
PHYSICS 880.06

Home Work Assignment # 5 10/25/2011

Due: Tue., Nov. 1, 2011.

Problem: Optical conductivity of the free electron gas with impurities:

In this problem you will consider a simple model of the optical conductivity
of a metal and explore its consequences. Ashcroft and Mermin give an
elementary discussion in Chapter 1 that may be worth reviewing before you
do this problem.

The non-equilibrium distribution function f(r,k, t) for electrons is obtained
by solving the Boltzmann equation

∂f

∂t
+ vk · ∇rf +

eE

h̄
· ∇kf = − [f − f0]

τ

in the relaxation time approximation. Here vk = ∇kεk/h̄ is the velocity,
f0 is the equilibrium distribution and τ the scattering time from impurities.
We consider weak disorder: kF ` ∼ εF τ � 1.

(1) Consider an external electric field E = E0 exp(−iωt). Because of the
large value of c we can ignore the spatial variation of the field and just focus
on its time-dependence in solving the Boltzmann equation.
Linearize the Boltzmann equation in the small field limit and show that the
distribution function is given by

f = f0 +
eτvk ·E0

1− iωτ

(
−∂f0

∂ε

)
e−iωt.

(2) Show that the frequency dependent conductivity is given by

σ(ω) = σ(0)
1 + iωτ

1 + ω2τ2

where σ(0) is the static (or d.c.) conductivity discussed in class. You can
simplify the problem here onwards by choosing a parabolic dispersion εk.
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(3) The optical conductivity is complex: σ(ω) = σ1(ω) + iσ2(ω). Show that
its real part σ1, that is related to absorption of energy, satisfies the sum rule∫ ∞

0
dωσ1(ω) =

ω2
p

8
.

Here ω2
p = 4πne2/m is the plasma frequency (n = density of electrons, m =

electron mass), whose physical meaning will be clarified below.
This sum rule is a very general constraint on the optical conductivity of
any system (with disorder, interactions, . . . ). Our calculation only serves
to illustrate that the result of part (b) satisfies this general sum rule.

(4) Make a careful sketch of σ1(ω). Why is the area under this curve in-
dependent of the scattering time τ and only dependent on the density n of
electrons?

(5) Let us now understand the propagation of e.m. radiation in a metal.
Following the derivation on p. 17 of Ashcroft and Mermin, show that the
(complex) dielectric function ε(ω) = ε1(ω) + iε2(ω) of a metal is related to
its optical conductivity via

ε(ω) = 1 + i
4π

ω
σ(ω).

If we choose a solution of Maxwell’s equation of the form
E = E0 exp[i(K · r− ωt)] then show that the complex K is given by

K =
√
ε(ω)

ω

c
≡ (n1 + in2)

ω

c
.

What is the physical meaning of a complex K?

(6) We will assume (without proof) the following result from classical electro-
dynamics (which is actually quite easy to prove). The reflection coefficient
R for radiation incident upon the interface between vacuum and a material
with ε(ω) = (n1 + in2)

2 is given by

R =
(n1 − 1)2 + n22
(n1 + 1)2 + n22

.

Using the results derived above show that in the low frequency regime
ω � 1/τ � ωp, one has

R ' 1− 2

(
2ω

ω2
pτ

)1/2

.

A reflection coefficient close to unity is the reason why metals are shiny!
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(7) Show that in the high frequency regime ω � 1/τ the real part of the
dielectric function ε1 is given by

ε1(ω) = 1−
ω2
p

ω2
.

The plasma frequency is now seen as the frequency at which ε1 changes sign.
Using n1 and n2 defined above, argue that for ω > ωp a metal becomes
transparent. This phenomenon that is called “ultraviolet transparency” in
view of the values of metallic plasma frequencies (see Ashcroft and Mermin,
p. 18).

Finally, read Ashcroft and Mermin (p. 19 - 20) where they discuss collective
oscillations in a metal at the plasma frequency.
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