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Motivation

e\\/arping plays an important role in string models:

® Generation of the electroweak hiearchy [RS; GKP]

e Stabilization of moduli [KKLT:...]

®| ate-time acceleration [KKLT:....] and Inflation [KKLMMT:...]
® Gauge/gravity duality

o|n type |l theories, realistic models require open strings

e A 4D effective action Is valuable for detailed
phenomenology



Motivation (cont.)

e Alternatively, consider an
F-theory compactification

®|n such constructions must
satisty the D3-tadpole condition

X
XX st [ HO A F®
24 5.

e Additional ingredients will cause
warping which will modity 4D
EFT




Warped effective field theory

o|n a flat background, CFT techniques can be used to
determine an EFT (Kahler metrics, Yukawa couplings
[List et. al.; Cvetic et. al.; Ibanez et. al:...])

e However, warping in type |l
usually involves Ramonad-
Ramond fluxes and 1t Is
difficult to make use of CFT
techniques



Warped effective field theory

e Alternative: Dimensional

reduction of a higher
dimensional EFT

e Requires knowledge of
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Setup

eor simplicity, compactify [IB onT® = T? x T% x T3

dsiy = e2%dx] 4+ e 24dz™dz™

F(5) — (1 -+ *10) F(5) F(}? — 640‘ /N\ dVOlRl,S G(S) — ()

ext 'S

e Add two probe D7 branes

D71 . 23 — M322

S

D75 : 2° = —M;32°

oGivesalU (1) x U (1)
gauge symmetry
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Single D-brane

oFor a single D7-brane, the 4D bosonic d.o.t. are

®(Gauge boson A,
o\/Nilson lines A,
e\/\/orldvolume deformations &

eDynamics described by the DBI+CS action

__qoDBI CS
SD7 _SD7 —|_ SD7 Maﬁ — P[gozﬁ T BO&B} + AF@B

/
§DBI _ _ / o (Imr) /M
4Y

i @] L F@
SS? :TD7/ P|C AP N\ e
w L ] \A —

10



Intersections as Higgsing

e\/\Vhen the branes are coincident, the symmetry is
enhanced to U (2). The transverse fluctuations are
promoted to an adjoint-valued scalar ®

Position of D71 Position of D75

\cb“ ¢,
o (qs:/m/

7172 strings (bifundamental)

evevs for ¢™" correspond to background D7 positions

(¢") = A" M32® (¢") = =\ Msz? >
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Myers action

e Bosonic fluctuations governed by the Myers action
Sp7 = Spet + S55 symmetrization

SI[))]731 —TD7 /W d®x Str< (ImT)_l\/det M det QZ}

Interior product

CS ISV B® AR

Spr = TD7/ Strs P e ®"*C N e A e >
W

;L _ ,

non-Abelian pullback: Plvg| = vg + Av; Do ®*

where:
1/2

Map =P[Eas+ (Im7)” /B0 (Q ' = 6)YEj5] + A(Im7)
Exn =gun + (Im7)?Byy - Q% =4 —iA[@, ®] (Im 1)

Fop

—1/2
/ Ex;
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Myers action (cont.)

oBulk fields given as a non-Abelian Taylor expansion

adjoint va@ PN |
\If[cp} — qu) P L TS T
neutral— ;?zp:o: O ()\) - need small angle

e cading order in o', action is Higgsed warped Yang-Mills

e Equations of motion are second order and hard to solve In
general
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Fermionic action

® [0 get first order equations, can use fermionic action

ed.o.f. encoded in two 10D M-W spinors © = (2;)

® Abelian case: [Martucci, Rosseel, Van denBlesken, Van Proeyen:.. ]

Shy = iQ /d% (Im7) "' \/det Moz0 P [(M~1)*"T4D, — 0]©

g8 /

Involves 1 p~

5€\IJM :DMG
0\ =0¢
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Fermionic action (cont.)

e|n a warped geometry (G = 0),

1
DM:VM+ZF@DW O =0

e After s-fixing

1 _ 1
Sg7 = — Bz 9{605@1&1,3 eo‘ﬁw eo‘§$rﬂ~4a(1 2F34) }9
9 Jw .

4-cycle chirality

eNon-Abelian modification (leading o) wynants:

D=1 L =—ife °T; [ 0]
and take trace
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Adjoint fields

e\Varping effect on adjoint zero-mode waveftunctions are

mild
Vector multiplet: A, ~ const o ~ e 3%/2
Wilson line multiplet: A,, ~ const 19 ~ e¥/?
Deformation multiplet: ¢ ~ const 3 ~ e 3%/2

Consistent with supersymmetry
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Equations of motion

o[-or the biftundamental modes, take the ansatz

—3a /2. F T 2 T
%\3\_ SRRYE wiﬂ = e"*x T,
gaugino, modulino wilsonini

e Equations of motion:

0=01x7 + doxs + e_4O‘D§:X3
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BPS conditions

oFor a single D7 brane, the equations of motion follow from
F- and D-flathess conditions: [Jockers, Louis: Martucci]

. |W = [ Ply]net ) D = / Tmn| AeM * warped
undamenta Sa Sa /Kahler
3form gy = A eB® n=e2Imre? A eB”  form

e Comparing to the CS-action, the non-Abelian version
should be (see also [Bultti et. al.])

W = Str{P[eiA”q’Lq’ﬂ A e (2)} D = / S{P[eiM@b@Im n] A e,\p<2>}
Sy Sa

These yield the previous equations of motion with ¢)g = 0
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Unwarped zero mode

®|n the absence of warping, the zero modes are
exponentially localized on the intersection

Vo1 =
oF =o% (or)e el
oF 4 1o (ool
4D field

e |\/ixture of deformation modulus and Wilson line of the
un-Higgsed theory

19



Warped zero mode

o [-or arbitrary warping, no simple analytic solution

®|n the weak warping case, can treat the warping as a
perturbation

e_4o‘:1+eﬂ e <1

e Can then expand the warped zero mode Iin terms of the
unwarped massive modes
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Unwarped spectrum

® [ he equation of motion for the massive modes is

S R AT
—0 0 DT*  _HF T
D:FXEI\: — m)\Xil:* D:F — 1 3 *2 Xiz — Xl

~0, -Dy* 0 0 X3
\-D] &% -0r 0 ) \\F /
eEasiest to work in a rotated basis X'T = J71XT
01 — 0
! \ o e _Q
J 1 02 %D;:—Z(az + M3z )
ACEEAL: O3 — DF = —= (0 F Ms2?)

\ i/v2 1/v2)
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Unwarped spectrum (cont.)

e Boundary conditions:
e Periodicity along T
®| ocalized on intersection

® — - sector modes built from ladder operators (giving two
simple harmonic oscillator algebras) and Fourier modes

D/— - (T
Iowermg< (D) 1(.DAQ ) >raising

/_
1D3

2{2

Ot = homn (2121 [1(D59)]) (1D57) e

/

Fourier mode
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Unwarped spectrum (cont.)

e Unwarped spectrum:

m%\ = m? + n? + Ms (l +p+ 1) <I>’>\_ = (gp,;mlp, 0,0, O)
m%\ = m? 4+ n° + M, (l +p + 1) <I>’)\_ — (O, Ponnip: 0, O)
m3 =m? + n? + Msz(l + p) o = (0,0,9,,.1,,0)

m3 =m” +n”° + M (I +p+2) ¢y = (0,0,0, gOr_rmlp)
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Expanding the warped zero mode

e\/\rite the warped zero mode as
X = (I)a -+ Z C)\(Ii;
A

AN

| unwarped modes
® [0 |leading order

cx = —2/5 d'y () - (D) FK @,

D~ =Dj + K+ O(¢°)

e Examples given In [1011.xxxx]
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Chirality

o\/Vithout magnetic flux, the spectrum is vector-like

®|n order to have a chiral theory, the intersection must be
magnetized

1

— F(2) — M10'3
27'(' T2

o SUSY requires [Marino, Minasian, Moore, Strominger; ...]
F — _,

\

Hodge-*xon Sy
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Unwarped zero modes

o-or example, it M; > 0, only the —-sector has zero
modes

e Due to magnetic flux, wavefunction are quasi-periodic
[Cremades, Ibanez, Marchesano;...]

_,g‘z 27TiM1211m2119 ]/le (2M121712M1)

9"5’_7 ¢ | o

: _
ff:\/(%) + M3 i=0.....2M; —1

families orthogonal: / d4y (gpg’_)*¢lg’_ — kI
S4
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Warped zero modes

® As In unmagnetized case, warped zero mode has no
general simple analytic solution

e Again, expand in unwarped massive modes
e Spectrum built from three QSHO algebras
D/fF = (91 —+ ]\415I

ohip = (D7) [H(D5N)] (1D57) 08~ DF o 0 w2

D5t x i(02 F K2°)

28



Warped zero modes (cont.)

e xpand warped zero mode in terms of unwarped massive
modes

X7 =@+ AT
\ koA f

unwarped modes

then / N\
e b [yl (o) g

family mixing Is generic

e Examples given In [1011.xxxx]
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Adjoint fields

eRecall the adjoint field wavefunctions

wo N e—3a/2 ¢1’2 -~ e04/2

® [ he resulting 4D kinetic terms are

wg N e—3a/2

= 1
L>Kz;0,0"C" 4 1 2FWFW/’[

1 1
— = — d4y 6—404 J
94 gs Js,
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Chiral matter fields

e\\arping modifications for chiral matter more complex

S =

1

= | ey iy~ . .
2 d°x 9131’{577” g bF,ua,Fyb‘|‘e 4 nt g@-j(?u(l) (9,/(1)‘7}
gs Jw

|

/ dty (Tm7) "L (XFF)" - oo X
Sa
G J

e = diag (6540‘, 1,1, e_40‘)

\

® X

- Is the warped zero mode, not simply related to

unwarped zero mode
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Chiral matter fields (cont.)

®|n the weak warping limit, the first order correction is

( - 1 —1 T\ ¥ P 5V . )
5/le2 =3 . d*y (Im 7) (X/l; ) Bx%” (ICJ.

/ V
W

® Generic warp factors will introduce off-diagonal terms in
the Kahler metric

?Tlll
N——"
-

® Second order corrections make use of warped
wavefunctions (work in progress...)
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Summary and future directions

e Studied the wavefunctions for bifundamental matter in warped
compactifications in both the chiral and non-chiral cases

o Needed to develop warped effective field theory and detailed
phenomenology (though still work to be donel)

o\\arping effects are more intricate than for adjoint matter;
require a series expansion in unwarped massive modes

® General warp factors induce off-diagonal terms in the Kahler
metric

e Extension to Calabi-Yau case is likely tricky...

e\\Vith a non-SUSY source (such as D3-branes), wavefunctions
can be used to study soft terms (work in progress)
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