSM
i

2π
log

M∗

MZ

+
1

4π

(
b++
i + b−−

i

)
log

M∗

Mc

− bG

2π

(
M∗

Mc

− 1

)
+ δ2i + δli (81)

for i = 1, 2, 3, where α−1
∗ = 8π2R

g25
and we have taken the cut-off scales, µ0 =Mc =

1
R
and

Λ = M∗. (Note, this 5d orbifold GUT is a non-renormalizable theory with a cut-off.

In string theory, the cut-off will be replaced by the physical string scale, MSTRING.)

bG =
∑

P=±,P ′=± b
G
PP ′ , so in fact it is the beta function coefficient of the orbifold GUT

gauge group, G = SU(5). The beta function coefficients in the last two terms have an

N = 2 nature, since the massive KK states enjoy a larger supersymmetry. In general

we have bG = 2C2(G) − 2NhyperTR. The first term (in Eqn. 81) on the right is the

5d gauge coupling defined at the cut-off scale, the second term accounts for the one

loop RG running in the MSSM from the weak scale to the cut-off, the third and fourth

terms take into account the KK modes in loops above the compactification scale and

the last two terms account for the corrections due to two loop RG running and weak

scale threshold corrections.

It should be clear that there is a simple correspondence to the 4d analysis. We have

α−1
G (4d) ↔ α−1

∗ − bG

2π

(
M∗

Mc

− 1

)
(5d)

δhi (4d) ↔ 1

4π

(
b++
i + b−−

i

)
log

M∗

Mc

− bMSSM
i

2π
log

M∗

MG

(5d). (82)

Thus in 5d the GUT scale threshold corrections determine the ratio M∗/Mc (note the

second term in Eqn. 82 does not contribute to δhs ). For SU(5) we have b++ + b−− =

(−6/5, 2, 6) and given δhs (Eqn. 28) we have

δhs =
12

28π
log

M∗

Mc

≈ +0.94 (83)

or
M∗

Mc

≈ 103. (84)

If the GUT scale is defined at the point where α1 = α2, then we have δh1 = δh2
or log M∗

MG
≈ 2. In 5d orbifold GUTs, nothing in particular happens at the 4d GUT

scale. However, since the gauge bosons affecting the dimension 6 operators for proton

decay obtain their mass at the compactification scale, it is important to realize that the

compactification scale is typically lower than the 4d GUT scale and the cut-off is higher

(see Figure 7).

3.6. Quarks and Leptons in 5d Orbifold GUTs

Quarks and lepton fields can be put on either of the orbifold “branes” or in the 5d bulk.

If they are placed on the SU(5) “brane” at y = 0, then they come in complete SU(5)
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δ3

δ2

µMSUSY Mc MG M∗

δi = 2π(1/αi − 1/α1)

ε3

Figure 7. The differences δi = 2π(1/αi − 1/α1) are plotted as a function of energy

scale µ. The threshold correction ϵ3 defined in the 4d GUT scale is used to fix the

threshold correction in the 5d orbifold GUT.

multiplets. As a consequence a coupling of the type

W ⊃
∫
d2θ

∫
dy δ(y) H̄ 10 5̄ (85)

will lead to bottom - tau Yukawa unification. This relation is good for the third

generation and so it suggests that the third family should reside on the SU(5) brane.

Since this relation does not work for the first two families, they might be placed in

the bulk or on the SM brane at y = π R. Without further discussion of quark and

lepton masses (see [9, 67–69] for complete SU(5) or SO(10) orbifold GUT models), let

us consider proton decay in orbifold GUTs.

3.7. Proton Decay

3.7.1. Dimension 6 Operators The interactions contributing to proton decay are those

between the so-called X gauge bosons A
(+−)
µ ∈ V (+−) (where A

(+−)
µ

ai
(xµ, y) is the five

dimensional gauge boson with quantum numbers (3̄, 2,+5/3) under SU(3)× SU(2) ×
U(1), a and i are color and SU(2) indices respectively) and the N = 1 chiral multiplets

on the SU(5) brane at y = 0. Assuming all quarks and leptons reside on this brane we

obtain the ∆B ̸= 0 interactions given by

S∆B ̸=0 = − g5√
2

∫
d4xA(+−)

µ

ai
(xµ, 0)J

µ
ai(xµ) + h.c. . (86)

The currents Jµ
ai are given by:

Jµ
ai = ϵabc ϵij(ū)

∗
b σ̄

µ qcj + q∗ai σ̄
µ ē− l̃∗i σ̄

µ (d̄)a

= (ū)∗ σ̄µ q + q∗ σ̄µ ē− l̃∗ σ̄µ d̄ , (87)

Upon integrating out the X gauge bosons we obtain the effective lagrangian for

proton decay

L = − g2G
2M2

X

∑
i,j

[
(q∗i σ̄

µūi) (l̃
∗
j σ̄µd̄j) + (q∗i σ̄

µēi) (q
∗
j σ̄µūj)

]
, (88)
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where all fermions are weak interaction eigenstates and i, j, k = 1, 2, 3 are family indices.

The dimensionless quantity

gG ≡ g5
1√
2πR

(89)

is the four-dimensional gauge coupling of the gauge bosons zero modes. The combination

MX =
Mc

π
, (90)

proportional to the compactification scale

Mc ≡
1

R
, (91)

is an effective gauge vector boson mass arising from the sum over all the Kaluza-Klein

levels:
∞∑
n=0

4

(2n+ 1)2M2
c

=
1

M2
X

. (92)

Before one can evaluate the proton decay rate one must first rotate the quark and lepton

fields to a mass eigenstate basis. This will bring in both left- and right-handed quark

and lepton mixing angles. However, since the compactification scale is typically lower

than the 4d GUT scale, it is clear that proton decay via dimension 6 operators is likely

to be enhanced.

3.7.2. Dimension 5 Operators The dimension 5 operators for proton decay result from

integrating out color triplet Higgs fermions. However in this simplest SU(5) 5d model

the color triplet mass is of the form [70]

W ⊃
∫
d2θ dy (T (−+)c ∂y T (+−) + T̄ (−+)c ∂y T̄ (+−)) (93)

where a sum over massive KK modes is understood. Since only T, T̄ couple directly

to quarks and leptons, no dimension 5 operators are obtained when integrating out the

color triplet Higgs fermions.

3.7.3. Dimension 4 baryon and lepton violating operators If the theory is constructed

with an R parity or family reflection symmetry, then no such operators will be generated.

4. String Theory

As mentioned in the introduction, there are several limiting forms of string theory,

known as Type I, Type II A & B, E8 ⊗ E8 & SO(32) (or more precisely Spin(32)/Z2)

heterotic and F and M theories. The first five are perturbative string theories defined

in terms of quantum superstrings propagating in 9 + 1 space-time dimensions.∗ Type

I is a theory of open and closed strings with the open strings coupled to gauge fields

∗ A superstring theory denotes a string theory which has two dimensional worldsheet supersymmetry.

Such theories can lead to spacetime supersymmetry, depending on the vacuum.
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taking values in Spin(32)/Z2. Type II is a theory of closed strings with Abelian gauge

symmetry in IIA and no gauge symmetry in IIB. Heterotic strings are a combination

of superstrings for right-moving excitations along the string and bosonic strings for

left-moving excitations. The right-movers travel in a target space of 10 space-time

dimensions, while the left-movers travel in 26 space-time dimensions. However 16 spatial

dimensions are compactified on a E8⊗E8 or Spin(32)/Z2 lattice. This compactification

leads to the two possible gauge groups of the heterotic string.

Type I and II strings also include non-perturbative excitations called Dp-branes.

Dp-branes are hyper-surfaces in p spatial dimensions on which open strings can end. N

Dp-branes, piled on top of each other, support massless U(n) gauge excitations. And

when Dp branes intersect, massless chiral matter appears. The low energy effective field

theories for the perturbative strings corresponds to N=1 supergravity in 10 space-time

dimensions. In addition, Type I and II low energy theories include massless gauge matter

living on D-branes and chiral matter living at the intersection of two D-branes. M and

F theory are only defined in terms of non-perturbative effective field theories in 10 +

2 and 10 + 1 space-time dimensions, respectively. F theory is essentially a Type IIB

string with the extra internal two dimensions corresponding to the complex Type IIB

string coupling. Dp-branes in the Type IIB picture occur at the position of singularities

in the string coupling in the F theory description. M theory has no fundamental string

limit. It is defined as N = 1 supergravity in 11 dimensions which reduces to N = 8

supergravity in 4 dimensions. This is the maximal supergravity theory! D0-branes of

Type IIB form a tower of excitations which is interpreted as the 11th dimension. In M

theory, gauge fields live on 3 dimensional singular sub-manifolds and chiral matter live

on zero dimensional singular points in the internal 7 dimensions. There is also a purely

quantum mechanical formulation of M theory in terms of a quantum theory of matrices,

the so-called M(atrix) theory. However this formulation is even more difficult to deal

with.

All of these limiting forms are related by so-called S, T or U dualities [71–74].

The dilaton S is a measure of the string coupling, thus S → 1
S
corresponds to strong -

weak coupling duality. Which means to say, one limiting string theory calculated in the

weak coupling limit is dual to a different limiting string theory, calculated in the strong

coupling limit. Examples of S dual theories are Type I - SO(32) heterotic, Type IIB -

Type IIB, Type IIA - E8 ⊗ E8 heterotic (via the intermediate step of M theory). The

modulus T is a measure of the volume associated with the extra 6 internal dimensions

of a perturbative string. Thus T duality is the equality of two different limiting theories

with one compactified on a space of large volume and the other compactified on a space

of small volume. Finally, if one theory compactified on a space of large (or small) volume

is equivalent to another theory at strong (or weak) coupling, they are called U dual. If

the two theories are the same, then the two theories are said to be self-dual. T duality,

unlike S or U duality, can be understood perturbatively. Type IIA - Type IIB and

E8 ⊗E8 heterotic - SO(32) heterotic are T dual. Combining S and T dualities, one can

show that Type IIB - E8 ⊗ E8 heterotic are dual. In addition, in this way one can also
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obtain a non-perturbative definition of Type IIB,i.e. F theory.

String model building refers to choosing a particular limiting string theory and

compactifying the extra (6 for Type I, II, and heterotic, 7 for M theory and 8 for F

theory) dimensions. If the compactification manifold is flat, then the string spectrum

and interactions can be calculated perturbatively (with the addition of open strings

attached to Dp-brane states in Type I and II theories). The Dp-branes are massive and

will distort the flat background metric of the internal dimensions. In order to include

the back reaction on the metric, one studies the effective low energy supergravity limit of

the string. In this case one compactifies on an internal manifold which preserves at least

one supersymmetry in 4 dimensions. This requires compactifying on a Calabi-Yau 3-fold

for Type I, II and heterotic strings, a G2 manifold for M theory and a Calabi-Yau 4-fold

for F theory. In order to complete the picture of string model building, it is necessary to

also mention string theories defined solely in 4 dimensions in terms of tensor products

of two dimensional conformal field theories (another term for strings). Such theories

go under the name of free fermionic heterotic strings [75–77] or Gepner models [78].

Note, the free fermionic construction can be put into one-to-one correspondence with

orbifold constructions compactified, at the first step, on toroidal manifolds with radii

determined as rational ratios of the string scale. For arbitrary radii, as allowed in bosonic

constructions, one requires additional Thirring interactions included in the fermionic

construction. Hence, the free fermionic construction describes isolated points in the

bosonic moduli space.

Now consider E8 ⊗ E8 heterotic - F theory duality. It turns out that F theory

compactified on K3 is dual to the E8 ⊗ E8 heterotic string compactified on a two

dimensional torus, T 2. In addition F theory on a CY3 is dual to the E8 ⊗ E8 heterotic

string compactified on K3. Finally, there is a duality between F theory on CY4 and the

E8 ⊗ E8 heterotic string on CY3.

The string landscape refers to all possible supersymmetry breaking solutions of the

string in 4 space-time dimensions. This, however, is a particularly ill-defined concept,

since in string theory the coordinates of space-time are themselves dynamical variables

and hence the space-time background geometry is quantum mechanical. In this sense it

may be said that in string theory space-time itself is an emergent concept. Moreover,

since energy and momentum are derived quantities in Lagrangian systems with space

and time translation invariance, one must first define the Lagrangian for an effective

field theory describing the modes of a string. String field theory exists describing all the

string excitations. But this theory is quite difficult to handle. Thus in most situations,

when one speaks of the string vacua or the string landscape one is most likely referring

to the ground state for the massless degrees of freedom in terms of the supergravity

limit of the string. As discussed in the introduction, the string landscape is immense. It

has been estimated that the landscape of SUSY breaking string vacua numbers of order

10500 [79]. For a recent animated history of the subject, see [80].
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4.1. Random searches for the MSSM in the String Landscape

The literature is replete with searches over the string landscape. Among these have been

random searches in the string landscape looking for features common to the MSSM. In

particular, vacua with N = 1 supersymmetry [SUSY], the Standard Model gauge group

and three families of quarks and leptons. These random searches have for the most part

shown that the MSSM is an extremely rare point in the string landscape. For example,

searches in Type II intersecting D-brane models [81] have found nothing looking like

the MSSM in 109 tries. Searches in Gepner orientifolds have been a bit more successful

finding one MSSM-like model for every 10,000 tries [82]. Even searches in the heterotic

string, using the free fermionic construction, have shown that the MSSM is a very rare

point in the string landscape [83]. The bottom line: if you want to find the MSSM, then

a random search is not the way to go. In fact, MSSM-like models have been found in

Type II D-brane vacua, BUT by directed searches [84] AND not random ones. For a

recent discussion of random searches in the string landscape, see [85].

4.2. String model building

In recent years, some progress has been made in finding MSSM-like theories starting

from different points in the string landscape [86–106], i.e. free fermionic, orbifold or

smooth Calabi-Yau constructions of the heterotic string, intersecting (and local) D-

brane constructions in type II string, and M or F theory constructions. Much of this

progress has benefited from the requirement of an intermediate grand unified gauge

symmetry which naturally delivers the standard model particle spectrum. I will discuss

a few recent results.

String model building is typically a two stage process. At the first stage one searches

for an MSSM-like theory with N = 1 supersymmetry. One is interested in the Yukawa

and gauge coupling constants which, at this stage, are functions of moduli, i.e. SM

singlet fields with no potential. These moduli also determine the masses of any vector-

like exotic fields which may exist in this vacuum. These moduli must be stabilized!

However, stabilization requires lifting the flat directions and this requires spontaneously

breaking the N = 1 supersymmetry. Supersymmetry breaking is also required for

phenomenological purposes. Supersymmetric partners of ordinary particles have not

been discovered. Hence they must be heavier than their SM namesakes. We discuss

supersymmetry breaking and moduli stabilization in Section 6.

4.3. Heterotic constructions on smooth manifolds

Bouchard et al. [107] have obtained an SU(5) GUT model on a CY3 with the following

properties. They have three families of quarks and leptons, and one or two pairs of

Higgs doublets. They accomplish GUT symmetry breaking and Higgs doublet-triplet

splitting via a Wilson line in the weak hypercharge direction. The CY3 is defined by

a double elliptic fibration, i.e. two tori whose radii change as the tori move over the
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Figure 8. Calabi-Yau 3-fold defined in terms of a double elliptic fibration. The line

connecting the tori to the 2-sphere represents the fibration.

surface of a sphere (see Fig. 8).

In addition, they obtain a non-trivial up Yukawa matrix given by [108]

λu =

 a b c

b d e

c e 0

 . (94)

The parameters a, · · · , e are functions of the moduli. The down and charged lepton

Yukawa matrices are however zero and would require non-perturbative effects to change

this.

Braun et al. [86] obtain an SU(5)⊗U(1)B−L GUT model on a CY3. GUT symmetry

breaking and Higgs doublet-triplet splitting is accomplished via a Wilson line in the

weak hypercharge direction. The low energy theory contains three families of quarks

and leptons, one pair of Higgs doublets and the Standard Model gauge symmetry plus

the additional U(1)B−L. The latter forbids R parity violating operators and is only

spontaneously broken near the weak scale via right-handed sneutrino VEVs. Hence in

this theory the tau neutrino mixes with neutralinos and is Majorana. However, in the

simplest scenario, the electron and muon neutrinos are pure Dirac. Moreover they are

light due to the assumption of very small Yukawa couplings. The phenomenology of

this model has been discussed in Ref. [109].

4.4. Heterotic String Orbifolds and Orbifold GUTs

Early work on orbifold constructions of the heterotic string was started over 20 years

ago [110, 111, 113–115]. The first complete MSSM model from the E8 ⊗ E8 heterotic

string was obtained using the free fermionic construction by Faraggi et al. [87,116]. The

authors impose an intermediate SO(10) SUSY GUT.

Progress has been made recently [100–102,104,106,117–121]. In a “mini-landscape”

search of the E(8) × E(8) heterotic landscape [101] 223 models with 3 families, Higgs

doublets and ONLY vector-like exotics were found out of a total of order 30,000 models

or approximately 1 in 100 models searched looked like the MSSM! We called this a

“fertile patch” in the heterotic landscape. Let me describe this focussed search in more

detail.
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4.4.1. Phenomenological guidelines We use the following guidelines when searching for

“realistic” string models [100,101]. We want to:

(i) Preserve gauge coupling unification;

(ii) Keep low energy SUSY as solution to the gauge hierarchy problem, i.e. why is

MZ << MG;

(iii) Put quarks and leptons in 16 of SO(10);

(iv) Put Higgs in 10, thus quarks and leptons are distinguished from Higgs by their

SO(10) quantum numbers;

(v) Preserve GUT relations for 3rd family Yukawa couplings;

(vi) Use the fact that GUTs accommodate a “Natural” See-Saw scale O(MG);

(vii) Use intuition derived from Orbifold GUT constructions, [120,121] and

(viii) Use local GUTs to enforce family structure [102,104,122].

It is the last two guidelines which are novel and characterize our approach.

4.4.2. E8 × E8 heterotic string compactified on Z3 × Z2 6D orbifold There are many

reviews and books on string theory. I cannot go into great detail here, so I will confine

my discussion to some basic points. We start with the 10d heterotic string theory,

consisting of a 26d left-moving bosonic string and a 10d right-moving superstring.

Modular invariance requires the momenta of the internal left-moving bosonic degrees of

freedom (16 of them) to lie in a 16d Euclidean even self-dual lattice, we choose to be

the E8 × E8 root lattice. Note, for an orthonormal basis, the E8 root lattice consists of

the following vectors, (n1, n2, · · · , n8) and (n1+
1
2
, n2+

1
2
, · · · , n8+

1
2
), where n1, n2, · · ·n8

are integers and
∑8

i=1 ni = 0mod 2.

4.4.3. Heterotic string compactified on T 6/Z6 We first compactify the theory on a 6d

torus defined by the space group action of translations on R6 giving the torus T 6 in terms

of a factorizable Lie algebra latticeG2⊕SU(3)⊕SO(4) (see Fig. 9). Then we mod out by

the Z6 action on the three complex compactified coordinates given by Zi → e2πiri·v6Zi,

i = 1, 2, 3, where v6 =
1
6
(1, 2,−3) is the twist vector, and r1 = (1, 0, 0, 0), r2 = (0, 1, 0, 0),

r3 = (0, 0, 1, 0). [Together with r4 = (0, 0, 0, 1), they form the set of positive weights

of the 8v representation of the SO(8), the little group in 10d. ±r4 represent the two

uncompactified dimensions in the light-cone gauge. Their space-time fermionic partners

have weights r = (±1
2
,±1

2
,±1

2
,±1

2
) with even numbers of positive signs; they are in the

8s representation of SO(8). In this notation, the fourth component of v6 is zero.]

The Z6 orbifold is equivalent to a Z2 ×Z3 orbifold, where the two twist vectors are

v2 = 3v6 = 1
2
(1, 0,−1) and v3 = 2v6 = 1

3
(1,−1, 0). The Z2 and Z3 sub-orbifold twists

have the SU(3) and SO(4) planes as their fixed torii. In Abelian symmetric orbifolds,

gauge embeddings of the point group elements and lattice translations are realized by

shifts of the momentum vectors, P, in the E8 × E8 root lattice. [114, 115, 123–125],

i.e., P → P + kV + lW, where k, l are some integers, and V and W are known
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SO4 root latticeG2 SU3× ×

ls 2πR

Figure 9. G2 ⊕ SU(3)⊕ SO(4) lattice. Note, we have taken 5 directions with string

scale length ℓs and one with length 2πR ≫ ℓs. This will enable the analogy of an

effective 5d orbifold field theory.

SO(4)

0 πR

G2 SU3

Figure 10. G2 ⊕ SU(3) ⊕ SO(4) lattice with Z2 fixed points. The T3 twisted sector

states sit at these fixed points. The fixed point at the origin and the symmetric linear

combination of the red (grey) fixed points in the G2 torus have γ = 1.

as the gauge twists and Wilson lines [113]. These embeddings are subject to modular

invariance requirements [110–112]. [Note, the E8 root lattice is given by the set of states

P = {n1, n2, · · · , n8}, {n1 +
1
2
, n2 +

1
2
, · · · , n8 +

1
2
} satisfying ni ∈ Z,

∑8
i=1 ni = 2Z.]

The Wilson lines are also required to be consistent with the action of the point group.

In the Z6 model, there are at most three consistent Wilson lines [126], one of degree 3

(W3), along the SU(3) lattice, and two of degree 2 (W2, W
′
2), along the SO(4) lattice.

The Z6 model has three untwisted sectors (Ui, i = 1, 2, 3) and five twisted sectors

(Ti, i = 1, 2, · · · , 5). (The Tk and T6−k sectors are CPT conjugates of each other.) The

twisted sectors split further into sub-sectors when discrete Wilson lines are present.

In the SU(3) and SO(4) directions, we can label these sub-sectors by their winding

numbers, n3 = 0, 1, 2 and n2, n
′
2 = 0, 1, respectively. In the G2 direction, where both

the Z2 and Z3 sub-orbifold twists act, the situation is more complicated. There are

four Z2 fixed points in the G2 plane. Not all of them are invariant under the Z3 twist,

in fact three of them are transformed into each other. Thus for the T3 twisted-sector

states one needs to find linear combinations of these fixed-point states such that they

have definite eigenvalues, γ = 1 (with multiplicity 2), ei2π/3, or ei4π/3, under the orbifold

twist [126, 127] (see Fig. 10). Similarly, for the T2,4 twisted-sector states, γ = 1 (with

multiplicity 2) and −1 (the fixed points of the T2,4 twisted sectors in the G2 torus are

shown in Fig. 11). The T1 twisted-sector states have only one fixed point in the G2

plane, thus γ = 1 (see Fig. 12). The eigenvalues γ provide another piece of information

to differentiate twisted sub-sectors.

Massless states in 4d string models consist of those momentum vectors P and r

(r are in the SO(8) weight lattice) which satisfy the following mass-shell equations
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SO(4)G2 SU3

Figure 11. G2⊕SU(3)⊕SO(4) lattice with Z3 fixed points for the T2 twisted sector.

The fixed point at the origin and the symmetric linear combination of the red (grey)

fixed points in the G2 torus have γ = 1.

SO(4)G2 SU3

e6

e5

Figure 12. G2 ⊕ SU(3) ⊕ SO(4) lattice with Z6 fixed points. The T1 twisted sector

states sit at these fixed points.

[110,111,114,115,123–125],

α′

2
m2

R = Nk
R +

1

2
|r+ kv|2 + akR = 0 , (95)

α′

2
m2

L = Nk
L +

1

2
|P+ kX|2 + akL = 0 , (96)

where α′ is the Regge slope, Nk
R and Nk

L are (fractional) numbers of the right- and

left-moving (bosonic) oscillators, X = V + n3W3 + n2W2 + n′
2W

′
2, and a

k
R, a

k
L are the

normal ordering constants,

akR = − 1

2
+

1

2

3∑
i=1

|k̂vi|
(
1− |k̂vi|

)
,

akL = − 1 +
1

2

3∑
i=1

|k̂vi|
(
1− |k̂vi|

)
, (97)

with k̂vi = mod(kvi, 1).

These states are subject to a generalized Gliozzi-Scherk-Olive (GSO) projection

P = 1
6

∑5
ℓ=0 ∆

ℓ [114,115,123–125]. For the simple case of the k-th twisted sector (k = 0

for the untwisted sectors) with no Wilson lines (n3 = n2 = n′
2 = 0) we have

∆ = γϕ exp
{
iπ
[
(2P+ kX) ·X− (2r+ kv) · v

]}
, (98)

where ϕ are phases from bosonic oscillators. However, in the Z6 model, the GSO

projector must be modified for the untwisted-sector and T2,4, T3 twisted-sector states

in the presence of Wilson lines [121]. The Wilson lines split each twisted sector into

sub-sectors and there must be additional projections with respect to these sub-sectors.

This modification in the projector gives the following projection conditions,

P ·V − ri · v = Z (i = 1, 2, 3), P ·W3, P ·W2, P ·W′
2 = Z, (99)
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for the untwisted-sector states, and

T2,4 : P ·W2, P ·W′
2 = Z , T3 : P ·W3 = Z , (100)

for the T2,3,4 sector states (since twists of these sectors have fixed torii). There is no

additional condition for the T1 sector states.

4.4.4. An orbifold GUT – heterotic string dictionary We first implement the Z3 sub-

orbifold twist, which acts only on the G2 and SU(3) lattices. The resulting model is

a 6d gauge theory with N = 2 hypermultiplet matter, from the untwisted and T2,4
twisted sectors. This 6d theory is our starting point to reproduce the orbifold GUT

models. The next step is to implement the Z2 sub-orbifold twist. The geometry of the

extra dimensions closely resembles that of 6d orbifold GUTs. The SO(4) lattice has

four Z2 fixed points at 0, πR, πR′ and π(R + R′), where R and R′ are on the e5 and

e6 axes, respectively, of the lattice (see Figs. 10 and 12). When one varies the modulus

parameter of the SO(4) lattice such that the length of one axis (R) is much larger than

the other (R′) and the string length scale (ℓs), the lattice effectively becomes the S1/Z2

orbi-circle in the 5d orbifold GUT, and the two fixed points at 0 and πR have degree-2

degeneracies. Furthermore, one may identify the states in the intermediate Z3 model,

i.e. those of the untwisted and T2,4 twisted sectors, as bulk states in the orbifold GUT.

Space-time supersymmetry and GUT breaking in string models work exactly as in

the orbifold GUT models. First consider supersymmetry breaking. In the field theory,

there are two gravitini in 4d, coming from the 5d (or 6d) gravitino. Only one linear

combination is consistent with the space reversal, y → −y; this breaks the N = 2

supersymmetry to that of N = 1. In string theory, the space-time supersymmetry

currents are represented by those half-integral SO(8) momenta. [Together with r4 =

(0, 0, 0, 1), they form the set of positive weights of the 8v representation of the SO(8),

the little group in 10d. ±r4 represent the two uncompactified dimensions in the light-

cone gauge. Their space-time fermionic partners have weights r = (±1
2
,±1

2
,±1

2
,±1

2
)

with even numbers of positive signs; they are in the 8s representation of SO(8). In this

notation, the fourth component of v6 is zero.] The Z3 and Z2 projections remove all

but two of them, r = ±1
2
(1, 1, 1, 1); this gives N = 1 supersymmetry in 4d.

Now consider GUT symmetry breaking. As usual, the Z2 orbifold twist and the

translational symmetry of the SO(4) lattice are realized in the gauge degrees of freedom

by degree-2 gauge twists and Wilson lines respectively. To mimic the 5d orbifold GUT

example, we impose only one degree-2 Wilson line, W2, along the long direction of the

SO(4) lattice, R. [Wilson lines can be used to reduce the number of chiral families. In

all our models, we find it is sufficient to get three-generation models with two Wilson

lines, one of degree 2 and one of degree 3. Note, however, that with two Wilson lines in

the SO(4) torus we can break SO(10) directly to SU(3)×SU(2)×U(1)Y ×U(1)X (see

for example, Ref. [128]).] The gauge embeddings generally break the 5d/6d (bulk) gauge

group further down to its subgroups, and the symmetry breaking works exactly as in

the orbifold GUT models. This can clearly be seen from the following string theoretical
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realizations of the orbifold parities

P = p e2πi [P·V2−r·v2] , P ′ = p e2πi [P·(V2+W2)−r·v2] , (101)

where V2 = 3V6, and p = γϕ can be identified with intrinsic parities in the field theory

language. [For gauge and untwisted-sector states, p are trivial. For non-oscillator states

in the T2,4 twisted sectors, p = γ are the eigenvalues of the G2-plane fixed points under

the Z2 twist. Note that p = + and − states have multiplicities 2 and 1 respectively

since the corresponding numbers of fixed points in the G2 plane are 2 and 1.] Since

2(P ·V2 − r · v2), 2P ·W2 = Z, by properties of the E8 × E8 and SO(8) lattices, thus

P 2 = P ′2 = 1, and Eq. (101) provides a representation of the orbifold parities. From

the string theory point of view, P = P ′ = + are nothing but the projection conditions,

∆ = 1, for the untwisted and T2,4 twisted-sector states (see Eqs. (98), (99) and (100)).

To reaffirm this identification, we compare the masses of KK excitations derived

from string theory with that of orbifold GUTs. The coordinates of the SO(4) lattice

are untwisted under the Z3 action, so their mode expansions are the same as that

of toroidal coordinates. Concentrating on the R direction, the bosonic coordinate is

XL,R = xL,R + pL,R(τ ± σ) + oscillator terms, with pL, pR given by

pL =
m

2R
+

(
1− 1

4
|W2|2

)
n2R

ℓ2s
+

P ·W2

2R
,

pR = pL − 2n2R

ℓ2s
, (102)

where m (n2) are KK levels (winding numbers). The Z2 action maps m to −m,

n2 to −n2 and W2 to −W2, so physical states must contain linear combinations,

|m,n2⟩±|−m,−n2⟩; the eigenvalues ±1 correspond to the first Z2 parity, P , of orbifold

GUT models. The second orbifold parity, P ′, induces a non-trivial degree-2 Wilson line;

it shifts the KK level bym→ m+P·W2. Since 2W2 is a vector of the (integral) E8×E8

lattice, the shift must be an integer or half-integer. When R ≫ R′ ∼ ℓs, the winding

modes and the KK modes in the smaller dimension of SO(4) decouple. Eq. (102) then

gives four types of KK excitations, reproducing the field theoretical mass formula in

Eq. (76).

4.4.5. MSSM with R parity In this section we discuss just one “benchmark” model

(Model 1) obtained via a “mini-landscape” search [100,101,105] of the E8×E8 heterotic

string compactified on the Z6 orbifold [101]. [For earlier work on MSSM models from

Z6 orbifolds of the heterotic string, see [102,104]. For reviews, see [129,130]]

The model is defined by the shifts and Wilson lines

V =

(
1

3
,−1

2
,−1

2
, 0, 0, 0, 0, 0

) (
1

2
,−1

6
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,
1

2

)
,(103)

W2 =

(
0,−1

2
,−1

2
,−1

2
,
1

2
, 0, 0, 0

) (
4,−3,−7

2
,−4,−3,−7

2
,−9

2
,
7

2

)
,(104)

W3 =

(
−1

2
,−1

2
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6

) (
1

3
, 0, 0,

2

3
, 0,

5

3
,−2, 0

)
. (105)
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A possible second order 2 Wilson line is set to zero.

The shift V is defined to satisfy two criteria.

• The first criterion is the existence of a local SO(10) GUT at the T1 fixed points at

x6 = 0 in the SO(4) torus (Fig. 12).

P · V = Z; P ∈ SO(10) momentum lattice. (106)

Since the T1 twisted sector has no invariant torus and only one Wilson line along

the x6 direction, all states located at these two fixed points must come in complete

SO(10) multiplets. [For more discussion on local GUTs, see [102,122]]

• The second criterion is that two massless spinor representations of SO(10) are

located at the x6 = 0 fixed points.

Hence, the two complete families on the local SO(10) GUT fixed points gives us an

excellent starting point to find the MSSM. The Higgs doublets and third family of

quarks and leptons must then come from elsewhere.

Let us now discuss the effective 5d orbifold GUT [131]. Consider the orbifold

(T 2)3/Z3 plus the Wilson line W3 in the SU3 torus. The Z3 twist does not act on the

SO4 torus, see Fig. 11. As a consequence of embedding the Z3 twist as a shift in the

E8×E8 group lattice and taking into account the W3 Wilson line, the first E8 is broken

to SU(6). This gives the effective 5d orbifold gauge multiplet contained in the N = 1

vector field V . In addition we find the massless states Σ = 35, and 20 + 20c and 18

(6 + 6c) in the 6d untwisted sector and T2, T4 twisted sectors. Together these form a

complete N = 2 gauge multiplet (V + Σ) (see Eqns. 109 and 110) and a 20 + 18 (6)

dimensional hypermultiplets.♯ In fact the massless states in this sector can all be viewed

as “bulk” states moving around in a large 5d space-time.

Now consider the Z2 twist and the Wilson line W2 along the x6 axis in the SO4

torus. The action of the Z2 twist breaks the gauge group to SU(5), while W2 breaks

SU(5) further to the SM gauge group SU(3)C ×SU(2)L×U(1)Y (the SM is represented

by the red states in Eqn. 109).

Let us focus on those MSSM states located in the bulk. From two of the pairs of

N = 1 chiral multiplets 6+ 6c, which decompose as

2× (6+ 6c) ⊃[
(1,2)−−

1,1 + (3,1)−+
−2/3,1/3

]
+
[
(1,2)++

−1,−1 + (3,1)−−
2/3,−1/3

]
+
[
(1,2)−+

1,1 + (3,1)−−
−2/3,1/3

]
+
[
(1,2)+−

−1,−1 + (3,1)++
2/3,−1/3

]
, (107)

we obtain the third family bc and lepton doublet, l. The rest of the third family comes

from the 10+10c of SU(5) contained in the 20+20c of SU(6), in the untwisted sector.

Now consider the Higgs bosons. The bulk gauge symmetry is SU(6). Under

SU(5)× U(1), the adjoint decomposes as

35 → 240 + 5+1 + 5c
−1 + 10. (108)

♯ Note, in four dimensions massless chiral adjoints cannot be obtained at level 1 Kac-Moody algebras.

Clearly this is not true in 5d.



Searching for the Standard Model in the String Landscape : SUSY GUTs 46

SO(4)

0 πR

G2 SU3

SU(5) SU(4) ⊗ SU(2)

16

16

local SO(10) SU(6) orbifold GUT
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Figure 13. The two families in the T1 twisted sector.

The Higgs doublets are represented by the blue states in Eqn. 110. Thus the MSSM

Higgs sector emerges from the breaking of the SU(6) adjoint by the orbifold and the

model satisfies the property of “gauge-Higgs unification.”

To summarize, in models with gauge-Higgs unification, the Higgs multiplets come

from the 5d vector multiplet (V,Σ), both in the adjoint representation of SU(6). V is

the 4d gauge multiplet and the 4d chiral multiplet Σ contains the Higgs doublets. These

states transform as follows under the orbifold parities (P P ′):

V :



(++) (++) (++) (+−) (+−) (−+)

(++) (++) (++) (+−) (+−) (−+)

(++) (++) (++) (+−) (+−) (−+)

(+−) (+−) (+−) (++) (++) (−−)

(+−) (+−) (+−) (++) (++) (−−)

(−+) (−+) (−+) (−−) (−−) (++)


(109)

Φ :



(−−) (−−) (−−) (−+) (−+) (+−)

(−−) (−−) (−−) (−+) (−+) (+−)

(−−) (−−) (−−) (−+) (−+) (+−)

(−+) (−+) (−+) (−−) (−−) (++)

(−+) (−+) (−+) (−−) (−−) (++)

(+−) (+−) (+−) (++) (++) (−−)


. (110)

Hence, we have obtained doublet-triplet splitting via orbifolding.

4.4.6. D4 Family Symmetry Consider the Z2 fixed points. We have four fixed points,

separated into an SU(5) and SM invariant pair by the W2 Wilson line (see Fig. 13).

We find two complete families, one on each of the SO(10) fixed points and a small set

of vector-like exotics (with fractional electric charge) on the other fixed points. Since

W2 is in the direction orthogonal to the two families, we find a non-trivial D4 family

symmetry. This will affect a possible hierarchy of fermion masses. We will discuss the

family symmetry and the exotics in more detail next.

The discrete group D4 is a non-abelian discrete subgroup of SU2 of order 8. It is

generated by the set of 2× 2 Pauli matrices

D4 = {±1,±σ1,±σ3,∓iσ2}. (111)
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In our case, the action of the transformation σ1 =

(
0 1

1 0

)
takes F1 ↔ F2, while the

action of σ3 =

(
1 0

0 −1

)
takes F2 → −F2. These are symmetries of the string. The

first is a symmetry which interchanges the two light families located at opposite sides of

one cycle of the orbifolded SO(4) torus. This symmetry corresponds to the geometric

translation half way around the cycle which is not broken by the Wilson line lying along

the orthogonal cycle. The second is a result of so-called space-group selection rules

which require an even number of states at each of these two fixed points. As a result,

the theory is invariant under the action of multiplying each state located at, say, the

lower fixed point by minus one.

Under D4 the three families of quarks and leptons transform as a doublet, (F1, F2),

and a singlet, F3. As a consequence of D4 (and additional U(1) symmetries), only the

third family can have a tree level Yukawa coupling to the Higgs (which is also a D4

singlet). All others Yukawa couplings can only be obtained once the family symmetries

are broken. Thus the string theory includes a natural Froggatt-Nielsen mechanism [132]

for generating a hierarchy of fermion masses. In summary:

• Since the top quarks and the Higgs are derived from the SU(6) chiral adjoint and

20 hypermultiplet in the 5D bulk, they have a tree level Yukawa interaction given

by

W ⊃ g5√
πR

∫ πR

0

dy20c Σ 20 = gG Q3 Hu U
c
3 (112)

where g5 (gG) is the 5d (4d) SU(6) gauge coupling constant evaluated at the string

scale. [For a detailed analysis of gauge-Yukawa unification in this context, see [133].]

• The first two families reside at the Z2 fixed points, resulting in a D4 family

symmetry. Hence family symmetry breaking may be used to generate a hierarchy

of fermion masses. [For a discussion of D4 family symmetry and phenomenology,

see Ref. [134]. For a general discussion of discrete non-Abelian family symmetries

from orbifold compactifications of the heterotic string, see [135].]

4.4.7. More details of “Benchmark” Model 1 [101] In order to analyze the theory

further one must construct the superpotential and Kahler potential. We have assumed

the zeroth order perturbative Kahler potential in our analysis. The superpotential on

the other hand can be obtained as a power series in chiral superfields. Each monomial

in this series is a holomorphic product of chiral superfields to some given order, n, in the

fields. We have considered terms up to n = 8. The monomials in the superpotential are

strongly constrained by string selection rules and gauge invariance. In our analysis we

allow all monomials consistent with these selection rules. Although the coefficients of

each term can in principle be determined by calculating the vacuum expectation value

of the product of the appropriate vertex operators; such a calculation is prohibitive

due to the fact that there are hundreds of terms in the polynomial at each order n.
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Thus we assume that any term that is permitted by the selection rules appears in the

superpotential with order one coefficient.

Let us now consider the spectrum, exotics, R parity, Yukawa couplings, and neutrino

masses. In Table 11 we list the states of the model. In addition to the three families of

quarks and leptons and one pair of Higgs doublets, we have vector-like exotics (states

which can obtain mass without breaking any SM symmetry) and SM singlets. The SM

singlets enter the superpotential in several important ways. They can give mass to the

vector-like exotics via effective mass terms of the form

EEcS̃n (113)

where E,Ec (S̃) represent the vector-like exotics and SM singlets respectively. We have

checked that all vector-like exotics and unwanted U(1) gauge bosons obtain mass at

supersymmetric points in moduli space with F = D = 0; leaving only the MSSM states

at low energy. The SM singlets also generate effective Yukawa matrices for quarks and

leptons, including neutrinos. The charged fermion Yukawa matrices are

Yu =

 s̃5 s̃5 s̃5

s̃5 s̃5 s̃5

s̃6 s̃6 1

 , Yd =

 s̃5 s̃5 0

s̃5 s̃5 0

s̃6 s̃6 0

 , Ye =

 s̃5 s̃5 s̃6

s̃5 s̃5 s̃6

s̃6 s̃6 0

 .

(114)

where s̃n represents a polynomial in SM singlets beginning at order n in the product of

fields. And we have shown that the three left-handed neutrinos get small mass due to

a non-trivial See-Saw mechanism involving the 16 right-handed neutrinos and their 13

conjugates. All in all, this “benchmark” model looks very much like the MSSM!

In addition, one of the most important constraints in this construction is the

existence of an exact low energy R parity. In this model we identified a generalized

B−L (see Table 11) which is standard for the SM states and vector-like on the vector-

like exotics. This B−L naturally distinguishes the Higgs and lepton doublets. Moreover

we found SM singlet states

S̃ = {hi, χi, s
0
i } (115)

which can get vacuum expectation values preserving a matter parity ZM
2 subgroup of

U(1)B−L. It is this set of SM singlets which give vector-like exotics mass and effective

Yukawa matrices for quarks and leptons. The χ fields spontaneously break B−L leaving

over a discrete Z2 matter parity under which all quarks and leptons are odd and Higgs

doublets are even. This symmetry enforces an exact R-parity forbidding the baryon or

lepton number violating operators, ŪD̄D̄, QLD̄, LLĒ, LHu.

Finally the mu term vanishes in the supersymmetric limit. This is a consequence

of the fact that the coefficient of the HuHd term in the superpotential has vacuum

quantum numbers. Thus any product of SM singlets which can appear in the pure

singlet superpotential can appear as an effective mu term. In fact both the mu term

and the singlet superpotential vanish to order 6 in the product of fields. Hence in

the supersymmetric vacuum the VEV of the superpotential and the mu term both
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vanish. As a consequence, when supergravity is considered, the supersymmetric vacuum

is consistent with flat Minkowski space. [For a recent discussion on the vanishing of the

µ term and its connection to approximate R symmetries, see [136].]

Note, Yukawa couplings, gauge couplings and vector-like exotic masses are functions

of moduli (along SUSY flat directions). Some of these moduli are blow up modes for

some, BUT NOT ALL, of the orbifold fixed points. In fact, two fixed points are NOT

blown up!

4.4.8. Gauge Coupling Unification and Proton Decay We have checked whether the

SM gauge couplings unify at the string scale in the class of models similar to Model 1

above [131]. All of the 15 MSSM-like models of Ref. [101] have 3 families of quarks and

leptons and one or more pairs of Higgs doublets. They all admit an SU(6) orbifold GUT

with gauge-Higgs unification and the third family in the bulk. They differ, however, in

other bulk and brane exotic states. We show that the KK modes of the model, including

only those of the third family and the gauge sector, are not consistent with gauge

coupling unification at the string scale. Nevertheless, we show that it is possible to obtain

unification if one adjusts the spectrum of vector-like exotics below the compactification

scale. As an example, see Fig. 14. Note, the compactification scale is less than the 4d

GUT scale and some exotics have mass two orders of magnitude less than Mc, while all

others are taken to have mass at MSTRING. In addition, the value of the GUT coupling

at the string scale, αG(MSTRING) ≡ αstring, satisfies the weakly coupled heterotic string

relation

GN =
1

8
αstring α

′ (116)

or

α−1
string =

1

8
(

MPl

MSTRING

)2. (117)

In Fig. 15 we plot the distribution of solutions with different choices of light exotics.

On the same plot we give the proton lifetime due to dimension 6 operators. Recall in

these models the two light families are located on the SU(5) branes, thus the proton

decay rate is only suppressed by M−2
c . Note, 90% of the models are already excluded

by the Super-Kamiokande bounds on the proton lifetime. The remaining models may

be tested at a next generation megaton water čerenkov detector.

Note that dimension 5 operators are generated when integrating out color triplet

exotics. These operators may be suppressed by fine tuning. But this is not a satisfactory

solution. Recently, however, it was shown that a discrete Z4 R symmetry can be

used to naturally suppress both the µ term and dimension 5 proton decay operators.

These terms are forbidden at the perturbative level, but can be generated through

non-perturbative interactions. Moreover string models with such symmetries have been

constructed [178].
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Figure 14. An example of the type of gauge coupling evolution we see in these

models, versus the typical behavior in the MSSM. The “tail” is due to the power law

running of the couplings when towers of Kaluza-Klein modes are involved. Unification

in this model occurs at MSTRING ≃ 5.5 × 1017 GeV, with a compactification scale of

Mc ≃ 8.2× 1015 GeV, and an exotic mass scale of MEX ≃ 8.2× 1013 GeV.
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Figure 15. Histogram of solutions with MSTRING > Mc & MEX, showing the models

which are excluded by Super-K bounds (darker green) and those which are potentially

accessible in a next generation proton decay experiment (lighter green). Of 252 total

solutions, 48 are not experimentally ruled out by the current experimental bound, and

most of the remaining parameter space can be eliminated in the next generation of

proposed proton decay searches.

4.5. F theory / Type IIB

We now change directions and discuss some recent progress in F theory model

building [90–94,138,139]. An SU(5) GUT is obtained on a D7 “gauge” brane S ×R3,1.

D7 “matter” branes on S ′ ×R3,1 also exist with chiral matter in 6D on Σ×R3,1 at the

intersection of the gauge and matter branes (Fig. 16). Yukawa couplings enter at the

triple intersections Σ1

∩
Σ2

∩
Σ3 of matter sub-manifolds (Fig. 17).

SU(5) is broken to the SM gauge group with non-vanishing hypercharge flux ⟨FY ⟩.
Note, this is not possible in the Heterotic string! This is because of the term in the

Lagrangian
∫
d10x(dB+AY

∧
⟨FY ⟩)2 which leads to a massive hypercharge gauge boson

and consequently a massive photon. In addition, ⟨FY ⟩ on the Higgs brane leads to

doublet-triplet splitting. Finally, spinor representations of SO(10) are possible in F

theory; although they are not possible in the perturbative type IIB string.
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Figure 16. The figure represents 3 complex planes labeled by zi, i = 1, 2, 3. The four

dimensional blue surface is the gauge brane and the matter brane is red. Open strings

at the intersection give chiral matter in bi-fundamental representations.

Figure 17. Yukawa couplings are generated at the intersection of two quark branes

with a Higgs brane.

It has been argued that it is difficult to find multiply connected manifolds, with

non-zero Π(1) and thus breaking GUTs with hypercharge flux is novel advantage for F

theory model building. On the other hand, it has been shown [93, 140] that breaking

GUTs with hypercharge field strengths induces significant threshold corrections to gauge

coupling unification. This is a real problem that must be dealt with in any GUT model

obtained in this way.

It was also demonstrated that a fermion flavor hierarchy is natural [141–143], due

to flux in the z2− z3 surface breaking geometric flavor symmetry, with Yukawa matrices

of the form

λ ∼

 ϵ8 ϵ6 ϵ4

ϵ6 ϵ4 ϵ2

ϵ4 ϵ2 1

 (118)

Finally, gravity decouples (i.e. MPl → ∞) with a non-compact z1 direction. These

are so-called “local” constructions. A bit of progress has also been made in “global”

compact constructions [94,139].

5. Heterotic - F theory duals

F theory defined on a CY4 is dual to the heterotic string defined on a CY3 (Fig. 18).

We are now attempting to construct the F theory dual to our MSSM-like models [144].

The motivation is three-fold.

(i) Three family MSSM-like models have been found using an SO(5)×SO(5)×SO(4)

torus mod Z4 × Z2 [145] and an SO(4)3 torus mod Z2 × Z2 [146]. This suggests a
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Figure 18. The heterotic string (left) is compactified on the product of two tori fibered

over a common 2-sphere (defining a Calabi-Yau three-fold), while F theory (right) is

defined in terms of a torus (whose complex structure defines the coupling strength of

a Type IIB string) fibered over the product of two 2-spheres and the additional torus

fibered over a common 2-sphere (defining a Calabi-Yau four-fold).

larger class of MSSM-like models. We hope to find a more general description of

MSSM-like models, i.e. all models in the same universality class.

(ii) It may also provide a general understanding of moduli space, since from the orbifold

view point we must first construct the superpotential before it is possible to identify

the moduli, and

(iii) it may help us understand moduli stabilization and SUSY breaking.

Why should we expect F theory duals of heterotic orbifold models to exist. First

uplift our E(8) × E(8) orbifold models onto a smooth Calabi-Yau manifold. Recall

that after the first Z3 orbifold plus Wilson line W3 we find a 6D SU(6) orbifold GUT

compactified on (T2)
2/Z3 × T2. The complete massless spectrum in this case (including

the hidden sector) is given in Table 12 [131]. This spectrum satisfies the gravity anomaly

constraint NH−N6
V +29NT = 273, where (NH = 320, N6

V = 76, NT = 1) are the number

of (hyper-, vector,tensor) multiplets.

Moreover, using the results of Bershadsky et al. [147] we show that the E(8)×E(8)
heterotic string compactified on a smooth K3 × T 2, with instantons imbedded into K3,

is equivalent to the orbifolded theories. For example, with 12 instantons imbedded

into an SU(3) × SU(2) subgroup of the first E(8) leaves an SU(6) 6D GUT with

the massless hypermultiplets (20 + cc) + 18(6 + c.c.). Then imbedding 12 instantons

into an E(6) subgroup of the second E(8) plus additional higgsing leaves an unbroken

SO(8) gauge symmetry with the massless hypermultiplets 4(8v + 8s + 8c + c.c.). This

is identical to the massless spectrum of the orbifold GUT, IF we neglect the additional

SU(3) × U(1)5 symmetry which is broken when going to the smooth limit. In fact, it

is expected that the blow up modes necessary to smooth out the orbifold singularities

carry charges under some of the orbifold gauge symmetries; spontaneously breaking

these symmetries. Therefore K3 × T2 with instantons is the smooth limit of T4/Z3 × T2
orbifold plus Wilson line. In addition, it was shown that F theory compactified on a

Calabi-Yau 3-fold [defined in terms of a torus T2 fibered over the space Fn ×T2] is dual
to an E(8) × E(8) heterotic string compactified on K3 × T2 with instantons [147] (see

Fig. 19).
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Figure 19. At the 6D level we have a Calabi-Yau three-fold times a torus. The

gauge branes are located at the points z1 = 0 and ∞. The matter branes are located

schematically at the solid point in Z2.

Figure 20. At the 4D level we fiber the last torus over the 2-sphere and retain

two orbifold fixed points. These two fixed points are where the two light families are

conjectured to be located. In addition, as long as the fixed points remain, the Wilson

line wrapping the last torus is stable.

Pictorially we see that the SU(6)[SO(8)] gauge branes are localized at the upper

[lower] points on the z1 2-sphere (Fig. 19). These 7 branes wrap the four dimensional

surface S = (z2, z3). The matter 7 branes intersect the gauge branes at points in z2
and wrap the four dimensional surface S ′ = (z1, z3). The intersection of the matter and

gauge branes is along the two dimensional surface Σ = (z3).

We now need to break the 6D SU(6) GUT to SU(5) and then to the Standard

Model. At the same time we must break the N=1 SUSY in 6D to N=1 in 4D. This

is accomplished by acting with the Z2 orbifold on the torus and the 2-sphere. A U(1)

flux in SU(6) on the gauge and matter branes breaks SU(6) to SU(5). The breaking

to the Standard Model requires a Wilson line on the torus. However, we now encounter

a possible obstruction to finding the F theory dual of our Heterotic orbifold model. We

need to keep two orbifold fixed points (Fig. 20) -

(i) otherwise hypercharge gets mass [148],

(ii) and the Wilson line shrinks to a point, since T 2/Z2 is topologically equivalent to a

2-sphere;

(iii) and blow up modes on the heterotic side leave two orbifold fixed points.

In addition, on the heterotic side the two light families are located at 4D orbifold

fixed points. We expect that on the F theory side they will be located on D3 branes fixed

at the two remaining 4D fixed points. [These problems may be absent in the model of

Ref. [146] in which the GUT breaking Wilson line wraps a non-contractible cycle, even

when all orbifold fixed points are blown up.]



Searching for the Standard Model in the String Landscape : SUSY GUTs 54

6. Supersymmetry breaking and Moduli stabilization

Up until now we have focused on MSSM-like models obtained in the supersymmetric

limit. The massless spectrum of these theories contain three families of quarks and

leptons, one or more pairs of Higgs doublets and the Standard Model gauge sector

SU(3) ⊗ SU(2) ⊗ U(1)Y . However these theories typically include many Standard

Model singlet fields. In the effective field theory limit, these singlet fields have flat

potentials. All such fields are called moduli. Some of these moduli are geometric,

describing the volume or shape of the internal 6 dimensions. While in orbifold models

there are also blow-up modes which parametrize the smoothing out of the orbifold fixed

points. The gauge and Yukawa couplings of the Standard Model are functions of these

moduli. In addition there are, in many cases, extra gauge interactions. Typically a

non-Abelian hidden sector with new hidden sector quarks and anti-quarks carrying only

the hidden sector gauge charge. There may be extra U(1) gauge interactions and also

new states which are vector-like under the Standard Model gauge symmetry. Blow-up

modes typically have charge under some of the additional gauge symmetries. This is

because these symmetries are only realized in the orbifold limit.

Supersymmetry breaking is studied in the effective supergravity field theory

describing the massless states of the particular string model. If we can manage to

break supersymmetry in this field theory limit, then moduli stabilization will generically

manage itself. Radiative corrections to scalar potentials in non-supersymmetric theories

will, in most cases, introduce curvature into tree level flat directions. Supersymmetry

prevents this, however once supersymmetry is broken then there will be few if any flat

directions left. But how to break supersymmetry? It is easy to show that if the tree

level theory is supersymmetric, then supersymmetry cannot be broken in any finite

order of perturbation theory. Hence in order to break supersymmetry, one needs non-

perturbative effects and non-perturbative effects come in at least two ways, either via

non-local tunneling in field space or via strong interaction dynamics, such as gaugino

condensates.

There is one additional constraint in any successful SUSY breaking solution. The

vacuum energy must be nearly zero in Planck units, i.e. ⟨Tµν⟩ = M2
PlΛgµν where the

observed cosmological constant has a value Λ ∼ O(10−120 M2
Pl), corresponding to a

vacuum energy density of order (10−3eV)4. The scalar potential in supergravity has the

form

V = eK(K−1
IJ̄
(DIW)(DJW)∗ − 3|W|2) +

∑
a

D2
a (119)

where K is the Kähler potential, W is the superpotential, Da is the D term associated to

the gauge group a and DI =
∂

∂ΦI
+KI is the Kähler covariant derivative with respect to

the chiral field ΦI . Note, KI = ∂K
∂ΦI

, KIJ̄ = ∂2K
∂ΦI∂Φ

∗
J
. Supersymmetry breaking requires

that DIW ̸= 0 and/or Da ̸= 0. In the supersymmetric limit, the vacuum energy is less

than or equal to zero, where V < 0 if ⟨W⟩ ̸= 0. Typically, even when supersymmetry

is broken, one requires some up-lifting of the vacuum energy in order to obtain a
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small positive cosmological constant. The study of supersymmetry breaking via non-

perturbative effects goes back to the work of Witten and others [149]. Supersymmetry

is broken in a hidden sector and then transmitted to the visible SM sector via SM

gauge interactions. The messengers of supersymmetry breaking couple directly to the

hidden sector and they are also charged under SM gauge interactions. This mechanism

for supersymmetry breaking is known as gauge mediated supersymmetry breaking or

GMSB. No self consistent supersymmetry breaking model of this kind existed until

the work of Affleck, Dine and Seiberg and others [150]. These authors showed that

instanton effects can generate non-perturbative contributions to the superpotential. The

non-perturbative terms, along with perturbative contributions, can sometimes lead to

supersymmetry breaking. Simple gauge mediated SUSY breaking models were found

in Ref. [151]. However the most general understanding of non-perturbative effects

in supersymmetric gauge theories came with the work of Seiberg [152]. All of the

aforementioned progress was in the context of global SUSY. It was however shown

in local supersymmetry, i.e. supergravity, by Nilles and others [153] that gaugino

condensates lead to SUSY breaking. This SUSY breaking is then transmitted to the SM

sector via supergravity, with the low energy SUSY breaking scale set by the gravitino

mass, m3/2. In recent years, more mechanisms for supersymmetry breaking have been

discovered, including anomaly mediated SUSY breaking and gaugino mediated SUSY

breaking. In summary, non-perturbative mechanisms for supersymmetry breaking have

a long history. Some, or all, of these mechanisms may be applied in a string theory

context. I will only discuss some of the more recent literature on SUSY breaking in

string models.

Moduli stabilization and supersymmetry breaking in Type II string models have

been considered in [154, 155]. Most of the geometric moduli in these theories can be

stabilized via gauge fluxes on internal manifolds. In the context of Type II string models,

KKLT [155] use fluxes to stabilize most geometric moduli and SUSY breaking comes

from non-perturbative contributions to the superpotential? The superpotential has the

form

W = w0 + Ce−aT (120)

where the constant w0 is a function of integer valued flux contributions which stabilize

internal volumes in CY3. Note, w0 sets the scale of supersymmetry breaking and

for m3/2 ∼ 10 TeV one needs w0 ∼ 10−13(in Planck units) [156]. T is the volume

modulus of a 4 cycle wrapped by a D7-brane. The non-perturbative contribution

to the superpotential can arise either from an instanton configuration or a gaugino

condensate. There is a problem, however, with this simple set-up, i.e. the vacuum

energy in this simplest case is negative. Thus one also needs to introduce an up-lifting

sector. KKLT add an anti-D3-brane which adds a positive contribution to the vacuum

energy, VD = D
(ReT )3

, and the constant D can be fine-tuned to obtain a small positive

cosmological constant.

Soft SUSY breaking contributions to squark, slepton and gaugino masses have been
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calculated in Refs. [156]. They find that matter VEVs dominate over moduli VEVs

leading to a scenario for SUSY breaking termed, mirage mediation. In this case, scalar

masses are of order m3/2/⟨aT ⟩ ∼ 102−103 GeV (with ⟨aT ⟩ ∼ ln(MPl/m3/2) ∼ O(8π2)),

while gaugino masses, similarly suppressed, obtain significant contributions from both

moduli and anomaly mediation. As a result, gaugino masses measured at the LHC may

appear to unify at a mirage scale which is intermediate between a TeV and GUT scales.

In F theory constructions [157–160] the authors have used the vector-like exotics

under SM gauge symmetries as mediators of supersymmetry breaking to the MSSM

states. This is known as gauge mediated SUSY breaking and typically results in a

gravitino LSP and a long-lived stau or bino NLSP. The idea is to generate a Polonyi

potential to induce SUSY breaking. The models contain two D7-branes wrapping 4-

cycles and intersecting along a 2d curve Σ. With the appropriate cohomology, there

is one massless chiral multiplet, X, at the intersection. Then including a D3-instanton

wrapping one of the 4-cycles, a Polonyi term of the form W ⊃ FX X is generated

with FX suppressed as compared to the compactification scale of the 4-cycle. The

phenomenology is somewhat model dependent. In Ref. [158], the authors obtain a

gravitino mass m3/2 ∼ FX

MPl
∼ 1 GeV, with a messenger mass M ∼MGUT . In Ref. [160],

on the other hand, the authors obtain a gravitino mass m3/2 ∼ FX

MPl
∼ 10 − 100 MeV,

with a messenger massM ∼ 1012 GeV. It should be noted that earlier and similar SUSY

breaking constructions, in the context of Type II strings can be found in Refs. [161,162]

or Type I in Refs. [163].

Stabilization of moduli and SUSY breaking within the context of the heterotic string

has a long history. The racetrack mechanism has been discussed the most [164].†† In

this scenario, two gaugino condensates generate a non-perturbative superpotential of

the form

Wnp =
∑
a=1,2

[
Ca [Λa(S, T )]

3] (121)

where

Λa(S, T ) = e−
8π2

βa
fa(S,T ) (122)

is the strong dynamics scale, fa ∼ S (at zeroth order) is the gauge kinetic function and

βa = 3Na for SU(Na) is the coefficient of the one-loop beta function.

In Section 4.4.5 we discussed “benchmark model 1” of the “mini-landscape” of

heterotic orbifold constructions [101] which has properties very close to that of the

MSSM. This model has been analyzed in the supersymmetric limit. It contains an

MSSM spectrum with three families of quarks and leptons, one pair of Higgs doublets

and an exact R parity. In the orbifold limit, it also contains a small number of vector-

like exotics and extra U(1) gauge interactions felt by standard model particles. This

theory also contains a large number of standard model singlet fields, some of which are

moduli, i.e. blow up modes of the orbifold fixed points. It was shown that all vector-like

††The racetrack mechanism has also been discussed in the context of F theory [165] and more recently

in terms of M theory [166].
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exotics and additional U(1) gauge bosons acquire mass at scales of order the string

scale at supersymmetric minima satisfying FI = Da = 0 for all chiral fields labeled by

the index I and all gauge groups labeled by the index a. In addition, the value of the

gauge couplings at the string scale and the effective Yukawa couplings are determined

by the presumed values of the vacuum expectation values [VEVs] for moduli including

the dilaton, S, the bulk volume and complex structure moduli, Ti, i = 1, 2, 3 and U and

the SM singlet fields containing the blow-up moduli [148, 167]. Finally the theory also

contains a hidden sector SU(4) gauge group with QCD-like chiral matter.

Supersymmetry breaking and moduli stabilization in “benchmark model 1” has

been discussed in Ref. [168]. In general, the model has a perturbative superpotential

satisfying modular invariance constraints, an anomalous U(1)A gauge symmetry with a

dynamically generated Fayet-Illiopoulos D-term and the hidden QCD-like non-Abelian

gauge sector generating a non-perturbative superpotential. The model also has of order

50 chiral singlet moduli. The perturbative superpotential is a polynomial in products

of chiral superfields with 100s of terms. It is not possible at the present time to analyze

this model in complete detail. Thus in Ref. [168] a simple model with a dilaton, S, one

volume modulus, T , and three standard model singlets was studied. The model has only

one gaugino condensate, as is the case for the “benchmark model 1.” We obtain a ‘hybrid

KKLT’ kind of superpotential that behaves like a single-condensate for the dilaton S,

but as a racetrack for the T and, by extension, also for the U moduli. An additional

matter F term, driven by the cancelation of an anomalous U(1)A D-term, is the seed for

successful up-lifting. Note, similar analyses in the literature have also used an anomalous

U(1)A D-term in coordination with other perturbative or non-perturbative terms in the

superpotential to accomplish SUSY breaking and up-lifting [169, 170]. The discussion

in Ref. [170] is closest in spirit to that of [168].

The structure of the superpotential of the form W ∼ w0e
−bT + ϕ2 e

−aS−b2T gives

the crucial progress-

i.) a ‘hybrid KKLT’ kind of superpotential that behaves like a single-condensate for

the dilaton S, but as a racetrack for the T and, by extension, also for the U moduli;

and

ii.) an additional matter Fϕ2 term driven by the cancelation of the anomalous U(1)A
D-term seeds SUSY breaking with successful uplifing.

Note, the constants b, b2 can have either sign. For the case with b, b2 > 0 the

superpotential for T is racetrack-like. However for b, b2 < 0 the scalar potential for

T diverges as T goes to zero or infinity and compactification is guaranteed [171]. Soft

SUSY breaking terms for squarks, sleptons and gauginos were evaluated in this simple

model. Note, the gravitino mass scale is set by the constant w0 which was shown to be

naturally small in Planck units due to approximate R symmetries [172].
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6.1. Some thoughts on the string landscape and the anthropic principle

The energy balance of the universe includes of order 4% visible matter, 23% dark matter

and 73% dark energy. The first corresponds to the matter we are made of, while the

second is postulated to be made of stable particles with mass of order one TeV; perhaps

the lightest supersymmetric particle. The quantity known as dark energy is quite frankly

a complete conundrum. It is most simply described as a cosmological constant or vacuum

energy density. Why it is so very small has no good explanation (in natural units (MPl)

the cosmological constant is of order 10−120). So perhaps the best explanation to date

is known as the anthropic principle. Only if the cosmological constant is small enough

can galaxies form and thus provide the a priori conditions for humans to be around to

observe this universe [173]. If there is an ensemble of possible universes with all possible

values of the cosmological constant, then we might expect a cosmological constant of the

observed value. Indeed this may be the case, and it is good to know that string theory

provides such a large ensemble of possible vacua, i.e. the string landscape [79, 80, 174].

The string landscape thus provides a possible explanation for why the cosmological

constant is so small. But what other questions does it answer? Can it explain why we

have the observed Standard Model gauge interactions with three families of quarks and

leptons and a Higgs? As discussed earlier in Section 4.1, random searches in the string

landscape suggest that the Standard Model is very rare. This may also suggest that

string theory cannot make predictions for low energy physics. This would be a shame,

but perhaps we are being too hasty. One possibility is that some or all of the above

questions are also answered by anthropic arguments. Attempts in this direction have

been taken to try and understand the weak scale and the Higgs mass [175] and also the

top quark mass [176] or axion cosmology [177].

On the other hand, perhaps understanding the value of the cosmological constant

is premature. After all String Theory, as such, is a work in progress. In particular, the

most complete description of string theory is in terms of the quantization of conformal

field theories [CFT] defined on the two dimensional string world sheets. The fields

themselves span, in the case of superstrings, a 10 dimensional space-time background.

In fact, space-time itself is an emergent quantity. Perturbative calculations rely on

assuming a particular classical background configuration. Non-perturbative physics

comes in through strong non-Abelian gauge interactions (fluxes and/or condensates),

instantons (gauge and world sheet) and D-branes. Whether the string CFT is defined

on a lattice or in terms of fermions and/or bosons is an arbitrary choice. But each

choice determines a different massless sector. The massless sector can be described by

an effective field theory, but how does one distinguish one arbitrary choice of background

from another? Each effective field theory has it’s own calculable ground state, but how

does one compare one ground state for one background to another with a different

background choice? Why, in practice, are four space-time dimensions large, while the

other 6 are curled up into an, as yet, unobservable “ball”? Why should we have N=1

SUSY in 4 dimensions? All of these questions are crucial to an understanding of our
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universe and deeply profound, but they have proven to be extremely difficult nuts to

crack.

However, there is much more data in our low energy phenomenology than just

the cosmological constant. Much in this data suggests more symmetry - the family

structure and charge quantization, the hierarchy of fermion masses and mixing angles,

and the absence of large flavor violating processes all suggest grand unification with

family symmetries. Perhaps string theory can be predictive, IF we understood the rules

for choosing the correct position in the string landscape. At the moment, these rules

are not understood, so the best guess relies on statistical analyses. However, we have

argued in these pages that finding the Standard Model (or Minimal Supersymmetric

Standard Model) is best achieved by requiring SUSY GUTs at the first step. I would

like to argue that if we could better understand the string landscape in these “fertile

patches” we might then be able to understand the rules needed to choose this region

of the landscape. Of course, a major caveat in this whole discussion is the assumption

that our low energy universe is describable by the Minimal Supersymmetric Standard

Model. This assumption will soon be tested at the Large Hadron Collider located at

CERN near Geneva, Switzerland.

One small hint in this direction is provided by the heterotic orbifold models

discussed in Section 4.4. These heterotic orbifold models have some amazing properties:

(i) They incorporate local GUTs with two complete families localized at orbifold fixed

points;

(ii) They incorporate a 5d SU(6) orbifold GUT with gauge-Higgs unification and the

third family in the bulk;

(iii) As a consequence, they have gauge-Yukawa unification for the top quark (thus

explaining why the top quark is heavy);

(iv) They incorporate doublet-triplet splitting with a µ term which is naturally small;

(v) They have an exact R parity. [Moreover recently it was discovered that similar

models can incorporate a ZR
4 symmetry which allows all Yukawa interactions and

neutrino masses while forbidding the µ term and dimension 5 baryon and lepton

number violating operators at the perturbative level [178]. The ZR
4 symmetry is

possible due to the final Z2 orbifold.];

(vi) As a consequence of the Z2 orbifold, the model has a D4 family symmetry which

can ameliorate problems with flavor changing neutral currents while at the same

time accommodating a hierarchy of quark and lepton masses;

(vii) Approximate R symmetries naturally generate a small constant contribution to

the superpotential, setting the scale for the gravitino mass once supersymmetry

breaking is generated.

Such models are generically related to smooth heterotic models compactified on

(K3 × T 2)/Z2. Perhaps a clue to why the Standard Model is special can be found

in this class of heterotic models.
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7. Conclusion

In this paper, we have discussed an evolution of SUSY GUT model building. We saw

that 4d SUSY GUTs have many virtues. However there are some problems which

suggest that these model may be difficult to derive from a more fundamental theory, i.e.

string theory. We then discussed orbifold GUT field theories which solve two of the most

difficult problems of 4d GUTs, i.e. GUT symmetry breaking and Higgs doublet-triplet

splitting. We then showed how some orbifold GUTs can find an ultra-violet completion

within the context of heterotic string theory.

The flood gates are now wide open. In recent work [101] we have obtained many

models with features like the MSSM: SM gauge group with 3 families, and vector-like

exotics which can, in principle, obtain large mass. The models have an exact R-parity

and non-trivial Yukawa matrices for quarks and leptons. In addition, neutrinos obtain

mass via the See-Saw mechanism. We also showed that gauge coupling unification can

be accommodated.

Of course, this is not the end of the story. It is just the beginning. In order to obtain

predictions for the LHC, one must stabilize the moduli and break supersymmetry. In

fact, these two conditions are not independent, since once SUSY is broken, the moduli

will be stabilized. The scary fact is that the moduli have to be stabilized at just the

right values to be consistent with low energy phenomenology. Interesting first steps in

the construction of complete and phenomenologically testable string models have been

taken.
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Observable Lower Bound

Mh0 114.4 GeV

mt̃ 60 GeV

mχ̃+ 104 GeV

mg̃ 195 GeV

Table 8. Mass bounds used in the fit [56].

Observable Exp. Fit Pull

MW 80.403 80.56 0.4

MZ 91.1876 90.73 1.0

105 Gµ 1.16637 1.164 0.3

1/αem 137.036 136.5 0.8

αs(MZ) 0.1176 0.1159 0.8

Mt 170.9 171.3 0.2

mb(mb) 4.20 4.28 1.1

Mτ 1.777 1.77 0.4

104 BR(B → Xsγ) 3.55 2.72 1.6

106 BR(B → Xsℓ
+ℓ−) 1.60 1.62 0.0

∆Ms/∆Md 35.05 32.4 0.7

104 BR(B+ → τ+ν) 1.41 0.726 1.4

108 BR(Bs → µ+µ−) < 5.8 3.35 –

total χ2: 8.78

Table 9. Example of successful fit in the region with b− τ unification. Dimensionful

quantities are expressed in powers of GeV. Higgs, lightest stop and gluino masses are

pole masses, while the rest are running masses evaluated at MZ [57].
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Input parameters Mass predictions

m16 7000 Mh0 121.5

µ 1369 MH0 585

M1/2 143 MA 586

A0 −14301 MH+ 599

tan β 46.1 mt̃1 783

1/αG 24.7 mt̃2 1728

MG/10
16 3.67 mb̃1

1695

ϵ3/% −4.91 mb̃2
2378

(mHu/m16)
2 1.616 mτ̃1 3297

(mHd
/m16)

2 1.638 mχ̃0
1

58.8

MR/10
13 8.27 mχ̃0

2
117.0

λu 0.608 mχ̃+
1

117.0

λd 0.515 Mg̃ 470

Table 10. Example of successful fit in the region with b− τ unification. Dimensionful

quantities are expressed in powers of GeV. Higgs, lightest stop and gluino masses are

pole masses, while the rest are running masses evaluated at MZ [57].

# irrep label # irrep label

3 (3,2;1,1)(1/3,1/3) qi 3
(
3,1;1,1

)
(−4/3,−1/3)

ūi

3 (1,1;1,1)(2,1) ēi 8 (1,2;1,1)(0,∗) mi

4
(
3,1;1,1

)
(2/3,−1/3)

d̄i 1 (3,1;1,1)(−2/3,1/3) di

4 (1,2;1,1)(−1,−1) ℓi 1 (1,2;1,1)(1,1) ℓ̄i
1 (1,2;1,1)(−1,0) ϕi 1 (1,2;1,1)(1,0) ϕ̄i

6
(
3,1;1,1

)
(2/3,2/3)

δ̄i 6 (3,1;1,1)(−2/3,−2/3) δi

14 (1,1;1,1)(1,∗) s+i 14 (1,1;1,1)(−1,∗) s−i
16 (1,1;1,1)(0,1) n̄i 13 (1,1;1,1)(0,−1) ni

5 (1,1;1,2)(0,1) η̄i 5 (1,1;1,2)(0,−1) ηi
10 (1,1;1,2)(0,0) hi 2 (1,2;1,2)(0,0) yi
6 (1,1;4,1)(0,∗) fi 6

(
1,1;4,1

)
(0,∗) f̄i

2 (1,1;4,1)(−1,−1) f−
i 2

(
1,1;4,1

)
(1,1)

f̄+
i

4 (1,1;1,1)(0,±2) χi 32 (1,1;1,1)(0,0) s0i
2

(
3,1;1,1

)
(−1/3,2/3)

v̄i 2 (3,1;1,1)(1/3,−2/3) vi

Table 11. Spectrum. The quantum numbers under SU(3)×SU(2)× [SU(4)×SU(2)′]

are shown in boldface; hypercharge and B−L charge appear as subscripts. Note that

the states s±i , fi, f̄i and mi have different B − L charges for different i, which we do

not explicitly list [101].
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Table 12. The full (six dimensional) spectrum of the “benchmark” model with gauge

group SU(6) × [SO(8)× SU(3)]
′
. Note that 8v+c+s ≡ 8v + 8c + 8s. In addition, the

states are written in the language of D = 6, N = 1 supersymmetry.

Multiplet Type Representation Number

tensor singlet 1

vector (35, 1, 1)⊕ (1,28, 1) 35 + 28

⊕(1, 1,8)⊕ 5× (1, 1, 1) 8 + 5

hyper (20, 1, 1)⊕ (1,8v+c+s, 1)⊕ 4× (1, 1, 1) 20+24+4

⊕9×
{
(6, 1, 1)⊕ (6, 1, 1)

}
108

⊕9×
{
(1, 1,3)⊕ (1, 1,3)

}
54

⊕3× (1,8v+c+s, 1) 72

⊕36× (1, 1, 1) 36

SUGRA singlets 2


