Due: Tue., Oct. 11, 2011.

1. Sharpness of diffraction peaks: To understand the width of diffraction peaks, consider the simple 1D model of a large crystal of finite size. Let there be identical point scatterers located at $x_{m}=m a$, where a is the lattice spacing and m is an integer in range $0 \leq m \leq M$. The scattering matrix element is given by

$$
\left\langle k^{\prime}\right| U|k\rangle=\int d x e^{-i q x} U(x) \quad \text { with } \quad q=k-k^{\prime}
$$

(a) Show within the Born approximation that the amplitude for scattering an X-ray with wavevector k to k^{\prime} is proportional to

$$
\mathcal{A}=\sum_{m=0}^{M-1} e^{-i m q a}
$$

and thus the scattered intensity goes like

$$
|\mathcal{A}|^{2}=\frac{\sin ^{2}(M q a / 2)}{\sin ^{2}(q a / 2)}
$$

(b) Hence conclude that the diffraction maxima occur at $q=2 \pi h / a$, where h is an integer.
(c) Next, move slightly off the maximum by choosing $q=(2 \pi h / a)+\delta q$ and show that the width of the diffraction peak is given by $\delta q=2 \pi /(M a)$. Thus for a macroscopic crystal, the diffraction peak is extremely sharp.

Note: Read A \& M (Ashcroft and Mermin) Chapter 6.
Please note a potentially confusing point of terminology.
A \& M use the term "geometrical structure factor", denoted by $S_{\mathbf{K}}$, for the F.T. of the density of a rigid lattice within a primitive cell, evaluated at a reciprocal lattice vector.
This is to be carefully distinguished from the standard term "Structure factor", denoted by $S(\mathbf{q})$, which is the F.T. of the density-density correlation function in a condensed matter system.
2. A \& M, Ch. 6, Problem 3 (a) through (e).
3. A \& M, Ch. 6, Problem 5 (a) and (b).

