PHYSICS 555

Home Work Assignment # 5 10/20/2006

Due: Thurs., Oct. 26, 2006

All the numbered problems are from the text book by Griffiths.

1. (a) Show that \(\nabla \cdot \left(\frac{\hat{R}}{R^2} \right) = 4\pi \delta^3(R) \) where \(\hat{R} = r - r' \). Note that Griffiths uses the symbol “script” \(r \) for what I call \(R \) here. All the derivatives here and below are with respect to the variable \(r \).

(b) Next use the result of part (a) and Problem 1.13 (which you solved in HW # 2) to show that \(\nabla^2 \left(\frac{1}{R} \right) = -4\pi \delta^3(R) \).

(c) Use the result of part (b) to show that

\[
V(r) = \frac{1}{4\pi \epsilon_0} \int d\tau' \frac{\rho(r')}{R}
\]

satisfies Poisson’s equation.

2. Problem 2.30. In part (a) check only examples 2.4 & 2.5 [omit problem 2.11]. Do part (b). [Read part (c) but it is not necessary to do it].

3. Problem 2.31 (a) and (b)

4. Problem 2.32 (a), (b) and (c). In part (c) the radius of the spherical volume \(a > R \), the radius of the solid sphere. [Read Problem 2.33 but it is not necessary to solve it].